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Appendix A.  The Enigma of Cox's Proof 

The claim that the only way to deal with uncertainty is to use the rules of probability theory in 

some of the debates described in Section 2.4 is often justified by referring to a proof by Cox 

(1946)
1
. According to Cox, the aim of the proof is "to show that by employing the algebra of 

symbolic logic it is possible to derive the rules of probability from two quite primitive notions". 

Although his derivation is actually not presented as a proof of a theorem, but rather as a sequence 

of intertwined formal and intuitive arguments, it has been routinely referred to as "Cox's proof" 

or "Cox's theorem". In order to describe this derivation, we consider it appropriate to adhere to 

the original Cox's notation: Letters a, b, c ... denote propositions; ~ a denotes the negation of 

proposition a; ab and a! b  denote, respectively, the conjunction and disjunction of propositions 

a and b; and b | a  denotes "some measure of reasonable credibility of the proposition b when the 

proposition a is known to be true". 

Using this notation and employing the Boolean algebra of classical propositional logic (or 

classical set theory), Cox aims at proving that the only sensible way to combine reasonable 

credibilities is to use the rules of probability theory. He begins with the assumption (axiom) that   

 cb | a = F(c |ba,b | a),   (1) 

where F is some function of two variables to be determined. Employing the associative law of 

conjunctions of propositions, he derives the equation   

 F(F(d | cba, c |ba), b | a) = F(d | cba, F(c |ba, b | a)),   (2) 

where a, b, c, d are any propositions. Letting d|cba = x, c|ba = y, and b|a = z, Eq. (2) becomes   

 F(F(x, y), z) = F(x,F(y, z)).   (3) 

Function F must satisfy this functional equation, known as associativity equation (Aczel 1966, 

253), for arbitrary values x, y, and z.  

Once Cox converted his original problem into this purely mathematical problem, his 

challenge was to solve this equation.  In a long and tedious derivation, described in detail in a 

large Appendix to his paper, Cox managed to show the following: If F has continuous second-

order derivatives, then 

 Cf (F(p,q)) = f (p) f (q)   (4) 

                                                
1
 Also covered later without any substantial change in his book (Cox 1961).  
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is the solution of (3), where, as stated by Cox, "f is an arbitrary function of a single variable and 

C is an arbitrary constant". This derivation is correct and it was a significant contribution to the 

theory of functional equations when Cox's paper was published. 

In order to determine a relation between b|a and ~ b|a, Cox furthermore assumes 

(employs as an axiom) that 

 ~ b | a = S(b | a),   (5) 

where S is some function to be determined. Employing the law of double negation and one of the 

De Morgan's laws of classical logic, he derives the functional equation  

 xS(S(y) / x) = yS(S(x) / y),   (6) 

where x = c|a and y = S(cd|a). He then shows (again by a tedious but correct derivation in the 

Appendix of his paper) the following: If S is twice differentiable, then 

 S(p) = (1! p
m
)
1/m   (7) 

is the solution of (6), where m is an arbitrary constant. Cox considers the value of m purely 

conventional and chooses m = 1 to obtain the desired formula of probability theory. 

The results obtained by Cox became a subject of controversy in some of the debates 

described in Section 2.4. The controversy was triggered by two closely related claims, a rather 

extreme claim that "the only satisfactory description of uncertainty is probability" (Lindley
1
) and 

an associated claim that "the strongest argument for the use of standard probability theory is a 

proof by Cox" (Cheeseman
2
). Since the Cox's proof was published more than 40 years before the 

debates and in a journal specializing on physics, it is understandable that many people 

participating in the debates were initially not aware of it. However, some of them
3
 quickly 

recognized that the proof was contingent upon the assumption that function F in the associativity 

functional equation (3) has a continuous second derivative. This, they argued, excludes 

possibility and necessity measures since they are based on max and min functions, which are 

clearly not satisfy this assumption. Next, some advocates of the original meaning of Cox's proof 

responded by defending it via reference to another method for solving equation (3), which was 

developed by Aczél (1966). For example, Smith and Erickson (1989) wrote (p. 38): 

                                                
1
 Statistical Science, 2(1), 1987, p.17. 

2
 Computational Intelligence (Canadian), 4(1), 1988,  

3
 For example, (Dubois and Prade 1988).  
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By assuming that F is twice differentiable in both variables, Cox derived from Eq. (3)
1
 a 

differential equation which he then solved. Some fuzzy set advocates have pounced upon this 

assumption as invalidating Cox's theory, in evident ignorance of the work of Aczél (1966, 

1987), who derived the same general solution without assuming differentiability. 

