# Parameter estimation for different quantum systems 

László Ruppert<br>ruppertl@math.bme.hu

Department of Mathematical Analysis, Budapest University of Technology and Economics

## Contents

■ Introduction
■ Weak measurements

- Channel tomography

■ State tomography (Conditional SIC-POVMs)

## Introduction

INVESTMENTS IN EDUCATION DEVELOPMENT

## State of a quantum system

■ A finite quantum state $\rho \in M_{n}(\mathbb{C})$ can be described with the following properties:

$$
\operatorname{Tr}(\rho)=1, \quad \rho \geq 0
$$

- Let $\sigma_{i}$ be generalized Pauli-matrices: orthonormal basis with respect to the Hilbert-Schmidt inner product:

$$
\langle A, B\rangle=\operatorname{Tr}\left(A^{*} B\right)
$$

- We use the Bloch parametrization

$$
\rho(\theta)=\sum_{i=0}^{n^{2}-1} \theta_{i} \sigma_{i}
$$

## State of a quantum system II.

$$
\rho(\theta)=\sum_{i=0}^{n^{2}-1} \theta_{i} \sigma_{i}
$$

$\square \operatorname{Tr}(\rho)=1 \Longleftrightarrow \theta_{0}=\frac{1}{\sqrt{n}}$.
State space can be parametrized with $\theta \in \mathbb{R}^{n^{2}-1}$

- $\rho \geq 0 \Longrightarrow \sum_{i=0}^{n^{2}-1} \theta_{i}^{2} \leq 1$.

Note that if $n=2$ (qubit case) this is also a sufficient condition, so in that case we have the so-called Bloch ball as state space.

## Measurements

$\square\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ forms a positive operator valued measurement (POVM) if

$$
\forall i: E_{i} \geq 0 \quad \text { and } \quad \sum_{i} E_{i}=I
$$

- For $k=2:(P, I-P)$ are projections (von Neumann meas.).
- The probability of observing an outcome related to $E_{i}$ is

$$
p_{i}=\operatorname{Tr}\left(\rho E_{i}\right) .
$$

E.g., $A=\sum \lambda_{i} P_{i}$. Then $E_{i}:=P_{i}$, while the outcome is $\lambda_{i}$.

■ State after measurement:


## Quantum tomography

- The state estimation process has the following steps:
- Choose a set of measurements
- Measure multiple times on identical copies of a quantum state
- Construct an estimator from the measurement data

■ Our choices:

- Measurements
- Estimator
- Figure of merit for estimation efficiency


## Standard method

- We measure in the 3 axis directions: $P_{i}=\frac{I+\sigma_{i}}{2},(i=1,2,3)$

■ The probability of an outcome related to $P_{i}$ :

$$
p_{i}=\frac{1}{2}\left(1+\theta_{i}\right)
$$

■ measurements are performed in each direction

$$
\nu_{i}:=\frac{m_{i}}{m} \text {, where } m_{i} \text { is the number of outcomes related to } P_{i}
$$

- Then the estimation on $\theta$ :


## Standard method II.

- $\Phi_{m}$ is unbiased: $E\left(\Phi_{m}\right)=\theta$.

■ Its covariance matrix is

$$
\operatorname{Var}\left(\Phi_{m}\right)=\frac{1}{m}\left[\begin{array}{ccc}
1-\theta_{1}^{2} & 0 & 0 \\
0 & 1-\theta_{2}^{2} & 0 \\
0 & 0 & 1-\theta_{3}^{2}
\end{array}\right]
$$

- If $\Psi_{m}$ is an unbiased estimator, the Cramér-Rao inequality says

$$
\operatorname{Var}\left(\Psi_{m}\right) \geq I_{m}(\theta)^{-1}
$$

For $\Phi_{m}$ we have equality, so $\Phi_{m}$ is efficient.

