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Introduction
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State of a quantum system
� A finite quantum stateρ ∈ Mn(C) can be described with the

following properties:

Tr(ρ) = 1, ρ ≥ 0

� Let σi be generalized Pauli-matrices: orthonormal basis with

respect to the Hilbert-Schmidt inner product:

〈A,B〉 = Tr(A∗B)

� We use the Bloch parametrization

ρ(θ) =
n2−1
∑

i=0

θiσi.
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State of a quantum system II.

ρ(θ) =

n2−1
∑

i=0

θiσi,

� Tr(ρ) = 1 ⇐⇒ θ0 =
1√
n
.

State space can be parametrized withθ ∈ R
n2−1

� ρ ≥ 0 =⇒
n2−1
∑

i=0

θ2i ≤ 1.

Note that ifn = 2 (qubit case) this is also a sufficient condition,

so in that case we have the so-called Bloch ball as state space.
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Measurements
� (E1, E2, . . . , Ek) forms a positive operator valued measurement

(POVM) if

∀i : Ei ≥ 0 and
∑

i

Ei = I.

• Fork = 2: (P, I − P ) are projections (von Neumann meas.).

� The probability of observing an outcome related toEi is

pi = Tr(ρEi).

� E.g.,A =
∑

λiPi. ThenEi := Pi, while the outcome isλi.

� State after measurement:

ρ′i =
EiρEi

TrEiρEi
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Quantum tomography
� The state estimation process has the following steps:

• Choose a set of measurements

• Measure multiple times on identical copies of a quantum

state

• Construct an estimator from the measurement data

� Our choices:

• Measurements

• Estimator

• Figure of merit for estimation efficiency
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Standard method
� We measure in the 3 axis directions:Pi =

I+σi

2
, (i = 1, 2, 3)

� The probability of an outcome related toPi:

pi =
1

2
(1 + θi)

� m measurements are performed in each direction

νi :=
mi

m
, where mi is the number of outcomes related to Pi

� Then the estimation onθ:

Φm(ν1, ν2, ν3) =









2ν1 − 1

2ν2 − 1

2ν3 − 1
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Standard method II.
� Φm is unbiased:E(Φm) = θ.

� Its covariance matrix is

Var (Φm) =
1

m









1− θ21 0 0

0 1− θ22 0

0 0 1− θ23









� If Ψm is an unbiased estimator, the Cramér-Rao inequality says

Var (Ψm) ≥ Im(θ)
−1.

ForΦm we have equality, soΦm is efficient.
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Weak measurements
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State evolution driven by weak measurements

Coupling
Time 

Development
Indirect

Measurement

θS(k) θS(k+1)

θM

meas. result
±1

� State evolution:

xk+1 =















xk+c

1+cxk
,with probability 1+cxk

2
: +1 measurement

xk−c

1−cxk
,with probability 1−cxk

2
: -1 measurement
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Example: State evolution for different x0-s

1000 2000 3000 4000 5000
k

-0.4

-0.2

0.2
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0.8

xk
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Estimation of the initial state
� Aim: Estimation of the initial statex0

� Result: We gave 3 working methods

• Histogram

• Bayesian

• Martingale

� Martingale property:E(xk+1) = xk

� For fixed valueu, v, we run the process untilu < xk < v.

� Doob’s optional stopping theorem:E(xT ) = x0, so

E(xT ) = pu+ (1− p)v = x0 ⇒ x̂0 = p̂u+ (1− p̂)v
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Estimation of the process
� Aim: Estimation of the processxk (filtering)

� Kalman filter:

• State evolution:xk+1 = Axk + wk

• Measurement:yk = Hxk + vk

• wk andvk are independent noises with probability

distribution:w ∼ N (0, Q), v ∼ N (0, R)

• Kalman filter:

x̂k+1 = Ax̂k +Kk

(

yk −Hx̂k

)

• Task: optimal choice ofKk to minimize:

E(xk − x̂k)(xk − x̂k)
T → min.
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Obtaining the state space model
� State evolution:

xk+1 = xk +Nc2xk(1− x2k) + ωk · c(1− x2k)

� Measurements:

yk = Ncxk + ωk,

with ωk ∼ N (0, N).