This was more than a decade later still echoed by Jaynes (2003, 668):  

The issue of nondifferentiable functions arises from time to time in probability theory. In 

particular, when one solves a functional equation such as those studied in Chapter 2,
2
 to assume  

differentiability is to have a horde of compulsive mathematical nitpickers descend upon one, 

with claim that we are excluding a large class of potentially important solutions. However, we 

noted that this is not the case; Aczél demonstrated that Cox's functional equations can all be 

solved without assuming differentiability (at the cost of much longer derivation) and with just 

the same solution that we found above. 

It is correct that Aczél was able to solve (3) without the assumption that function F has a 

continuous second derivative, but assuming instead that F is reducible on both sides, which he 

defines (Aczél 1966, 255) as "F(t, u) = F(t, v) or F(u, w) = F(v, w) only if u = v." The authors of 

the above statements seem to tacitly assume that the requirement that F be reducible on both 

sides is weaker than the requirement that F has a continuous second derivative and, hence, the 

controversy regarding functions max and min is resolved. However such an assumption is 

wrong. Functions max and min do not have continuous second derivatives, but they are non-

reducible on both sides as well. The two requirements are actually not comparable. In addition to 

the product function, which clearly satisfies both of them, and the max and min functions, which 

satisfy neither of them, there also exist associative functions that satisfy only one of them. For 

example, function F(x, y) = x
2
+ y

2  is associative and twice differentiable, but nor reducible. 

On the other hand, function F(x, y) = f
!1
( f (x), f (y)),  where f (x) = x / 2 for x ![0,0.5]  and 

f (x) =1.5x ! 0.5 for x "(0.5, 0]  (and f(y) is defined in the same way), is clearly associative and 

not differentiable, but it is reducible from both sides. To show its reducibility, let F(x,y) = F(x,z). 

Then, 

 f
!1
( f (x) f (y)) = f

!1
(x) f (z)),   

  

                                                
1
 Eq. (29) in (Smith and Eriscon 1989). 

2
 In Chapter 2 of this book, Jaynes basically outlines the Cox's proof. 
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 f (x) f (y) = f (x) f (z),   

 f (y) = f (z) . 

Since f is a bijective function, we obtain that y = z, so F is reducible from one side. Moreover, 

since F is a symmetric function, it is also reducible from the other side. 

In this Appendix, we set to examine, strictly on mathematical grounds, why the Cox's 

proof does not justify claims made by some advocates of probability theory (Lindley, 

Cheeseman, and others) that probability is the only sensible description of uncertainty, that every 

uncertainty statement must be in the form of probability, that the calculus of probabilities is 

adequate to handle all situations involving uncertainty, and the like. However, the Cox's proof, 

as a justification for such extreme claims, is also vulnerable on philosophical grounds. This is 

beyond the aim of this Appendix, but we consider it worth to refer to a paper by Colyvan (2004), 

where these aspects are thoroughly discussed.  

Fortunately, the debates outlined in Section 2.4 (involving not only fuzzy logic, but also 

some other theories of uncertainty different from probability theory) has ended on a positive side 

in the sense that they helped to curtail the extreme claims of some radical probability advocates 

to claims that are more reasonable, as adequately expressed by one of the strong advocates of 

probability theory, Kevin Van Horn
1
: 

Although there is not a completely compelling case for Cox's axioms, and thus one cannot claim 

that probability theory is the only workable logic of uncertain reasoning, there are strong 

grounds for a weaker, but still interesting claim: probability is the simplest workable logic of 

uncertain reasoning one could hope to construct. 

 

 

  

 

   

 

                                                
1
Conclusion in a discussion paper by Van Horn (Intern J. of Approximate Reasoning, 35, 2004, 109-110).  
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IS THERE MORE TO UNCERTAINTY
THAN SOME PROBABILITY THEORISTS

MIGHT HAVE US BELIEVE?*

GEORGE J. KLIR

Department of Sysrems Science, Thomas J. Warson School, State University of New

York, Binghamton, New York 13901, USA

(Received I August 1988; in final form 14 July 1989)

The aim of the paper is to challenge the claims (as described by Lindley"), "that probability is the
only sensible description of uncertainty and is adequate for all problems involving uncertainty. All
other methods are inadequate". The paper concentrates primarily on the codification of the concept of
uncertainty and the discussion of adequate principles of maximum and minimum uncertainty.