## Weak measurements

INVESTMENTS IN EDUCATION DEVELOPMENT

## State evolution driven by weak measurements



- State evolution:

$$
x_{k+1}=\left\{\begin{array}{l}
\frac{x_{k}+c}{1+c x_{k}}, \text { with probability } \frac{1+c x_{k}}{2}:+1 \text { measurement } \\
\frac{x_{k}-c}{1-c x_{k}}, \text { with probability } \frac{1-c x_{k}}{2}:-1 \text { measurement }
\end{array}\right\}
$$

## Example: State evolution for different $x_{0}-\mathbf{S}$



## Estimation of the initial state

- Aim: Estimation of the initial state $x_{0}$

■ Result: We gave 3 working methods

- Histogram
- Bayesian
- Martingale

■ Martingale property: $\mathbb{E}\left(x_{k+1}\right)=x_{k}$
$\square$ For fixed value $u, v$, we run the process until $u<x_{k}<v$.
■ Doob's optional stopping theorem: $\mathbb{E}\left(x_{T}\right)=x_{0}$, so

$$
\mathbb{E}\left(x_{T}\right)=p u+(1-p) v=x_{0} \quad \Rightarrow \quad \hat{x}_{0}=\hat{p} u+(1-\hat{p}) v
$$

## Estimation of the process

- Aim: Estimation of the process $x_{k}$ (filtering)
- Kalman filter:
- State evolution: $x_{k+1}=A x_{k}+w_{k}$
- Measurement: $y_{k}=H x_{k}+v_{k}$
- $w_{k}$ and $v_{k}$ are independent noises with probability distribution: $w \sim \mathcal{N}(0, Q), \quad v \sim \mathcal{N}(0, R)$
- Kalman filter:

$$
\hat{x}_{k+1}=A \hat{x}_{k}+K_{k}\left(y_{k}-H \hat{x}_{k}\right)
$$

- Task: optimal choice of $K_{k}$ to minimize:

$$
\mathbb{E}\left(x_{k}-\hat{x}_{k}\right)\left(x_{k}-\hat{x}_{k}\right)^{T} \rightarrow \text { min. }
$$

## Obtaining the state space model

- State evolution:

$$
x_{k+1}=x_{k}+N c^{2} x_{k}\left(1-x_{k}^{2}\right)+\omega_{k} \cdot c\left(1-x_{k}^{2}\right)
$$

- Measurements:

$$
y_{k}=N c x_{k}+\omega_{k}
$$

with $\omega_{k} \sim \mathcal{N}(0, N)$.

- Comparison to the classical Kalman filter settings:
- State evolution: non-linear
- Measurement: linear
- Noise: not independent (measurement feedback) and additional non-linear factor


## Related publications

[1] L. Ruppert, A. Magyar, K.M. Hangos, Compromising non-demolition and information gaining for qubit state estimation, Quantum Probability and Related Topics, World Scientific, p. 212-224, 2008.
[2] L. Ruppert, K.M. Hangos: Martingale approach in quantum state estimation using indirect measurements, Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, p. 2049-2054, 2010.
[3] K.M. Hangos, L. Ruppert: State estimation methods using indirect measurements, Quantum Probability and Related Topics, World Scientific, p. 163-180, 2011
[4] L. Ruppert, K. M. Hangos, J. Bokor, Possibilities of Quantum Kalman Filtering, submitted for publication

## Channel tomography

## Complementarity

■ Quantum channel: $M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ CPTP map
$\square$ The basis $e_{1}, e_{2}, \ldots, e_{n}$ is complementary to the basis $f_{1}, f_{2}, \ldots, f_{n}$ (also called mutually unbiased bases) if

$$
\left|\left\langle e_{i}, f_{j}\right\rangle\right|^{2}=\frac{1}{n} \quad(1 \leq i, j \leq n)
$$

■ Generalization for POVMs $(1 \leq i \leq k, 1 \leq j \leq m)$ :

$$
\left(\operatorname{Tr} E_{i} F_{j}=\frac{1}{n} \operatorname{Tr} E_{i} \operatorname{Tr} F_{j}\right) \Leftrightarrow\left(E_{i}-\frac{\operatorname{Tr} E_{i}}{n} I \perp F_{j}-\frac{\operatorname{Tr} F_{j}}{n} I\right)
$$

- We can generalize quasi-orthogonality for subspaces:

$$
\mathcal{A}_{1} \ominus \mathbb{C} I \perp \mathcal{A}_{2} \ominus \mathbb{C} I
$$

## Parameter estimation of Pauli channels

$\square$ Let $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{N}$ be a complementary decomposition of $M_{n}(\mathbb{C}):$

$$
A_{i}-\frac{\operatorname{Tr} A_{i}}{n} I \perp A_{j}-\frac{\operatorname{Tr} A_{j}}{n} I, \quad \forall A_{i} \in \mathcal{A}_{i}, A_{j} \in \mathcal{A}_{j}(i \neq j)
$$

- Pauli channel: contractions with $\lambda_{i}$ on traceless part of $\mathcal{A}_{i}$.

