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Abstract. We present a method for reconstructing the average evolution of the

photon number distribution of a field decaying in a high-Q cavity. It applies

an iterative maximum likelihood state reconstruction algorithm to the diagonal

elements of the field density operator. It is based on quantum non-demolition

measurements carried out with atoms crossing the cavity one by one. A small

set of successively detected atoms defines a positive operator valued measure

(POVM). The reconstruction is performed by applying this POVM to a large

ensemble of field realizations. An optimal POVM based on the detection of a

minimal number of atoms is shown to be sufficient to ensure an unambiguous

convergence of the reconstruction. The cavity crossing time of this minimal

number of atoms must be much shorter than the lifetime of the largest photon

number present in the field. We apply the method to monitor the evolution of

number states prepared by quantum feedback in a recent experiment. The method

could also be useful in circuit QED experiments.
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8. Conclusion

We have presented here a powerful MaxLik method for the statistical reconstruction of fields
evolving in a cavity. It uses a stream of non-resonant atoms as a QND dispersive probe.
We have shown that a minimal sequence of ND � nm/2 atoms around a given time in each
realization is necessary and sufficient to reconstruct a snapshot of the field photon number
distribution, provided it does not contain more than nm photons. Each realization contributes
to the reconstruction of the field at all times since information can be extracted from a long
atomic sequence divided into elementary ND atom bins. Due to the QND character of our
measurement scheme, data coming from different bins contribute independently to the statistical
reconstruction. In this way, information is acquired more rapidly than in procedures involving
destructive measurements, which are limited to one measurement in a given time bin for each
realization.

The presented method has been successfully tested on numerically simulated as well as on
experimentally measured data. For an ideal atomic beam delivering one atom every Ta, the time
resolution of this method of state reconstruction is Tanm/2, which should be smaller than Tc/nm

the lifetime of the Fock state with the maximum photon number in the field. The method can thus
reconstruct the evolution of arbitrary photon number distribution provided nm <

√
2Tc/Ta. If we

had a deterministic source of atoms and a perfect detector, the limit in our experiment would
be nm � 40, this figure being limited to � 10 by the randomness of the present atomic source
and the limited detection efficiency. Improving on these factors and on the cavity damping time
should allow us to time resolve the evolution of fields involving up to a few tens of photons.

Our method can be generalized to the full reconstruction of field density operators [8]
by applying controlled field displacements before measurement of the ND-atom POVMs. The
minimum number of detected atoms in a time bin is still given by N

min
D = I [(nm + 1)/2], where

nm is now the number of Fock states populated in the displaced field. Note finally that our
reconstruction method, based on non-resonant interaction with the cavity, may be of interest
in the context of circuit QED with three-dimensional cavities [20]. In these experiments, an
increase of the coherence time of the qubit is obtained at the expense of reduced control, which
makes it difficult to implement the reconstruction method used in [9].
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Optical Imaging: Lens equation in  
geometrical optics  



Lens equation in geometrical optics:  
 

1/do + 1/di =1/f 
 

For  sharp image:    xi = M xo,    magnification M= di/do  
For the blurred image:  ξ =α xo + β po 
  xo … position of the ray 

 po = 2π/λ  θ … direction of the ray  
 
Meaning in quantum mechanics:   
 
Rotated quadrature operator for [xo, ,po] = iħ 
 
See the analogy with the free evolution  
 
x(t) = x(0)  + p(0)  t/m 



Klasická optika se snaží vytvořit obraz co možná 
nejpodobnější předmětu, drobné korekce jsou možné... 
 
Digitální optika : všechno se dá dopočítat 
 
Kvantová tomografie: fundamentální statistická omezení 
plynoucí z neurčitosti dat (nekompletní informce)  



Scanning of the optical field: 
Hartmann-Shack sensor 

Roland Shack 
(1970’s) 

Johannes Hartmann 
(1865-1936) 



Scheme of the wave-front reconstruction 



•  Detected amplitude: 

  φdet(ξ)= ∫dx’ dq’ φ(x’)h(x’-q’)Ai(q’) exp(i kξq’/f)  
•  Detected signal: 

    Si(ξ) =<|φdet((ξ)|2>average  
 = ∫dx’ dx’’ ∫dq’ dq’’ Q(x’,x’’) h(x’-q’) α(q’, ξ) h*(x’’-q’’) α*(q’’, ξ)  

where  Q… function of mutual coherence 
       αi(q’,ξ) = Ai(q’) exp(i kξq’/f)  

