

INVESTMENTS IN EDUCATION DEVELOPMENT

Quantum measurements in laser gravitation wave detectors

F.Ya.Khalili

February 4, 2013

1 Brief introduction into GW detectors

- **2** Brief theory of optical position meters
- **3** Standard Quantum Limit
- **4** Quantum noises cross-correlation
- **5** Quantum speedmeter

1 Brief introduction into GW detectors

- 2 Brief theory of optical position meters
- **3** Standard Quantum Limit
- 4 Quantum noises cross-correlation
- **5** Quantum speedmeter

In some far far away galaxy...

In some far far away galaxy...

In some far far away galaxy...

On Earth (some 100 000 000 years later)...

On Earth (some 100 000 000 years later)...

On Earth (some 100 000 000 years later)...

... but HUGE one!

Actually, four of them

Closer look

Closer look

Closer look

Weber's bar detector

Initial LIGO (2001-2009)

Sensitivity: $h \sim 10^{-21} \Rightarrow \delta x \sim 10^{-18} \text{ m}$ Prediction: ~ 0.5 events/year Results: NONE

Nevertheless...

Nevertheless...

Initial LIGO (2001-2009)

Sensitivity: $h \sim 10^{-21} \Rightarrow \delta x \sim 10^{-18} \text{ m}$ Prediction: $\sim 0.5 \text{ events/year}$ Results: NONE

Advanced LIGO (2014)

Sensitivity: $h \sim 10^{-22} \Rightarrow \delta x \sim 10^{-19} \text{ m}$ Prediction: up to $\sim 10^3 \text{ events/year}$

A new hope

3rd generation (2020?): Einstein Telescope

3rd generation (2020?): Einstein Telescope

3rd generation (2020?): Einstein Telescope

1 Brief introduction into GW detectors

2 Brief theory of optical position meters

3 Standard Quantum Limit

4 Quantum noises cross-correlation

5 Quantum speedmeter

 $F_{\rm r.p.} = \frac{2I}{2}$ x ω_{o} Phase detector ∇ $i \propto \phi_{\rm out} = \phi_{\rm in} - \frac{2\omega_o x}{\omega_o x}$ $\hat{A}(t) = [A + \hat{a}_c(t)] \cos \omega_o t - \hat{a}_s(t) \sin \omega_o t$ $\approx [A + \hat{a}_{c}(t)] \cos[\omega_{o}t + \hat{\phi}(t)]$ $\hat{\phi}(t) = -\frac{\hat{a}_s(t)}{\Delta}$ $S_c = \frac{e^{2r}}{2} \quad S_s = \frac{e^{-2r}}{2}$ Phase noise: $S_{\phi} = \frac{S_s}{A^2} = \frac{\hbar\omega_o}{4\langle I \rangle} e^{-2r}$ Intensity noise: $S_I = (\hbar \omega_o)^2 A^2 S_c = \hbar \omega_o \langle I \rangle e^{2r}$

 $F_{\rm r.p.} = \frac{2I}{2I}$ x ω_{o} Phase detector $\mathbf{\nabla}$ $i \propto \phi_{\rm out} = \phi_{\rm in} - \frac{2\omega_o x}{2\omega_o x}$ Phase noise: $S_{\phi} = \frac{S_s}{A^2} = \frac{\hbar \omega_o}{A/I \setminus} e^{-2r}$ Intensity noise: $S_I = (\hbar \omega_o)^2 A^2 S_c = \hbar \omega_o \langle I \rangle e^{2r}$ Measurement noise: $S_x = \frac{c^2}{4\omega_z^2} S_\phi = \frac{\hbar c^2 e^{-2r}}{16\omega_o \langle I \rangle}$ Back-action noise: $S_F = \frac{4}{c^2} S_I = \frac{4\hbar\omega_o \langle I \rangle e^{2r}}{c^2}$ $S_x imes S_F = rac{\hbar^2}{\Lambda}$

29/84

Optical position meter (real-world version)

🔋 G.Harry et al, Class. Quantum Grav. 27, 084006 (2010)

 S_x : spectral density of measurement noise $\hat{x}^{\text{meas}}(t)$ S_F : spectral density of back action noise $\hat{F}^{\text{pert}}(t)$

$$S_x imes S_F = rac{\hbar^2}{4}$$

1 Brief introduction into GW detectors

2 Brief theory of optical position meters

3 Standard Quantum Limit

4 Quantum noises cross-correlation

5 Quantum speedmeter

LENGTHY EQUATIONS AHEAD!