INDEX TERMS: Uncertainty, probability theory, fuzzy set theory, possibility theory, Dempster-
Shafer theory, fuzziness, nonspecificity, dissonance. confusion.

I. INTRODUCTION: SETTING THE STAGE

My position in this debate is rather modest: J intend to challenge certain extreme
claims regarding the concept of uncertainty that are maintained by some
probability theorists. The claims J have in mind are perhaps most explicitly

(forcefully) expressed by Lindley in the following quote from his recent paper"
(italics added by me):

The onl)' satisfactory description of uncertainty is probability. By this I mean that every uncertainty
statement must be in the form of a probability: that several uncertainties must be combined using the
rules of probability; and that the calculus of probabilities is adequate to handle all situations involving
uncertainty .,. probability is the only sensible description of uncertainty and is adequate for all

problems involving uncertainty. All other methods are inadequate.... Anyrhing that can be done with
fuzzy logic, belief functions, upper and lower probabilities, or any other altern alive to probability can
better be done with probability.

Similar claims can also be found in another paper by Lindley'? and in several
debate-like papers by Cheeseman.":" For example, Cheeseman" declares as the
theme of one of his papers "that all reasoning under uncertainty can be fully
captured, and captured correctly, by probability". In another paper," he writes:

The numerous schemes for representing and reasoning about uncertainty that have appeared in the AI
literature are unnecessary-probability is all that is needed.

"This paper, which expresses my view about the concept of uncertainty, is based upon an official
debate organized at the Eighth Maximum Entropy Workshop at SI. John's College, Cambridge. U.K"
August 1-5, 1988. My opponent, whose position was that uncertainty can be fully and correctly
captured by probability theory, was Peter Cheeseman. The paper was distributed among participants of
the Workshop, but it is not included in the Proceedings of the Workshop (Maximum Entropy and

Bayesian Me/hods, edited by 1. Skilling, Kluwer, Dordrecht, 1989).
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348 G. J. KLIR

Although other probability theorists express similar views, the chosen quotes are
sufficient for my purpose, as they capture well the essence of the claims I propose

to challenge in this debate. That is, I intend to argue that probability theory is not
capable of capturing the full scope of uncertainty and, consequently, various

broader or alternative formalisms are desirable for dealing with certain situations
involving uncertainty. .

Since there is a great variety of views on the nature of the concept of

probability,"! we must be clear about what we mean by this concept. I assume
that our debate is based upon the concept of probability as it is understood and

employed in the Bayesian/Maximum Entropy methodology." In this context, only

the concept of a conditional probability is recognized: it is viewed as a measure of

a reasonable credibility of (belief in) one proposition when another proposition
(evidence) is known to be true. As is well known, this concept of conditional
probability was formally derived from some reasonable requirements by Cox. I 0

Mathematically, this concept is equivalent to the concept of conditional

probability in the standard quantitative (numerical) probability theory,' 5 as
axiomatized, for example, by Kolmogorov"
Hence, when arguing the adequacy of probability theory for describing uncer-

tainty in this debate, I assume that the subject under discussion is the standard
quantitative probability a la Kolmogorov.V particularly its Bayesian interpre-
tation employed in the derivation by Cox.'? That is, I assume that the term

"probability" is not used in this debate in the broad sense, covering, for example,

varieties of classificatory and comparative notions of probability. 50
To make sure that my position in this debate is properly understood, let me

emphasize that I am critical of neither the Bayesian/Maximum Entropy methodo-
logy, as well described by Jaynes.i? nor related methodologies, such as the one

based on the principle of minimum information (which seems-to be a generaliza-
tion of the Bayesian rule'") or the entropy minimax methodology, developed and
applied with great skill and success in the area of predictive modelling by
Christensen.Ir" On the contrary, I believe that there is now enough evidence to

demonstrate that these related methodologies are superior to orthodox statistics in
terms of foundational and pragmatic grounds.s·23.45 In fact, I have been using the

various entropy principles for many years in my work in systems science, as
documented in some of my publications.26.27.31