•  Quantum formulation in x-representation 
   Si(ξ) = <αiξ|U† Q U|αiξ> 

Q(x’,x’’)= <x’|Q|x’’>, h(x’-q’)= <q’|U|x’>, < x’|αiξ> = αi(q’,ξ)  
 

Wave theory for HS sensor 

φ 
h 

Ai 



HS sensor: Quantum Consequences 

• Smooth Gaussian approximation of aperture function: 

  Ai(q’) ≈ exp[- (q’-xi)2/4 (∆x)2] 
 
• Detection= Projection into the minimum uncertainty states 

  
 αi,ξ= exp[- (q’-xi)2/4 (∆x)2  + i kξq’/f ] 

 
• Heisenberg uncertainty relations 
 

  ∆x ∆p ≥  ћ/2 
• Generalized measurement of non-commuting variables x and p, (Arthurs, 
Kelly 1964) 

   ∆X ∆P ≥  ћ 
See the excellent paper: S. Stenholm, Simultaneous measurement of 
conjugate variables, Annals of Physics 218, 233-254 (1992).  



Further Quantum Consequences 
 

•  POVM corresponds  to detection of annihilation operator 

    a = x+ ip 
   1/π ∫ dα2  |α><α| = 1 
• Q-distribution (Husimi) 

∆x ∆x 

∆p ∆p 



Detection of partially coherent signal  



Hartmann-Shack sensor of the wavefront?  



Planck mission of ESA: 
scanning of cosmic background radiation   



Temperature anisotropies  

COBE-DMR resolution 

Planck resolution 



Linear inverse problems 
 

ML estimation is excellent tool for solving linear inverse 
problems with constraints  (= tomography) 

   
  Ij = Σk cjk µk  

 
detected mean values  Ij, j= 1,2,…M  
reconstructed signal  µk k= 1,2,…N  
 
Over-determined problems     M> N 
Well defined problems          M= N  
Under-determined problems      M< N 



Tomography and 
 Inverse Radon Transformation 

Radon  transformation 

Inverse Radon  transformation- 
Fourier transformation method 

Projection theorem 
(ray sum) 

Gθ(ξ) = F (ξ cos θ, ξ sin θ)) f(x, y) = F−1Gθ

g(s, θ) =

�
dxdyf(x, y)δ(x cos θ + y sin θ − s)
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!  s = x cos + y sin
u = – x sin + y cos , (8)

!  x = s cos – u sin
y = s sin + u cos . (9)

Substituting Eq. (9) into Eq. (6), it follows that the ar-
gument of the -function is

!  x cos + y sin –s
= (s cos – u sin ) cos + (s sin + u cos ) sin – s
= s (cos2 + sin2 ) – u sin cos + u cos sin – s
= 0

.

(10)

Since the translation from the (x, y)-coordinate to the
(s, u)-coordinate yields no expansion or shrinkage,
we get dxdy = dsdu. Thus we get from Eq. (6)

!  g(s, )

= f (s cos – u sin , s sin + u cos ) (0) dsdu
–

.

(11)

Since the -function in Eq. (6) is a function of vari-

able s, we get

  ! (0) ds
–

= 1 . (12)

It follows from the above that the Radon transforma-
tion g(s, ) in Eq. (6) is translated into the following
integral of one variable u,

!  g(s, ) = f (s cos – u sin , s sin + u cos ) du
–

.

(13)

This equation expresses the sum of f(x, y) along the
X-ray pass whose distance from the origin is s and
whose normal vector is in  direction. This sum, g(s,

) is called ray-sum.

Projection theorem
The image reconstruction from projection is equiva-
lent to the inverse Radon transformation, i. e. obtain-
ing f(x, y) from given g(s, ) for 0! !  <! *). An im-
portant key for solving this problem is projection
theorem, explained in the following.

Fig. 3. Projection theorem.
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two-dimensional Fourier
transformation of the object

one-diemensional
Fourier transformation

of the projection

*) Note that the range is not 0! ! !<!2 .



