Parameter estimation for different quantum systems

László Ruppert

ruppertl@math.bme.hu

Department of Mathematical Analysis, Budapest University of Technology and Economics

Contents

- Introduction
- Weak measurements
- Channel tomography
- State tomography (Conditional SIC-POVMs)

Introduction

State of a quantum system

A finite quantum state $\rho \in M_n(\mathbb{C})$ can be described with the following properties:

$$Tr(\rho) = 1, \quad \rho \ge 0$$

Let σ_i be generalized Pauli-matrices: orthonormal basis with respect to the Hilbert-Schmidt inner product:

$$\langle A, B \rangle = \operatorname{Tr}(A^*B)$$

We use the Bloch parametrization

$$\rho(\theta) = \sum_{i=0}^{n^2 - 1} \theta_i \sigma_i.$$

State of a quantum system II.

$$\rho(\theta) = \sum_{i=0}^{n^2 - 1} \theta_i \sigma_i,$$

$$Tr(\rho) = 1 \iff \theta_0 = \frac{1}{\sqrt{n}}.$$

State space can be parametrized with $\theta \in \mathbb{R}^{n^2-1}$

$$\rho \ge 0 \Longrightarrow \sum_{i=0}^{n^2-1} \theta_i^2 \le 1.$$

Note that if n = 2 (qubit case) this is also a sufficient condition, so in that case we have the so-called Bloch ball as state space.

Measurements

(E_1, E_2, \ldots, E_k) forms a positive operator valued measurement (POVM) if

$$\forall i: E_i \ge 0$$
 and $\sum_i E_i = I.$

- For k = 2: (P, I P) are projections (von Neumann meas.).
- The probability of observing an outcome related to E_i is

$$p_i = \operatorname{Tr}(\rho E_i).$$

- E.g., $A = \sum \lambda_i P_i$. Then $E_i := P_i$, while the outcome is λ_i .
- State after measurement:

$$\rho_i' = \frac{E_i \rho E_i}{\mathrm{Tr} E_i \rho E_i}$$

Quantum tomography

- The state estimation process has the following steps:
 - Choose a set of measurements
 - Measure multiple times on identical copies of a quantum state
 - Construct an estimator from the measurement data
 - Our choices:
 - Measurements
 - Estimator
 - Figure of merit for estimation efficiency

Standard method

• We measure in the 3 axis directions: $P_i = \frac{I + \sigma_i}{2}$, (i = 1, 2, 3)

The probability of an outcome related to P_i :

$$p_i = \frac{1}{2}(1+\theta_i)$$

m measurements are performed in each direction

 $u_i := \frac{m_i}{m}, \text{ where } m_i \text{ is the number of outcomes related to } P_i$

Then the estimation on θ :

$$\Phi_m(\nu_1, \nu_2, \nu_3) = \begin{bmatrix} 2\nu_1 - 1 \\ 2\nu_2 - 1 \\ 2\nu_3 - 1 \end{bmatrix}$$

Standard method II.

•
$$\Phi_m$$
 is unbiased: $E(\Phi_m) = \theta$.

Its covariance matrix is

$$\operatorname{Var}(\Phi_m) = \frac{1}{m} \begin{bmatrix} 1 - \theta_1^2 & 0 & 0 \\ 0 & 1 - \theta_2^2 & 0 \\ 0 & 0 & 1 - \theta_3^2 \end{bmatrix}$$

If Ψ_m is an unbiased estimator, the Cramér-Rao inequality says

$$\operatorname{Var}(\Psi_m) \ge I_m(\theta)^{-1}.$$

For Φ_m we have equality, so Φ_m is efficient.

Weak measurements

State evolution driven by weak measurements

State evolution:

$$x_{k+1} = \begin{cases} \frac{x_k + c}{1 + cx_k}, \text{ with probability } \frac{1 + cx_k}{2}: +1 \text{ measurement} \\ \frac{x_k - c}{1 - cx_k}, \text{ with probability } \frac{1 - cx_k}{2}: -1 \text{ measurement} \end{cases}$$

Example: State evolution for different x_0 -s

Estimation of the initial state

- Aim: Estimation of the initial state x_0
- Result: We gave 3 working methods
 - Histogram
 - Bayesian
 - Martingale
- Martingale property: $\mathbb{E}(x_{k+1}) = x_k$
- For fixed value u, v, we run the process until $u < x_k < v$.
- Doob's optional stopping theorem: $\mathbb{E}(x_T) = x_0$, so

$$\mathbb{E}(x_T) = pu + (1-p)v = x_0 \quad \Rightarrow \quad \hat{x}_0 = \hat{p}u + (1-\hat{p})v$$