Detection of classical force

Detection of classical force

$$-m\Omega^{2}\hat{x}(\Omega) = F^{\text{sign}}(\Omega) + \hat{F}^{\text{pert}}(\Omega)$$

" $x(\Omega)$ " = $\hat{x}(\Omega) + \hat{x}^{\text{meas}}(\Omega)$
Detection of classical force

$$F^{\text{sign}}(t) \xrightarrow{F^{\text{sign}}(t)} \xrightarrow{\hat{x}(t)} \xrightarrow{\hat{x}(t)} \xrightarrow{(x_1^{\text{ress}})^{\text{sign}}(t)} \xrightarrow{\hat{x}(t)^{\text{ress}}} \xrightarrow{\hat{$$

Detection of classical force

$$F^{\text{sign}}(t) \qquad Free \\ \text{mass} \qquad \widehat{F}^{\text{pert}}(t) \qquad Meter \qquad "x(t)" = \hat{x}(t) + \hat{x}^{\text{meas}}(t) \\ - m\Omega^{2}\hat{x}(\Omega) = F^{\text{sign}}(\Omega) + \hat{F}^{\text{pert}}(\Omega) \\ "x(\Omega)" = \hat{x}(\Omega) + \hat{x}^{\text{meas}}(\Omega) \qquad \text{the sum noise} \\ = \frac{F^{\text{sign}}(\Omega)}{-m\Omega^{2}} + \frac{F^{\text{pert}}(\Omega)}{-m\Omega^{2}} + \hat{x}^{\text{sum}}(\Omega) \\ S_{\text{sum}}(\Omega) = S_{x} + \frac{S_{F}}{m^{2}\Omega^{4}}$$

Detection of classical force

$$F^{\text{sign}}(t) \qquad Free \\ \text{mass} \qquad \widehat{F}^{\text{pert}}(t) \qquad Meter \qquad x(t)'' = \hat{x}(t) + \hat{x}^{\text{meas}}(t) \\ - m\Omega^2 \hat{x}(\Omega) = F^{\text{sign}}(\Omega) + \hat{F}^{\text{pert}}(\Omega) \\ \quad "x(\Omega)'' = \hat{x}(\Omega) + \hat{x}^{\text{meas}}(\Omega) \qquad \text{the sum noise} \\ = \frac{F^{\text{sign}}(\Omega)}{-m\Omega^2} + \frac{F^{\text{pert}}(\Omega)}{-m\Omega^2} + \hat{x}^{\text{sum}}(\Omega) \\ S_{\text{sum}}(\Omega) = S_x + \frac{S_F}{m^2\Omega^4} = \frac{\hbar}{2m} \left(\frac{1}{\Omega_q^2} + \frac{\Omega_q^2}{\Omega^4}\right) \\ \Omega_q = \left(\frac{S_F}{m^2S_x}\right)^{1/4} \propto \sqrt{\frac{\langle I \rangle}{m}} e^r$$

39/84

Sum noise spectral density

Sum noise spectral density

Standard Quantum Limit

Standard Quantum Limit

Standard Quantum Limit

In all equations, we have only the combination $\langle I\rangle e^{2r}$

⇒ squeezing does not allow to overcome the SQL, but allows to decrease $\langle I \rangle$

Squeezing in GEO-600

The LSC, Nature Physics 7, 962 (2011)

Squeezing in GEO-600

The LSC, Nature Physics **7**, 962 (2011)

Squeezing in GEO-600

The LSC, Nature Physics 7, 962 (2011)

Implicit assumptions that have been made:

- The scheme is stationary (invariant with respect to time shift).
- **2** The noises are Markovian.
- **3** The noise are mutually uncorrelated.
- **4** The test object is a free mass.

Implicit assumptions that have been made:

- The scheme is stationary (invariant with respect to time shift).
- **2** The noises are Markovian.
- **3** The noise are mutually uncorrelated.
- **4** The test object is a free mass.

Number of schemes based on violation of some of these assumptions has been proposed.

Only one successful experiment was performed O (for now).

Implicit assumptions that have been made:

- The scheme is stationary (invariant with respect to time shift).
- **2** The noises are Markovian.
- **3** The noise are mutually uncorrelated.
- **4** The test object is a free mass.