Von Neumann Measurement 



Estimation Theory in Drawings  
 

Necessary ingredients: 
 
• Input signal  
• Controllable transformation 
• Feasible detection 
   



Quantum Estimation Theory  
 

  Quantum Estimation Theory  
  =  Quantum Theory + Estimation Theory 
 
Some peculiarities: 
• Quantum state ρ plays the role of c-number (matrix) with 
special constraints (ρ ≥ 0 ) 
• Quantum measurement must obey uncertainty principle 



Maximum Likelihood Estimation (1922) 
 

Sir Ronald Aylmer Fisher, FRS (17 February 1890 – 29 July 1962) 
http://digital.library.adelaide.edu.au/coll/special/fisher/papers.html 

• Maximum Likelihood (MaxLik)  principle is 
not a rule that requires justification: Bet 
Always  On the Highest Chance! 
• Numerous applications in signal analysis, 
optics, geophysics, nuclear physics,…  
• A. Witten, The application of ML 
estimator to tunnel detection, Inverse 
Problems 7(1991), 49.  
• MaxLik analysis= pea plant experiment 
of G. Mendel was contrived (too good to 
be true, statistically J ) 



 
• Likelihood  L  quantifies the degree of belief in 
certain hypothesis under the condition of the given 
data. 
• MaxLik principle  selects  the most likely  
configuration 
• Information is updated according to the Bayes rule 
prior probability    è  posterior  probability 
 
              P(ρ¦D) = P(D¦ρ) p(ρ) [p(D)]-1 
 

Maximum Likelihood Tomography  



Generic reconstruction scheme 

Log-likelihood for generic measurement 
log L  = ∑i Nj log pj / (∑k pk) 

(probabilities are mutually normalized) 
 

Equivalent formulation: estimation of parameters with 
Poissonian probabilities and unknown mean  λ 

(constrained MaxLik by Fermi) 
 

log L  = ∑j Nj log (λ pj )   - λ ∑j pj  
 
  



Likelihood is convex functional defined on the 
convex manifold of density matrices 



Information criteria and MaxLik tomography 
  

 “The most valuable commodity I 
know of is information, wouldn’t 
you agree?” (M. Douglas as tycoon 
Gordon Gekko in the movie Wall 
Street)  



 Many random phenomena, such as those arising in biological and 
ecological applications, are extremely complex, potentially 
involving an endless assortment of variables and interactions, 
„good“ models are needed.An optimal statistical model is 
characterized by three fundamental attributes: 

 
1.  Parsimony (model simplicity) 
2.  Goodness-of-fit (conformity of the fitted model to the data at 

hand) 
3.  Generalizability  (applicability of the fitted model to describe or 

predict new data) 

Good statistical models 



 
• Law of Parsimony: No more causes should be assumed than those 
that will account for the effect. 
More philosophy behind: 
• Occam’s Razor: “Plurality should not be posited without 
necessity.” (Franciscan monk William of Ockham 1285–1349) 
• “Everything should be made as simple as possible, but not simpler.”  
(Albert Einstein, 1879–1955). 
• “When you hear hoofbeats, think horses, not zebras.” (popular adage 
from medical schools and residency programs) 
• “Simplicity is the ultimate sophistication.” ( Leonardo da Vinci, 1452–
1519). 

• Laplace's Principle of Insufficient Reasoning: If there is no reason 
to prefer among several possibilities, than the best strategy is to 
consider them as equally likely and  pick up the average. 

 

Parsimony 



All models are wrong, some are useful           
(George E. P. Box) 



Akaike´s information criterion (AIC) 
 Akaike,IEEE Trans. Auto Control 19, 716 (1974) 



Schwarz and Bayesian Information 
Criterion (BIC) 

Schwarz, Annals of Stat. 6, 461 (1978) 
Konishi, Ando, Imoto, Biometrica 91, 27 (2004) 



Entropy and quantification of 
ignorance 

 Yong Siah Teo, Huangjun Zhu, B-G Englert, J. Řeháček, Z. Hradil, 
Quantum-State Reconstruction by Maximizing Likelihood and 

Entropy,Phys. Rev. Lett. 107, 020404 (2011)  



• Phase estimation 
• Transmission tomography 
• Tomography of CP maps 
• Reconstruction of photocount statistics 
• Image reconstruction  
• Vortex beam analysis 
• Quantification of entanglement 
• Reconstruction of neutron wave packet 
• Reconstruction based on homodyne detection  
• Full reconstruction based on on/off detection 
• Reconstruction of coherent matrix 

Co všechno  jsme už řešili … 