■ Example: $\mathcal{A}_{i}:=\operatorname{span}\left\{I, \sigma_{i}\right\}, i \in\left\{1,2, \ldots, 2^{n}-1\right\}$

$$
\mathcal{E}: \rho=\frac{1}{n}\left(I+\sum_{i=1}^{2^{n}-1} \theta_{i} \sigma_{i}\right) \mapsto \mathcal{E}(\rho)=\frac{1}{n}\left(I+\sum_{i=1}^{2^{n}-1} \lambda_{i} \theta_{i} \sigma_{i}\right) .
$$

■ Aim: Select input state, send through channel, measure the output, repeat many times $\Rightarrow$ estimate $\lambda_{i}$

## Parameter estimation of Pauli channels II.

$\square$ Figure of merit: Fisher information matrix of the parameters $\lambda_{i}$

$$
F_{i j}=\sum_{\alpha} \frac{1}{p_{\alpha}} \frac{\partial p_{\alpha}}{\partial \lambda_{i}} \frac{\partial p_{\alpha}}{\partial \lambda_{j}}
$$

■ Optimization:

$$
\forall i: F_{i i} \rightarrow \text { max. (independently) }
$$

Result: Input and measurement in the direction of $\mathcal{A}_{i}$. It depend on the algebraic structure of $\mathcal{A}_{i}$.

## Unknown channel directions

- Another problem: What if $\sigma_{i}$ are unknown too?
- We gave an efficient method for the qubit case.

■ channel matrix: $A: \theta_{\text {in }} \rightarrow \theta_{\text {out }}$

$$
A\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \phi_{z}, \phi_{y}, \phi_{x}\right)=R_{z} R_{y} R_{x} \Lambda R_{x}^{-1} R_{y}^{-1} R_{z}^{-1}
$$

1. $\mathbb{E}\|\hat{A}-A\|^{2} \rightarrow \min .:$ in the channel directions (equivalent to the average squared distance of $\rho_{\text {out }}$ and $\hat{\rho}_{\text {out }}$ )
2. $\mathbb{E} \sum\left(\hat{\lambda}_{i}-\lambda_{i}\right)^{2} \rightarrow \min .:$ in the channel directions
3. $\mathbb{E} \sum\left(\hat{\phi}_{i}-\phi_{i}\right)^{2} \rightarrow \min .:$ NOT in the channel directions

## Related publications

[1] L. Ruppert, D. Virosztek and K.M. Hangos Optimal parameter estimation of Pauli channels, Journal of Physics A: Math. Theor. 45, 265305, 2012.
[2] D. Virosztek, L. Ruppert and K. M. Hangos, Pauli channel tomography with unknown channel directions, submitted for publication

## State tomography

INVESTMENTS IN EDUCATION DEVELOPMENT

## Complementarity and DACM

- Wooters and Fields proved in 1989 the optimality of complementary measurements
- Petz, Hangos and Magyar used in 2007 the optimization

$$
\operatorname{det}\langle\operatorname{Var}(\hat{\theta})\rangle \rightarrow \min
$$

for proving the optimality of complementary measurements in the qubit case.

- Baier and Petz used this quantity in 2010 to prove the optimality in a more general setting.


## Symmetric measurements

- The Bloch vector has $n^{2}-1$ parameters, so we have at least $n^{2}$ elements in POVM.

■ Symmetric informationally complete POVM (SIC-POVM):

$$
E_{i}=\frac{1}{n} P_{i}, \quad \operatorname{Tr} P_{i} P_{j}=\frac{1}{n+1} \quad\left(i \neq j, 1 \leq i, j \leq n^{2}\right)
$$

where $P_{i}$ is a rank-one projection.
■ Rehacek, Englert and Kaszlikowski used in 2004 the 2-dimensional SIC-POVM for state tomography.