In summary, when uncertainty is conceptualized in terms of probability theory, I
believe that the right way to deal with situations involving uncertainty is to use
the Bayesian/Maximum Entropy methodology or some of the related methodo-

logies. Hence, I aJTI in full agreement with the Bayesian/Maximum Entropy
position within the domain of probability theory. I also believe, however, that
probabilistic conceptualization is restrictive in the sense that it does not capture

the full scope of uncertainty. In particular, I believe, and intend to argue, that
uncertainty is a multidimensional concept and that probability theory allows us to
capture only one of its dimensions. To also capture the other dimensions of

uncertainty, mathematical frameworks that are either complementary to or

broader than probability theory are needed.
I hope that the principal issue of this debate is now clear:

Claims 10 be challenged-probability theory is the only satisfactory mathematical

framework to describe uncertainty; it is adequate for dealing with all situations
involving uncertainty (Lindley, Cheeseman).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
l
i
r
,
 
G
e
o
r
g
e
 
J
.
]
 
A
t
:
 
1
9
:
3
1
 
2
5
 
F
e
b
r
u
a
r
y
 
2
0
1
1



CAMBRIDGE DEBATE ABOUT UNCERTAINTY 349

My counterclaims-probability theory is capable of conceptualizing only one
type of uncertainty; to capture the full scope of uncertainty, one has to go
beyond probability theory (Klir).

To develop arguments supporting my counterclaims, I deem it essential to start
with a general (common sense) discussion of the concept of uncertainty.

2. WHAT IS UNCERTAINTY?

As a starting point, let us consult a standard dictionary about the term
"uncertainty". We find that it has a broad semantic content. For example,
Webster's New Twentieth Century Dictionary defines uncertainty as the quality or
state of being uncertain. It gives six clusters of meanings of the term uncertain:

I. not certainly known, questionable, problematical;
2. vague, not definite or determined;
3. doubtful, not having certain knowledge, not sure;
4. ambiguous;
5. not steady or constant, varying;
6. liable to change or vary; not dependable or reliable.

When we use the dictionary again to examine these various meanings, two
major types of uncertainty emerge quite naturally. They are quite well captured by
the terms "vagueness" and "ambiguity".
In general, vagueness is associated with the lack of precise or sharp distinctions

or boundaries. Ambiguity, on the other hand, is associated with one-to-many
relations, that is, situations in which several alternatives are left unspecified or a
desired categorization of an element is left undecided due to ignorance.
Each of the two major types of uncertainty-vagueness and ambiguity-is

connected with a fairly large set of kindred concepts. Some of the concepts
connected with vagueness are: fuzziness, haziness, cloudiness, unclearness, indistinc-
tiveness, sharplessness, indefiniteness; some of the concepts connected with ambi-
guity are: nonspecificity, variety, generality, diversity, divergence, equivocation,
incongruity, discrepancy, dissonance, disagreement. There are also concepts that
are connected with both vagueness and ambiguity. An example is the concept of
imprecision. When it is used to express that a distinction made in some context is
not sharp, imprecision relates to vagueness; when, on the other hand, it is used to
describe the lack of specificity in a situation, imprecision relates to ambiguity.
Further inspection of the concept of ambiguity reveals that two distinct types of

ambiguity can readily be distinguished. One is connected with the variety of
alternatives that in a given situation are left unspecified; this type of ambiguity is
well described by the term "nonspecificity". The other type of ambiguity is
connected with the disagreement resulting from the attempt to classify an element
of a given universal set into two or more disjoint subsets of interest under total or
partial ignorance regarding relevant characteristics of the element. The term
"dissonance" seems to be sufficiently suggestive of this type of ambiguity.
The concept of uncertainty is closely connected with the concept of information.

When our uncertainty in some situation is reduced by an action (such as an
observation, performing an experiment, receiving a message, or finding an
historical record), the action may be viewed as a source of information pertaining
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350 G. J. KLIR

Set theory Probability theory .
t

Possibility theory

1Fuzzy set
4

Dempster-Shafer
theory theory

L. Fuzzified
Dempster·Shafer theory .....

,
• General theory of

fuzzymeasures

Probability theory
of fuzzy events

Theory of
Sugana measures

Generai theory of ..-J
fuzzified fuzzymeasures

Figure I Some mathematical theories capable of conceptualizing situations under uncertainty.

to the situation under consideration. The amount of information obtained by the

action may be measured by the reduction of uncertainty that results from the
action.
Information in the sense just described does not cover semantic and pragmatic

aspects. Consequently, it is not what we usually mean by information in human
communication. The notion of information used here is defined strictly in terms of

uncertainty reduction within given syntactic and semantic frameworks, which are
assumed to be fixed in each particular application. This restricted concept of

information may be well described by the term "uncertain! y-based information".

