Mutually Unbiased Bases in Composite Dimensions

Dan McNulty

Department of Mathematics, University of York

March 21, 2013

INVESTMENTS IN EDUCATION DEVELOPMENT

Outline

- Introduction
- What we know about MU bases
- Analogous problems
- Results for dimension six
- MU product bases
- Summary and conclusions

What are MU bases?

particle on a line

- position basis $|q\rangle, q \in \mathbb{R}$; momentum basis $|p\rangle, p \in \mathbb{R}$

$$
|\langle q \mid p\rangle|^{2}=\frac{1}{2 \pi \hbar}
$$

qubit, or spin $1 / 2$

- standard basis $\left|j_{z}\right\rangle, j=0,1 ;$ x-eignebasis $\left|k_{x}\right\rangle, k=0,1$

$$
\left|\left\langle j_{z} \mid k_{x}\right\rangle\right|^{2}=\frac{1}{2}
$$

qudit in \mathbb{C}^{d}

- and two orthonormal bases $\left|\psi_{j}\right\rangle$ and $\left|\phi_{k}\right\rangle, j, k=1, \ldots, d$

$$
\left|\left\langle\psi_{j} \mid \psi_{k}\right\rangle\right|^{2}=\frac{1}{d}
$$

Complete sets of MU bases

- A set of $d+1$ orthogonal bases $\left\{\mathcal{B}_{0}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{d}\right\}$ is mutually unbiased if each pair of bases \mathcal{B}_{i} and \mathcal{B}_{j} is mutually unbiased
- Dimension $d=3$

$$
\begin{array}{lr}
I_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & F_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right) \\
=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega & \omega^{2} & 1 \\
\omega & 1 & \omega^{2}
\end{array}\right) & H^{\prime}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega^{2} & 1 & \omega \\
\omega^{2} & \omega & 1
\end{array}\right)
\end{array}
$$

where $\omega=e^{2 \pi i / 3}$ is a third root of unity

Why are MU bases interesting?

Applications

- Optimal state reconstruction [wkw\&BDF]
- Quantum cryptography
- Quantum challenges: Mean King problem [Lv et. an
- Entanglement detection [cs et al]
- Generalised Bell inequalities [s-ws et al.]

Conceptually

- Complementarity for composite systems

Outline

- Introduction
- What we know about MU bases
- Analogous problems
- Results for dimension six
- MU product bases
- Summary and conclusions

MU bases for qudits, $d \in \mathbb{N}$

General results

- There are at most $(d+1) \mathrm{MU}$ bases in $\mathbb{C}^{d}{ }_{\text {[www\&bDF] }}$
- Triples of MU bases exist for all d
- $d \mathrm{MU}$ bases in \mathbb{C}^{d} gives rise to $(d+1) \mathrm{MU}$ bases [mw]
- The entanglement content of a complete set is fixed [MW et al.]

Complete MU sets are equivalent to ...

- Maximal sets of d complex MU Hadamard matrices of order d
- Orthogonal decompositions of the Lie algebras $s l_{d}(\mathbb{C})$ [POB et al.

MU bases in prime power dimensions

 $d=p^{n}, p$ a prime, $n \in \mathbb{N}$Construction of complete sets from:

- Generalised Pauli matrices
- Commuting subsets of a unitary error basis
- Orthogonal Latin squares
- Discrete Fourier analysis over Galois fields
- Discrete Wigner functions

MU bases in composite dimensions

 $d=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}$, with $p_{1}^{n_{1}}<p_{2}^{n_{2}}<\ldots<p_{k}^{n_{k}}$
Positive

- $\left(p_{1}^{n_{1}}+1\right) \mathrm{MU}$ bases can be constructed
- $\left(p_{1}^{n_{1}}+2\right) \mathrm{MU}$ bases exist for specific dimensions (Latin squares imply six $\left(>2^{2}+1\right) \mathrm{MU}$ bases for $d=2^{2} \times 13^{2}$) [PW\&TB]
- Entanglement content for complete MU set in $\mathbb{C}^{p} \otimes \mathbb{C}^{q}$ $\mathcal{E}=p q(p+q)[$ mw et al. $]$

Negative

- Plausible generalisations of constructions fail

Open questions for MU bases

Open problems

- Do complete sets of $(d+1) \mathrm{MU}$ bases exist in \mathbb{C}^{d} ?
- Does a complete set of seven MU bases exist in \mathbb{C}^{6} ?
- Do four MU bases exist in \mathbb{C}^{6} ?
- Does the MU constellation $\left\{6^{3}, 1\right\}$ exist in \mathbb{C}^{6} ?

Conjecture

- Only three MU bases exist in $\mathbb{C}^{6}{ }_{[G z]}$ (compatible with all known results)

Outline

- Introduction
- What we know about MU bases
- Analogous problems
- Results for dimension six
- MU product bases
- Summary and conclusions

Orthogonal decompositions of simple Lie algebras

Theorem [POB\&VPR]
A set of $\mu \mathrm{MU}$ bases $\mathcal{B}_{1}, \ldots, \mathcal{B}_{\mu}$ of \mathbb{C}^{d} exists if and only if a set of μ pairwise orthogonal Cartan subalgebras $\mathcal{H}_{1}, \ldots, \mathcal{H}_{\mu}$ of $s l_{d}(\mathbb{C})$, closed under the adjoint operation, exists.