■ Scott used in 2006 the average squared Hilbert-Schmidt distance for proving the optimality of SIC-POVMs.

## Multiple von Neumann measurements

- We have a decomposition

$$
M_{n}(\mathbb{C})=\mathbb{C} I \oplus \mathcal{A} \oplus \mathcal{B}
$$

where $\mathcal{A} \rightarrow$ known, $\mathcal{B} \rightarrow$ unknown parameters.

- If $\mathcal{B}$ has $l$ dimensions, then we have the measurements

$$
\left(F_{1}, I-F_{1}\right),\left(F_{2}, I-F_{2}\right), \ldots,\left(F_{l}, I-F_{l}\right)
$$

Theorem. If the positive contractions $F_{1}, \ldots, F_{l}$ have the same spectrum, then the determinant of the average covariance matrix is minimal if the operators $F_{1}, \ldots, F_{l}$ are complementary to each other and to $\mathcal{A}$.

## Single POVMs

- We have once again the decomposition

$$
M_{n}(\mathbb{C})=\mathbb{C} I \oplus \mathcal{A} \oplus \mathcal{B},
$$

with $\operatorname{dim}(\mathcal{B})=k-1$, then we have the measurement

$$
\left(E_{1}, E_{2}, \ldots, E_{k}\right)
$$

- In the $n$ dimensional case we can obtain results if $k=n^{2}$, i.e. all parameters are unknown.

Theorem. If a symmetric informationally complete system exists, the optimal POVM is described by its projections $P_{i}$ as $E_{i}=P_{i} / n$
$\left(1 \leq i \leq n^{2}\right)$.

## Single POVMs II.

- In the conditional case there are some technical issues, which we barely overcame in the qubit case.

Theorem. The optimal POVM for the unknown Bloch parameters $\theta_{1}$ and $\theta_{2}$ can be described by projections $P_{i}, 1 \leq i \leq 3$ :

$$
E_{i}=\frac{2}{3} P_{i}, \quad \operatorname{Tr} P_{i} P_{j}=\frac{1}{4}(i \neq j), \quad \text { and } \quad \operatorname{Tr} \sigma_{3} P_{i}=0
$$

- We get that the optimal POVM is symmetrical and complementary to the subspace of the known parameters $\Rightarrow$ generalization of SIC-POVM


## Numerical algorithm

■ I show the first non-trivial example of a conditional SIC-POVM

$$
\begin{gathered}
E_{1}=\frac{1}{7}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], E_{2}=\frac{1}{7}\left[\begin{array}{ccc}
1 & \varepsilon^{6} & \varepsilon^{2} \\
\varepsilon & 1 & \varepsilon^{3} \\
\varepsilon^{5} & \varepsilon^{4} & 1
\end{array}\right], E_{3}=\frac{1}{7}\left[\begin{array}{ccc}
1 & \varepsilon^{2} & \varepsilon^{3} \\
\varepsilon^{5} & 1 & \varepsilon \\
\varepsilon^{4} & \varepsilon^{6} & 1
\end{array}\right], \\
E_{4}=\frac{1}{7}\left[\begin{array}{ccc}
1 & \varepsilon^{4} & \varepsilon^{6} \\
\varepsilon^{3} & 1 & \varepsilon^{2} \\
\varepsilon & \varepsilon^{5} & 1
\end{array}\right], E_{5}=E_{2}^{\top}, E_{6}=E_{3}^{\top}, E_{7}=E_{4}^{\top}, \text { with } \varepsilon=\exp \left(\frac{2 \pi i}{7}\right) .
\end{gathered}
$$

- There is a conditional SIC-POVM containing the diagonal matrix units.
- There is an example for conditional SIC-POVMs that contains projections of rank 2.
- There is an example where no conditional SIC-POVM exists.