Number of schemes based on violation of some of these assumptions has been proposed.

Only one successful experiment was performed \bigcirc (for now).

For the laser gravitation wave detectors, the way "2+3" is considered as the most promising.

1 Brief introduction into GW detectors

- **2** Brief theory of optical position meters
- **3** Standard Quantum Limit
- **4** Quantum noises cross-correlation
- **(5)** Quantum speedmeter

Measurement noise:
$$S_x = \frac{\hbar c^2}{16\omega_o \langle I \rangle \cos^2 \zeta}$$

Back-action noise: $S_F = \frac{4}{c^2} S_I = \frac{4\hbar\omega_o \langle I \rangle}{c^2}$
Cross-correlation: $S_{xF} = \frac{\hbar}{2} \tan \zeta$

Homodyne detector

$$i \propto \phi_{\text{out}} = \phi_{\text{in}} - \frac{2\omega_o x}{c} - \frac{I - \langle I \rangle}{2\langle I \rangle} \tan \zeta$$

Measurement noise:
$$S_x = \frac{\hbar c^2}{16\omega_o \langle I \rangle \cos^2 \zeta}$$

Back-action noise: $S_F = \frac{4}{c^2} S_I = \frac{4\hbar\omega_o \langle I \rangle}{c^2}$
Cross-correlation: $S_{xF} = \frac{\hbar}{2} \tan \zeta$

$$S_x \times S_F - S_{xF}^2 = \frac{\hbar^2}{4} \qquad \qquad S_{\text{sum}}(\Omega) = S_x - \frac{2S_{xF}}{m\Omega^2} + \frac{S_F}{m^2\Omega^4}$$

Narrow-band gain

Broad band gain (?)

$$S_{\rm sum}(\Omega) = \frac{\hbar}{2m} \left(\frac{1}{\Omega_q^2 \cos^2 \zeta} - \frac{2}{\Omega^2} \tan \zeta + \frac{\Omega_q^2}{\Omega^4} \right)$$
$$\Omega^2 \tan \zeta = \Omega_q^2 \equiv \frac{2S_F}{\hbar m} \Rightarrow S_{\rm sum} = \frac{\hbar}{2m\Omega_q^2}$$
$$\Omega_q^2 \propto I \to \infty \Rightarrow S_{\rm sum} \to 0$$

$$S_{\rm sum}(\Omega) = \frac{\hbar}{2m} \left(\frac{1}{\Omega_q^2 \cos^2 \zeta} - \frac{2}{\Omega^2} \tan \zeta + \frac{\Omega_q^2}{\Omega^4} \right)$$
$$\Omega^2 \tan \zeta = \Omega_q^2 \equiv \frac{2S_F}{\hbar m} \Rightarrow S_{\rm sum} = \frac{\hbar}{2m\Omega_q^2}$$
$$\boxed{\Omega_q^2 \propto I \to \infty \Rightarrow S_{\rm sum} \to 0}$$

Option 1: variational readout

$$\tan\zeta\propto \frac{1}{\Omega^2}\qquad \Omega_q^2={\rm const}$$

H.J.Kimble et al, Phys.Rev.D 65, 022002 (2001)

$$S_{\rm sum}(\Omega) = \frac{\hbar}{2m} \left(\frac{1}{\Omega_q^2 \cos^2 \zeta} - \frac{2}{\Omega^2} \tan \zeta + \frac{\Omega_q^2}{\Omega^4} \right)$$
$$\Omega^2 \tan \zeta = \Omega_q^2 \equiv \frac{2S_F}{\hbar m} \Rightarrow S_{\rm sum} = \frac{\hbar}{2m\Omega_q^2}$$
$$\boxed{\Omega_q^2 \propto I \to \infty \Rightarrow S_{\rm sum} \to 0}$$

Option 1: variational readout

$$\tan \zeta \propto \frac{1}{\Omega^2} \qquad \Omega_q^2 = \text{const}$$

H.J.Kimble *et al*, Phys.Rev.D **65**, 022002 (2001)