Conjecture

- The simple Lie algebra $s l_{d}(\mathbb{C})$ admits an orthogonal decomposition only if d is a prime power
Implication for MU bases
- Existence of orthogonal decomposition iff a complete set of MU bases exist

Complex Hadamard matrices

Definition

- A square matrix H of order d is a Hadamard matrix if it is unitary and all its elements have equal modulus

Open problem

- In dimension six a complete classification of Hadamard matrices is unknown
- Thus, a complete classification of pairs of MU bases remains unknown

Affine planes

Definition

An affine plane of order d is collection of d^{2} points and $d(d+1)$ lines which satisfy the following

- Any two points lie on just one line
- Given any line ℓ and any point p not lying on ℓ, there exists exactly one line through p that is parallel (disjoint) to ℓ
- There exists three noncollinear points

Results on affine planes

- Affine planes of order $d=p^{n}$ exist for p prime, $n \in \mathbb{N}$
- No affine plane of order six exists.

Conjecture

- The non-existence of an affine plane of order d implies there exist less than $d+1 \mathrm{MU}$ bases [Ms et al.]

Outline

- Introduction
- What we know about MU bases
- Analogous problems
- Results for dimension six
- MU product bases
- Summary and conclusions

Computer-aided results in dimension six

Numerical evidence

- No evidence for the existence of four MU bases [PB\&WH],[SB\&SW]

Exact numerics

(discretize phase space and use rigorous estimates)

- Pair $\left\{I, F_{6}(a, b)\right\}$: not part of a quadruple of MU bases numerical calculation with rigorous error bounds [PJ et al.]

Computer-algebraic efforts

- Pair $\left\{I, F_{6}\right\}$: not part of a quadruple of MU bases [MG]
- Pair $\left\{I, S_{6}\right\}$: not part of a triple of MU bases [sb\&sw]

Analytic results in dimension six

Existence results specific to $d=6$

- There exists a three parameter family of complex Hadamard matrices of order six [BRK]
- Continuous families of MU triples exist

Limitations specific to $d=6$

- Various construction methods yield at most three MU bases, e.g. monomial bases, nice error bases and Latin squares (affine planes) [POB et al.] [MA et all]
- If a complete set contains three MU product bases, the remaining four bases contain entangled states only [mw et al.]
- No pair of real Hadamard matrices can be part of a complete set of MU bases [Mm et al.]

Outline

- Introduction
- What we know about MU bases
- Analogous problems
- Results for dimension six
- MU product bases
- Summary and conclusions

All MU product bases of \mathbb{C}^{6}

Distinguish between two types of product bases

- direct product bases, e.g.

$$
B_{2} \otimes B_{3} \equiv\left\{\left|j_{z}, J_{z}\right\rangle\right\}, \quad j_{z}=0,1 \quad J_{z}=0,1,2
$$

- indirect product bases, e.g.

$$
\left\{\left|0_{z}, J_{z}\right\rangle,\left|1_{z}, J_{x}\right\rangle\right\}, \quad J_{z}, J_{x}=0,1,2
$$

Classify all sets of MU product bases for $d=6$

- All pairs: four families $\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}$ and \mathcal{P}_{3}
- All triples:

$$
\begin{aligned}
& \mathcal{T}_{0}=\left\{\left|j_{z}, J_{z}\right\rangle ;\left|j_{x}, J_{x}\right\rangle ;\left|j_{y}, J_{y}\right\rangle\right\} \\
& \mathcal{T}_{1}=\left\{\left|j_{z}, J_{z}\right\rangle ;\left|j_{x}, J_{x}\right\rangle ;\left|0_{y}, J_{y}\right\rangle,\left|1_{y}, J_{w}\right\rangle\right\}
\end{aligned}
$$

The limited role of MU product bases

Complete list of triples \mathcal{T}_{0} and \mathcal{T}_{1}

- Analytic results

No complete set contains three product bases $\left\{6^{3}\right\}_{6}^{\otimes}$ (no state is MU to either \mathcal{T}_{0} or \mathcal{T}_{1})
No complete set contains the product constellation $\left\{6^{2}, 4\right\}_{6}^{\otimes}$

Complete list of pairs $\mathcal{P}_{0}, \mathcal{P}_{1}, \mathcal{P}_{2}$ and $\mathcal{P}_{3} \Longrightarrow$

- Analytic result \cup computer-aided results A complete set contains at most one product basis (all MU pairs contain $\left\{I, F_{6}(a, b)\right\}$ or $\left\{I, S_{6}\right\}$ which do not extend to complete MU sets)

Outline

- Introduction
- What we know about MU bases
- Analogous problems
- Results for dimension six
- MU product bases
- Summary and conclusions

Summary and conclusions

Current status in dimension six

- Strong evidence for non-existence of complete MU sets
- $\left\{6^{3}, 1\right\}$ has never been observed
- Some MU pairs and triples are unextendible
- A complete MU set contains at most one product basis

Lessons?

- Existence of a complete MU set is surprising
- Sensitivity of quantum theory to factors of d

Thank you