Estimation of the process

Aim: Estimation of the process x_k (filtering)

Kalman filter:

- State evolution: $x_{k+1} = Ax_k + w_k$
- Measurement: $y_k = Hx_k + v_k$
- w_k and v_k are independent noises with probability distribution: $w \sim \mathcal{N}(0, Q), \quad v \sim \mathcal{N}(0, R)$
- Kalman filter:

$$\hat{x}_{k+1} = A\hat{x}_k + K_k \Big(y_k - H\hat{x}_k \Big)$$

• Task: optimal choice of K_k to minimize:

$$\mathbb{E}(x_k - \hat{x}_k)(x_k - \hat{x}_k)^T \to \min.$$

Obtaining the state space model

State evolution:

$$x_{k+1} = x_k + Nc^2 x_k (1 - x_k^2) + \omega_k \cdot c(1 - x_k^2)$$

Measurements:

$$y_k = Ncx_k + \omega_k,$$

with $\omega_k \sim \mathcal{N}(0, N)$.

Comparison to the classical Kalman filter settings:

- State evolution: non-linear
- Measurement: linear
- Noise: not independent (measurement feedback) and additional non-linear factor

Related publications

INVESTMENTS IN EDUCATION DEVELOPMENT

- [1] L. Ruppert, A. Magyar, K.M. Hangos, *Compromising non-demolition and information gaining for qubit state estimation*, Quantum Probability and Related Topics, World Scientific, p. 212-224, 2008.
- [2] L. Ruppert, K.M. Hangos: Martingale approach in quantum state estimation using indirect measurements, Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, p. 2049-2054, 2010.
- [3] K.M. Hangos, L. Ruppert: State estimation methods using indirect measurements, Quantum Probability and Related Topics, World Scientific, p. 163-180, 2011
- [4] L. Ruppert, K. M. Hangos, J. Bokor, *Possibilities of Quantum Kalman Filtering*, submitted for publication

Channel tomography

Complementarity

- Quantum channel: $M_n(\mathbb{C}) \to M_n(\mathbb{C})$ CPTP map
- The basis e_1, e_2, \ldots, e_n is complementary to the basis f_1, f_2, \ldots, f_n (also called mutually unbiased bases) if

$$|\langle e_i, f_j \rangle|^2 = \frac{1}{n} \qquad (1 \le i, j \le n).$$

Generalization for POVMs $(1 \le i \le k, 1 \le j \le m)$:

$$\left(\mathrm{Tr}E_iF_j = \frac{1}{n}\mathrm{Tr}E_i\mathrm{Tr}F_j\right) \Leftrightarrow \left(E_i - \frac{\mathrm{Tr}E_i}{n}I \perp F_j - \frac{\mathrm{Tr}F_j}{n}I\right)$$

• We can generalize quasi-orthogonality for subspaces:

$$\mathcal{A}_1 \ominus \mathbb{C}I \perp \mathcal{A}_2 \ominus \mathbb{C}I,$$

Parameter estimation of Pauli channels

Let $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_N$ be a complementary decomposition of $M_n(\mathbb{C})$:

$$A_i - \frac{\text{Tr}A_i}{n}I \perp A_j - \frac{\text{Tr}A_j}{n}I, \qquad \forall A_i \in \mathcal{A}_i, A_j \in \mathcal{A}_j \ (i \neq j)$$

- Pauli channel: contractions with λ_i on traceless part of \mathcal{A}_i .
- Example: $A_i := span\{I, \sigma_i\}, i \in \{1, 2, ..., 2^n 1\}$

$$\mathcal{E}: \rho = \frac{1}{n} \left(I + \sum_{i=1}^{2^n - 1} \theta_i \sigma_i \right) \mapsto \mathcal{E}(\rho) = \frac{1}{n} \left(I + \sum_{i=1}^{2^n - 1} \lambda_i \theta_i \sigma_i \right)$$

Aim: Select input state, send through channel, measure the output, repeat many times \Rightarrow estimate λ_i

Parameter estimation of Pauli channels II.

Figure of merit: Fisher information matrix of the parameters λ_i

$$F_{ij} = \sum_{\alpha} \frac{1}{p_{\alpha}} \frac{\partial p_{\alpha}}{\partial \lambda_i} \frac{\partial p_{\alpha}}{\partial \lambda_j}$$

• Optimization:

$$\forall i: F_{ii} \rightarrow \max$$
. (independently)

Result: Input and measurement in the direction of A_i . It depend on the algebraic structure of A_i .