3. MATHEMATICAL FRAMEWORKS FOR CONCEPTUALIZING

UNCERTAINTY

The classical mathematical frameworks for characterizing situations under un-
certainty have been set theory and probability theory. Since the mid-1960s, a

number of generalizations of these classical theories became available for concep-
tualizing uncertainty. Names of some of these generalized theories are given in
Figure I; each arrow in the figure indicates some sort of generalization.
In this debate, my aim is to compare the six theories identified in Figure I by

the shaded area (fuzzy set theory, possibility theory, basic and fuzzified Dempster-

Shafer theory, and the two classical theories: set theory and probability theory) by

their capabilities of conceptualizing the three main types of uncertainty: vagueness,
nonspecifity, and dissonance. These theories are chosen because they are currently

the most developed theories for dealing with situations under uncertainty.
Moreover, appropriate measures of uncertainty are now well justified in each of
the theories. For the remaining theories listed in Figure I, let me cover them only

by appropriate references: probability theory of fuzzy events,55 theory of Sugeno
rneasurcs.v:" general theory of fuzzy measures.?" general theory of fuzzified fuzzy
measures (not developed as yet).
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CAMBRIDGE DEBATE ABOUT UNCERTAINTY 351

To facilitate the discussion, let me overview relevant basic properties of the four

non-classical theories; knowledge of set theory and probability theory is assumed.
Let X denote a universal set under consideration, assumed here to be finite for

the sake of simplicity, and let P(X) denote the power set of X. Then, the
Dempster-Shafer theory is based upon a function

m: P(X)-+[O,1]

such that

m(cP)=O and L m(A)= I.
ASX

This function is called a basic assignment; the value m(A) represents the degree of
belief (based on relevant evidence) that a specific element of X belongs to set A,

but not to any particular subset of A. Every set A E P(X) for which m(A) #0 is
called a focal element. The pair (F,m), where F denotes the set of all focal elements
of m, is called a body of evidence.
Associated wit h each basic assignment m is a pair of measures, a belief measure,

Bel, and a plausibility measure, PI, which are determined for all sets A E P(X) by
the equations

Bel(A)= L m(B),
BSA

PI(A)= L m(B).
Bf'\A.#4>

(1)

(2)

These equations and the definition of the basic assignment form the core of the
Dempster-Shafer theory. This theory is best described by Shafer.f"
Belief and plausibility measures are connected by the equation

PI(A)= I-Bel(A) (3)

for all A E P(X), where A denotes the complement of A. Furthermore,

Bel(A) PJ(A) (4)

for all A E P(X).

A belief measure (or a plausibility measure) becomes a probability measure when
all focal elements are singletons. In this case, Bel(A)= Pl(A) for all A E P(X), which
follows immediately from Eqs. (1) and (2). When some focal elements are not

singletons, the additivity of probability theory bifurcates into the more general
properties of superadditivity for belief measures,

Bel(A u B);;; Bel(A)+Bel(B) - Bel(A n B),

and subadditivity for plausibility measures,

PI(A n B) PI(A)+PI(B) - PI(A u B).

(5)

(6)
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352 G. J. KLIR

When all focal elements are nested (ordered by set inclusion), the body of

evidence is called consonant. In this case, we obtain special plausibility measures,
which are called possibility measures (or consonant plausibility measures), and the
corresponding special belief measures, which are called necessity measures. A
possibility measure, n, is conveniently (and uniquely) determined by a possibility
distribution function

r: X ---+[0, I]

via the formula

n(A) = max r(x)
xeA

(7)

for· all A E P(X). The corresponding necessity measure, 1], is then determined for all
A E P(X) by a formula equivalent to Eq. (3),

I](A) = I - n(A). (8)

A theory that deals with consonant bodies of evidence in terms of possibility and
necessity measures is usually called a possibility theory. The properties of

superadditivity and subadditivity of the Dempster-Shafer theory, expressed by
Eqs. (5) and (6), assume in possibility theory for all A, BE P(X) the forms

I](A n B)=min [I](A),I](B)],

n(A u B)=max [n(A), ntH)],

respectively. 14. 29 Furthermore, given a consonant body of evidence

(9)

(10)