� Comparison to the classical Kalman filter settings:

• State evolution: non-linear

• Measurement: linear

• Noise: not independent (measurement feedback) and additional

non-linear factor
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Channel tomography
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Complementarity
� Quantum channel:Mn(C) → Mn(C) CPTP map

� The basise1, e2, . . . , en is complementary to the basis

f1, f2, . . . , fn (also called mutually unbiased bases) if

|〈ei, fj〉|
2 =

1

n
(1 ≤ i, j ≤ n).

� Generalization for POVMs(1 ≤ i ≤ k, 1 ≤ j ≤ m):
(

TrEiFj =
1

n
TrEiTrFj

)

⇔

(

Ei −
TrEi

n
I ⊥ Fj −

TrFj

n
I

)

� We can generalize quasi-orthogonality for subspaces:

A1 ⊖ CI ⊥ A2 ⊖ CI,
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Parameter estimation of Pauli channels

� LetA1,A2, . . . ,AN be a complementary decomposition of

Mn(C):

Ai −
TrAi

n
I ⊥ Aj −

TrAj

n
I, ∀Ai ∈ Ai, Aj ∈ Aj (i 6= j)

� Pauli channel: contractions withλi on traceless part ofAi.

� Example:Ai := span{I, σi}, i ∈ {1, 2, . . . , 2n − 1}

E : ρ =
1

n

(

I +

2n−1
∑

i=1

θiσi

)

7→ E(ρ) =
1

n

(

I +

2n−1
∑

i=1

λiθiσi

)

.

� Aim: Select input state, send through channel, measure the

output, repeat many times⇒ estimateλi
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Parameter estimation of Pauli channels II.

� Figure of merit: Fisher information matrix of the parametersλi

Fij =
∑

α

1

pα

∂pα
∂λi

∂pα
∂λj

� Optimization:

∀i : Fii → max. (independently)

� Result: Input and measurement in the direction ofAi. It depend

on the algebraic structure ofAi.
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Unknown channel directions
� Another problem: What ifσi are unknown too?

� We gave an efficient method for the qubit case.

� channel matrix: A : θin → θout

A(λ1, λ2, λ3, φz, φy, φx) = RzRyRxΛR
−1
x R−1

y R−1
z

1. E‖Â− A‖2 → min.: in the channel directions (equivalent to

the average squared distance ofρout andρ̂out)

2. E
∑

(λ̂i − λi)
2 → min.: in the channel directions

3. E
∑

(φ̂i − φi)
2 → min.: NOT in the channel directions
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State tomography
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Complementarity and DACM
� Wooters and Fields proved in 1989 the optimality of

complementary measurements

� Petz, Hangos and Magyar used in 2007 the optimization

det〈Var (θ̂)〉 → min .

for proving the optimality of complementary measurements in

the qubit case.

� Baier and Petz used this quantity in 2010 to prove the optimality

in a more general setting.
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Symmetric measurements
� The Bloch vector hasn2 − 1 parameters, so we have at leastn2

elements in POVM.

� Symmetric informationally complete POVM (SIC-POVM):

Ei =
1

n
Pi, TrPiPj =

1

n+ 1
(i 6= j, 1 ≤ i, j ≤ n2),

wherePi is a rank-one projection.

� Rehacek, Englert and Kaszlikowski used in 2004 the

2-dimensional SIC-POVM for state tomography.

� Scott used in 2006 the average squared Hilbert-Schmidt

distance for proving the optimality of SIC-POVMs.
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Multiple von Neumann measurements

� We have a decomposition

Mn(C) = CI ⊕A⊕ B,

whereA → known,B → unknown parameters.

� If B hasl dimensions, then we have the measurements

(F1, I − F1), (F2, I − F2), . . . , (Fl, I − Fl)

Theorem. If the positive contractions F1, . . . , Fl have the same spectrum,

then the determinant of the average covariance matrix is minimal if the

operators F1, . . . , Fl are complementary to each other and to A.
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Single POVMs
� We have once again the decomposition

Mn(C) = CI ⊕A⊕ B,

with dim(B) = k − 1, then we have the measurement

(E1, E2, . . . , Ek)

� In then dimensional case we can obtain results ifk = n2, i.e.

all parameters are unknown.