Unknown channel directions

- Another problem: What if σ_i are unknown too?
- We gave an efficient method for the qubit case.
- channel matrix: $A: \theta_{in} \to \theta_{out}$

$$A(\lambda_1, \lambda_2, \lambda_3, \phi_z, \phi_y, \phi_x) = R_z R_y R_x \Lambda R_x^{-1} R_y^{-1} R_z^{-1}$$

E ||Â - A||² → min.: in the channel directions (equivalent to the average squared distance of ρ_{out} and ρ̂_{out})
 E ∑(Â_i - λ_i)² → min.: in the channel directions
 E ∑(Â_i - φ_i)² → min.: NOT in the channel directions

Related publications

- [1] L. Ruppert, D. Virosztek and K.M. Hangos *Optimal parameter estimation of Pauli channels*, Journal of Physics A: Math. Theor. **45**, 265305, 2012.
- [2] D. Virosztek, L. Ruppert and K. M. Hangos, *Pauli channel tomography* with unknown channel directions, submitted for publication

State tomography

Complementarity and DACM

- Wooters and Fields proved in 1989 the optimality of complementary measurements
- Petz, Hangos and Magyar used in 2007 the optimization

det $\langle \operatorname{Var}(\hat{\theta}) \rangle \to \min$.

- for proving the optimality of complementary measurements in the qubit case.
- Baier and Petz used this quantity in 2010 to prove the optimality in a more general setting.

Symmetric measurements

- The Bloch vector has $n^2 1$ parameters, so we have at least n^2 elements in POVM.
- Symmetric informationally complete POVM (SIC-POVM):

$$E_i = \frac{1}{n} P_i, \qquad \text{Tr} P_i P_j = \frac{1}{n+1} \quad (i \neq j, \ 1 \le i, j \le n^2),$$

where P_i is a rank-one projection.

- Rehacek, Englert and Kaszlikowski used in 2004 the
 2-dimensional SIC-POVM for state tomography.
- Scott used in 2006 the average squared Hilbert-Schmidt distance for proving the optimality of SIC-POVMs.

Multiple von Neumann measurements

• We have a decomposition

$$M_n(\mathbb{C}) = \mathbb{C}I \oplus \mathcal{A} \oplus \mathcal{B},$$

where $\mathcal{A} \rightarrow$ known, $\mathcal{B} \rightarrow$ unknown parameters.

If \mathcal{B} has l dimensions, then we have the measurements

$$(F_1, I - F_1), (F_2, I - F_2), \dots, (F_l, I - F_l)$$

Theorem. If the positive contractions F_1, \ldots, F_l have the same spectrum, then the determinant of the average covariance matrix is minimal if the operators F_1, \ldots, F_l are complementary to each other and to \mathcal{A} .

Single POVMs

• We have once again the decomposition

$$M_n(\mathbb{C}) = \mathbb{C}I \oplus \mathcal{A} \oplus \mathcal{B},$$

with $\dim(\mathcal{B}) = k - 1$, then we have the measurement

$$(E_1, E_2, \ldots, E_k)$$

In the *n* dimensional case we can obtain results if $k = n^2$, i.e. all parameters are unknown.

Theorem. If a symmetric informationally complete system exists, the optimal POVM is described by its projections P_i as $E_i = P_i/n$

$$(1 \leq i \leq n^2).$$

INVESTMENTS IN EDUCATION DEVELOPMENT

 \sim

Single POVMs II.

In the conditional case there are some technical issues, which we barely overcame in the qubit case.

Theorem. The optimal POVM for the unknown Bloch parameters θ_1 and θ_2 can be described by projections P_i , $1 \le i \le 3$:

$$E_i = \frac{2}{3}P_i$$
, $\operatorname{Tr} P_i P_j = \frac{1}{4} \ (i \neq j)$, and $\operatorname{Tr} \sigma_3 P_i = 0$,

We get that the optimal POVM is symmetrical and complementary to the subspace of the known parameters ⇒ generalization of SIC-POVM

Numerical algorithm

■ I show the first non-trivial example of a conditional SIC-POVM

$$E_{1} = \frac{1}{7} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, E_{2} = \frac{1}{7} \begin{bmatrix} 1 & \varepsilon^{6} & \varepsilon^{2} \\ \varepsilon & 1 & \varepsilon^{3} \\ \varepsilon^{5} & \varepsilon^{4} & 1 \end{bmatrix}, E_{3} = \frac{1}{7} \begin{bmatrix} 1 & \varepsilon^{2} & \varepsilon^{3} \\ \varepsilon^{5} & 1 & \varepsilon \\ \varepsilon^{4} & \varepsilon^{6} & 1 \end{bmatrix},$$

$$E_4 = \frac{1}{7} \begin{bmatrix} 1 & \varepsilon^4 & \varepsilon^6 \\ \varepsilon^3 & 1 & \varepsilon^2 \\ \varepsilon & \varepsilon^5 & 1 \end{bmatrix}, E_5 = E_2^{\mathsf{T}}, E_6 = E_3^{\mathsf{T}}, E_7 = E_4^{\mathsf{T}}, \text{ with } \varepsilon = \exp\left(\frac{2\pi i}{7}\right).$$

- There is a conditional SIC-POVM containing the diagonal matrix units.
- There is an example for conditional SIC-POVMs that contains projections of rank 2.
- There is an example where no conditional SIC-POVM exists.