Option 2: quantum speedmeter

$$\tan\zeta = \text{const}$$

$$\Omega_{g}^{2}\propto\Omega^{2}$$

🔋 V.B.Braginsky, F.Ya.Khalili, Phys.Lett.A 147, 251 (1990)

$$S_{\rm sum}(\Omega) = \frac{\hbar}{2m} \left(\frac{1}{\Omega_q^2 \cos^2 \zeta} - \frac{2}{\Omega^2} \tan \zeta + \frac{\Omega_q^2}{\Omega^4} \right)$$
$$\Omega^2 \tan \zeta = \Omega_q^2 \equiv \frac{2S_F}{\hbar m} \Rightarrow S_{\rm sum} = \frac{\hbar}{2m\Omega_q^2}$$
$$\boxed{\Omega_q^2 \propto I \to \infty \Rightarrow S_{\rm sum} \to 0}$$

Option 1: variational readout

$$\tan \zeta \propto \frac{1}{\Omega^2} \qquad \Omega_q^2 = \text{const}$$

H.J.Kimble *et al*, Phys.Rev.D **65**, 022002 (2001)

Option 2: quantum speedmeter

$$\tan \zeta = \text{const} \qquad \Omega_q^2 \propto \Omega^2$$

fill V.B.Braginsky, F.Ya.Khalili, Phys.Lett.A 147, 251 (1990)

Optomechanical coupling $\Omega_q^2 \propto I \propto \Omega^2$: is it possible?

63/8

Hannover 10m prototype

S.Goßler *et al*, Class. Quantum Grav. **27**, 084023 (2010)

Hannover 10m prototype

Hannover 10m prototype

66 / 84

1 Brief introduction into GW detectors

- **2** Brief theory of optical position meters
- **3** Standard Quantum Limit
- **4** Quantum noises cross-correlation
- **5** Quantum speedmeter

SQL: simplified consideration

Position measurement

$$\begin{aligned} \hat{x}(t) &= \hat{x} + \frac{\hat{p}t}{m} \\ \Delta x \times \Delta p \geqslant \frac{\hbar}{2} \\ \Delta x(t) \geqslant \sqrt{\frac{\hbar t}{m}} \sim \sqrt{\frac{\hbar}{m\Omega}} \implies S_{\text{sum}} \geqslant \frac{[\Delta x(t)]^2}{\Omega} = \frac{\hbar}{m\Omega^2} \end{aligned}$$

SQL: simplified consideration

Position measurement

$$\begin{aligned} \hat{x}(t) &= \hat{x} + \frac{\hat{p}t}{m} \\ \Delta x \times \Delta p \geqslant \frac{\hbar}{2} \\ \Delta x(t) \geqslant \sqrt{\frac{\hbar t}{m}} \sim \sqrt{\frac{\hbar}{m\Omega}} \implies S_{\text{sum}} \geqslant \frac{[\Delta x(t)]^2}{\Omega} = \frac{\hbar}{m\Omega^2} \end{aligned}$$

Momentum measurement

$$\hat{p}(t) = \text{const}$$
 [in the absence of $F(t)$]
 \Rightarrow no uncertainty relation
 \Rightarrow no SQL

SQL: simplified consideration

Position measurement

$$\begin{split} \hat{x}(t) &= \hat{x} + \frac{\hat{p}t}{m} \\ \Delta x \times \Delta p \geqslant \frac{\hbar}{2} \\ \Delta x(t) \geqslant \sqrt{\frac{\hbar t}{m}} \sim \sqrt{\frac{\hbar}{m\Omega}} \implies S_{\text{sum}} \geqslant \frac{[\Delta x(t)]^2}{\Omega} = \frac{\hbar}{m\Omega^2} \end{split}$$

Momentum measurement

$$\hat{p}(t) = \text{const}$$
 [in the absence of $F(t)$]
 \Rightarrow no uncertainty relation
 \Rightarrow no SQL

Velocity measurement

We can not measure momentum? Let us measure velocity instead! The idea

Light interacts with the probe twice:

V.B.Braginsky, F.Ya.Khalili, Phys.Lett.A 147, 251 (1990)
Light interacts with the probe twice:

🔋 V.B.Braginsky, F.Ya.Khalili, Phys.Lett.A 147, 251 (1990)

Light interacts with the probe twice:

Light interacts with the probe twice:

$$\phi_{\text{out}}(t) = \phi_{\text{in}}(t-\tau) + \frac{2\omega_o}{c} \left[x(t) - x(t-\tau) \right]$$
(quantum SPEED meter!) $\approx \phi_{\text{in}}(t-\tau) + \frac{2\omega_o\tau}{c} \frac{dx(t)}{dt}$