## Conditional SIC-POVM

- From these results we obtain the precise definition of conditional SIC-POVMs:


## Definition (Conditional SIC-POVM)

$\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ forms a conditional SIC-POVM if there is a set of projections $P_{i}, 1 \leq i \leq k$, such that

$$
E_{i}=\frac{1}{\lambda} P_{i} \quad \text { and } \quad \operatorname{Tr} P_{i} P_{j}=\mu \quad(i \neq j) .
$$

and $E_{i}$-s are complementary to the subspace of known parameters.

- We get a SIC-POVM in the special case when $k=n^{2}, \lambda=n$ and $\mu=1 /(n+1)$.


## Conditional SIC-POVM II.

■ Instead of the determinant of the average covariance matrix, minimize the square of the Hilbert-Schmidt distance.

Theorem. In the conditional case, the elements of the optimal POVM can be described as multiples of rank-one projections with the following properties $(1 \leq i, j \leq k)$ :

$$
\begin{gathered}
E_{i}=\frac{n}{k} P_{i}, \quad \operatorname{Tr} P_{i} P_{j}=\frac{k-n}{n(k-1)} \quad(i \neq j) \\
\text { and } \quad \operatorname{Tr} \sigma_{l} P_{i}=0 \quad\left(\forall l: \sigma_{l} \in \mathcal{A}\right) .
\end{gathered}
$$

- So the conditional SIC-POVM is the optimal with rank-one projections, and constants $\lambda=\frac{k}{n}, \mu=\frac{k-n}{n(k-1)}$.


## Example for existence

Let us assume that the diagonal part of $\rho \in M_{n}(\mathbb{C})$ is known

- The number of POVM elements: $k=n^{2}-n+1$

Definition (Difference set). The set $G:=\{0,1, \ldots, k-1\}$ is an additive group modulo $k$. The subset $D:=\left\{\alpha_{i}: 1 \leq i \leq n\right\}$ forms a difference set with parameters $(k, n, \lambda)$ if the set of differences $\alpha_{i}-\alpha_{j}$ contains every nonzero element of $G$ exactly $\lambda$ times.

- A few examples for difference sets with parameters $(k, n, 1)$ :
$n=2, k=3: D=\{0,1\}, \quad n=3, k=7: D=\{0,1,3\}, \quad n=4, k=13: D=\{0,1,3,9\}$.
Theorem. We set $|\phi\rangle=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left|e_{i}\right\rangle, q=e^{2 \pi i / k}, U=\operatorname{Diag}\left(q^{\alpha_{1}}, q^{\alpha_{2}}, q^{\alpha_{3}}, \ldots q^{\alpha_{n}}\right)$. If $\left(\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right)$ forms a difference sets with parameters $(k, n, 1)$, then

$$
P_{i}:=\left|U^{i} \phi\right\rangle\left\langle U^{i} \phi\right|, \quad(i=1,2, \ldots, k)
$$

will be an appropriate conditional SIC-POVM. INVESTMENTS IN EDUCATION DEVELOPMENT

## Application of Conditional SIC-POVM

- SIC-POVM is the BLE of a quantum state

■ Conditional SIC-POVM is the BLE of a subsystem of a quantum state
$\square$ Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{N}$ be a complementary decomposition of $M_{n}(\mathbb{C})$
■ $E^{(i)}$ is the conditional SIC-POVM for $\mathcal{A}_{i} \Rightarrow$ BLE for subsystems

- Best candidates:
- $N=1, \mathcal{A}_{1}=M_{n}$ : SIC-POVM
- $N=n+1, \mathcal{A}_{1}=\ldots=\mathcal{A}_{n+1}=\mathbb{C}^{n}:$ MUB


## Related publications

[1] D. Petz, K.M. Hangos and L. Ruppert, Quantum state tomography with finite sample size, in Quantum Bio-Informatics, eds. L. Accardi, W. Freudenberg, M. Ohya, World Scientific, p. 247-257, 2008.
[2] D. Petz and L. Ruppert, Efficient quantum tomography needs complementary and symmetric measurements, Rep. Math. Phys., 69, p. 161-177, 2012.
[3] D. Petz and L. Ruppert, Optimal quantum state tomography with known parameters, Journal of Physics A: Math. Theor. 45, 085306, 2012.
[4] D. Petz, L. Ruppert and A. Szántó, Conditional SIC-POVMs, to be published, http://arxiv.org/abs/1202.5741