Conditional SIC-POVM

From these results we obtain the precise definition of conditional SIC-POVMs:

Definition (Conditional SIC-POVM)

 (E_1, E_2, \ldots, E_k) forms a conditional SIC-POVM if there is a set of projections P_i , $1 \le i \le k$, such that

$$E_i = \frac{1}{\lambda} P_i$$
 and $\operatorname{Tr} P_i P_j = \mu$ $(i \neq j).$

and E_i -s are complementary to the subspace of known parameters.

We get a SIC-POVM in the special case when $k = n^2$, $\lambda = n$ and $\mu = 1/(n+1)$.

Conditional SIC-POVM II.

- Instead of the determinant of the average covariance matrix, minimize the square of the Hilbert-Schmidt distance.
- **Theorem.** In the conditional case, the elements of the optimal POVM can be described as multiples of rank-one projections with the following properties $(1 \le i, j \le k)$:

$$E_{i} = \frac{n}{k}P_{i}, \quad \operatorname{Tr}P_{i}P_{j} = \frac{k-n}{n(k-1)} \quad (i \neq j)$$

and
$$\operatorname{Tr}\sigma_{l}P_{i} = 0 \quad (\forall l : \sigma_{l} \in \mathcal{A}).$$

So the conditional SIC-POVM is the optimal with rank-one projections, and constants $\lambda = \frac{k}{n}$, $\mu = \frac{k-n}{n(k-1)}$.

Example for existence

- Let us assume that the diagonal part of $\rho \in M_n(\mathbb{C})$ is known
- The number of POVM elements: $k = n^2 n + 1$

Definition (Difference set). The set $G := \{0, 1, ..., k - 1\}$ is an additive group modulo k. The subset $D := \{\alpha_i : 1 \le i \le n\}$ forms a difference set with parameters (k, n, λ) if the set of differences $\alpha_i - \alpha_j$ contains every nonzero element of G exactly λ times.

A few examples for difference sets with parameters (k, n, 1):

 $n=2, k=3: D=\{0,1\}, \quad n=3, k=7: D=\{0,1,3\}, \quad n=4, k=13: D=\{0,1,3,9\}.$

Theorem. We set $|\phi\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} |e_i\rangle$, $q = e^{2\pi i/k}$, $U = Diag(q^{\alpha_1}, q^{\alpha_2}, q^{\alpha_3}, \dots, q^{\alpha_n})$. If $(\alpha_1, \alpha_2, \dots, \alpha_n)$ forms a difference sets with parameters (k, n, 1), then

$$P_i := |U^i \phi\rangle \langle U^i \phi|, \quad (i = 1, 2, \dots, k)$$

will be an appropriate conditional SIC-POVM.

Application of Conditional SIC-POVM

- SIC-POVM is the BLE of a quantum state
- Conditional SIC-POVM is the BLE of a subsystem of a quantum state
- Let $\mathcal{A}_1, \ldots, \mathcal{A}_N$ be a complementary decomposition of $M_n(\mathbb{C})$
- $E^{(i)}$ is the conditional SIC-POVM for $\mathcal{A}_i \Rightarrow$ BLE for subsystems
 - Best candidates:
 - $N = 1, \mathcal{A}_1 = M_n$: SIC-POVM
 - $N = n + 1, A_1 = \ldots = A_{n+1} = \mathbb{C}^n$: MUB

Related publications

- [1] D. Petz, K.M. Hangos and L. Ruppert, *Quantum state tomography with finite sample size*, in Quantum Bio-Informatics, eds. L. Accardi, W. Freudenberg, M. Ohya, World Scientific, p. 247-257, 2008.
- [2] D. Petz and L. Ruppert, *Efficient quantum tomography needs* complementary and symmetric measurements, Rep. Math. Phys., 69, p. 161-177, 2012.
- [3] D. Petz and L. Ruppert, *Optimal quantum state tomography with known parameters*, Journal of Physics A: Math. Theor. **45**, 085306, 2012.
- [4] D. Petz, L. Ruppert and A. Szántó, *Conditional SIC-POVMs*, to be published, http://arxiv.org/abs/1202.5741