Theorem. If a symmetric informationally complete system exists, the

optimal POVM is described by its projections Pi as Ei = Pi/n

(1 ≤ i ≤ n2).
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Single POVMs II.
� In the conditional case there are some technical issues, which

we barely overcame in the qubit case.

Theorem. The optimal POVM for the unknown Bloch parameters θ1 and θ2

can be described by projections Pi, 1 ≤ i ≤ 3:

Ei =
2

3
Pi, TrPiPj =

1

4
(i 6= j), and Trσ3Pi = 0,

� We get that the optimal POVM is symmetrical and

complementary to the subspace of the known parameters

⇒ generalization of SIC-POVM
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Numerical algorithm
� I show the first non-trivial example of a conditional SIC-POVM

E1 =
1

7





1 1 1

1 1 1

1 1 1



 , E2 =
1

7





1 ε6 ε2

ε 1 ε3

ε5 ε4 1



 , E3 =
1

7





1 ε2 ε3

ε5 1 ε

ε4 ε6 1



 ,

E4 =
1

7





1 ε4 ε6

ε3 1 ε2

ε ε5 1



 , E5 = E
⊺

2
, E6 = E

⊺

3
, E7 = E

⊺

4
, with ε = exp

(

2πi

7

)

.

� There is a conditional SIC-POVM containing the diagonal

matrix units.

� There is an example for conditional SIC-POVMs that contains

projections of rank 2.

� There is an example where no conditional SIC-POVM exists.
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Conditional SIC-POVM
� From these results we obtain the precise definition of

conditional SIC-POVMs:

Definition (Conditional SIC-POVM)

(E1, E2, . . . , Ek) forms a conditional SIC-POVM if there is a

set of projections Pi, 1 ≤ i ≤ k, such that

Ei =
1

λ
Pi and TrPiPj = µ (i 6= j).

and Ei-s are complementary to the subspace of known

parameters.

� We get a SIC-POVM in the special case whenk = n2, λ = n

andµ = 1/(n+ 1).
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Conditional SIC-POVM II.
� Instead of the determinant of the average covariance matrix,

minimize the square of the Hilbert-Schmidt distance.

Theorem. In the conditional case, the elements of the optimal POVM can

be described as multiples of rank-one projections with the following

properties (1 ≤ i, j ≤ k):

Ei =
n

k
Pi, TrPiPj =

k − n

n(k − 1)
(i 6= j)

and TrσlPi = 0 (∀l : σl ∈ A).

� So the conditional SIC-POVM is the optimal with rank-one

projections, and constantsλ = k
n
, µ = k−n

n(k−1)
.
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Example for existence
� Let us assume that the diagonal part ofρ ∈ Mn(C) is known

� The number of POVM elements:k = n2 − n+ 1

Definition (Difference set). The set G := {0, 1, . . . , k − 1} is an additive group modulo k. The

subset D := {αi : 1 ≤ i ≤ n} forms a difference set with parameters (k, n, λ) if the set of

differences αi − αj contains every nonzero element of G exactly λ times.

� A few examples for difference sets with parameters(k, n, 1):

n = 2, k = 3 : D = {0, 1}, n = 3, k = 7 : D = {0, 1, 3}, n = 4, k = 13 : D = {0, 1, 3, 9}.

Theorem. We set |φ〉 = 1
√

n

∑n
i=1

|ei〉, q = e2πi/k , U = Diag(qα1 , qα2 , qα3 , . . . qαn ). If

(α1, α2, . . . αn) forms a difference sets with parameters (k, n, 1), then

Pi := |U iφ〉〈U iφ|, (i = 1, 2, . . . , k)

will be an appropriate conditional SIC-POVM.
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Application of Conditional SIC-POVM

� SIC-POVM is the BLE of a quantum state

� Conditional SIC-POVM is the BLE of a subsystem of a

quantum state

� LetA1, . . . ,AN be a complementary decomposition ofMn(C)

� E(i) is the conditional SIC-POVM forAi ⇒ BLE for

subsystems

� Best candidates:

• N = 1, A1 = Mn: SIC-POVM

• N = n+ 1, A1 = ... = An+1 = C
n: MUB
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