Light interacts with the probe twice:

$$\phi_{\text{out}}(t) = \phi_{\text{in}}(t-\tau) + \frac{2\omega_o}{c} \left[x(t) - x(t-\tau) \right]$$

(quantum SPEED meter!) $\approx \phi_{\rm in}(t-\tau) + \frac{2\omega_o \tau}{c} \frac{dx(t)}{dt}$

$$F_{\text{pert}}(t) = \frac{2}{c} \left[I(t+\tau) - I(t) \right] \approx \frac{2\tau}{c} \frac{dI(t)}{dt}$$
$$\Rightarrow p_{\text{pert}}(t) = \int_{-\infty}^{t} F_{\text{pert}}(t') dt' \approx \frac{2\tau I(t)}{c}$$

Light interacts with the probe twice:

Fourier picture

$$\phi_{\text{out}}(\Omega) \approx \phi_{\text{in}}(\Omega) + \frac{2\omega_o \tau}{c} \times [-i\Omega x(\Omega)]$$
$$F_{\text{pert}}(\Omega) \approx \frac{2\tau}{c} \times [-i\Omega I(\Omega)]$$

Light interacts with the probe twice:

Spectral densities

Measurement noise:
$$S_x = \frac{\hbar c^2}{16\omega_o \langle I \rangle e^{2r} \cos^2 \zeta} \times \frac{1}{\Omega^2 \tau^2} = \frac{S_v}{\Omega^2}$$

Back-action noise: $S_F = \frac{4\hbar\omega_o \langle I \rangle e^{2r}}{c^2} \times \Omega^2 \tau^2 = S_p \Omega^2$
Cross-correlation: $S_{xF} = \frac{\hbar}{2} \tan \zeta = -S_{vp}$

Note the requested frequency dependence!

Light interacts with the probe twice:

Detection of classical force

$$S_{\rm sum} = \frac{1}{\Omega^2} \left(S_v + \frac{2S_{vp}}{m} + \frac{S_p}{m^2} \right); \qquad S_v S_p - S_{vp}^2 = \frac{\hbar^2}{4}$$

Light interacts with the probe twice:

Detection of classical force

$$S_{\text{sum}} = \frac{1}{\Omega^2} \left(S_v + \frac{2S_{vp}}{m} + \frac{S_p}{m^2} \right); \qquad S_v S_p - S_{vp}^2 = \frac{\hbar^2}{4}$$
$$S_{vp} = -\frac{S_p}{m}$$
$$\Rightarrow S_{\text{sum}} = \frac{\hbar^2}{4S_p \Omega^2} = \left[S_{\text{SQL}}(\Omega) = \frac{\hbar}{m \Omega^2} \right] \times \frac{mc^2}{16\omega_o \langle I \rangle e^{2r} \tau^2}$$

Light interacts with the probe twice:

Detection of classical force

$$S_{\text{sum}} = \frac{1}{\Omega^2} \left(S_v + \frac{2S_{vp}}{m} + \frac{S_p}{m^2} \right); \qquad S_v S_p - S_{vp}^2 = \frac{\hbar^2}{4}$$
$$S_{vp} = -\frac{S_p}{m}$$
$$\Rightarrow S_{\text{sum}} = \frac{\hbar^2}{4S_p \Omega^2} = \left[S_{\text{SQL}}(\Omega) = \frac{\hbar}{m \Omega^2} \right] \times \frac{mc^2}{16\omega_o \langle I \rangle e^{2r} \tau^2}$$

The factor $1/\tau^2$ calls for REALLY LARGE setups!

Yanbei Chen, Phys.Rev.D 67, 122004 (2003)

UNIVERSITY of GLASGOW

Overview of 1m speed meter experiment

- 1g mirrors suspended in monolithic fused silica suspensions.
- 1kW of circulating power. Arm cavities with finesse of 10000. 100ppm loss per roundtrip.
 - Sophisticated seismic isolation + double pendulums with one vertical stage.
 - Large beams to reduce coating noise.
 - Armlength = 1m. Target better than 10⁻¹⁸m/sqrt(Hz) at 1kHz.
 - No recycling, no squeezing, but plan to use homodyne detection.
- LOTS OF CHALLENGES! (let me know if you want to help...)

S.Hild *et al*, LSC QNWG telecon, January 30, 2013