( II )

such that Ale A2c··' c Am the basic assignment in possibility theory is connected
with the possibility distribution via the formula

m(A;)=r(x;) - r(xH d (12)

for some XiEA;, some Xi+ 1EA i+l> and i= 1,2, ... ,n, where r(x.+ 1)=0 by
convention.?" Similarly, given a basic assignment of a consonant body of evidence

of the form (II), the corresponding possibility distribution is calculated by the

formula

•
r(xi)= L m(A.)

k=i

(13)

for each XiEAi.29
Possibility theory can be formulated not only in terms of consonant bodies of

evidence within the Dempster-Shafer theory, but also in terms of fuzzy sets. 54 It
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was introduced in this latter manner by Zadeh. 56 A fuzzy set is a set whose

boundary is not sharp. That is, the change from nonmembership to membership in

a fuzzy set is gradual rather than abrupt. This gradual change is expressed by a

membership grade function, /lA' of the form

/lA:X--+[O,IJ,

where A is a label of the fuzzy set defined by this function within the universal set
X. The value /lA(X) expresses the grade of membership of element x of X in the
fuzzy set A or, in other words, the degree of compatibility of x with the concept
represented by the fuzzy set. A fuzzy set A is called normalized when

maxx e x /lA(X) = I. If IlA(X) ;;;/lB(X) for all x E X, then A is called a fuzzy subset of B.
An important concept associated with fuzzy sets is an a-cut. Given a fuzzy set A

and a specific number a E [0, IJ, the a-cut, A., is a crisp (nonfuzzy) set

The set of all elements of X for which /lA(X) > 0 is called a support of the fuzzy set
A; it is usually denoted by supp(A).

For some applications, the concept of the fuzzy set can be extended in various
ways. An important extension is to allow a more general form of the membership
grade function,

where L denotes a partially ordered set (usually a lattice). Fuzzy sets defined by
this more general function are called L-fuzzy sets. 16 Simple but useful examples of

L-fuzzy sets are interval-valued fuzzy sets. They are defined by membership grade
functions of the form

/lA: X --+P([O, 1J),

where for each XEX, JiA(X) is a closed interval in [0,1].

Given a regular fuzzy set A with membership grade function /lA (the range of /lA
is [0, 1J), Zadeh 56 defines a possibility distribution function, rA' associated with A

as numerically equal to /lA' i.e.,

(14)

for all XE X; then, he defines the corresponding possibility measure 1tA by the
equation

7tA(B)= max rA(X)
xeB

(15)

for all BE P(X). In this interpretation of possibility theory, focal elements
correspond to distinct a-cuts A. of the fuzzy set A. This follows from the property
that A. £; Ap when a> p.
As observed by Yager.P:' the Dempster-Shafer theory can be fuzzified. In its

fuzzified form, the basic assignment is a function
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m: P(X)--+[O, I],

where P(X) denotes the set of all fuzzy subsets of X. This function must satisfy the

same requirements for the extended domain P(X) as function m does for the
domain P(X). Plausibility and belief measures based upon mare expressed by the
following generalized counterparts of Eqs. (I) and (2),

Bel(A)= L m(B)[I-maXmin(I-JlA(X),JlB(X))],
ReF xeX

PI(A)= L m(B) [max min(JlA(X),JlB(X))],
ReF xeX

(1')

(2')

where IIA(X) and JlB(.X) are degrees of membership of element x in fuzzy sets A and
B, respectively, and F is the set of all focal elements (fuzzy sets) associated with m.

4. MEASURES OF UNCERTAINTY

Let me explore now the conceptualization and measurement of the various types

of uncertainty within the six mathematical frameworks I chose to cover in this
debate. Let me start with classical set theory.

When a situation is expressed in terms of a set of alternatives that are left
undecided, it is clear that the uncertainty assumes the form of nonspecificity. The
more alternatives, the less specific the situation is; when only one alternative is
possible, the situation is fully specific. A measure of this sort of uncertainty was
introduced by Hartley in 1928,18, even though Hartley called it a measure of
information.

Given a finite crisp set A of possible alternatives, Hartley derived a simple
function

I(A)=log2 IA I, (16)

where IAI denotes the cardinality of set A, as the only meaningful measure (except
for a multiplication constant) of the amount of information needed for character-
izing one element of the set. Later, the uniqueness of the measure was proven

axiomatically by Renyi."! For our purpose, it is important to realize that
110nspecificity expressed by the Hartley measure is the only type of uncertainty that

can be conceptualized within classical set theory.
A measure of probabilistic uncertainty (and the associated information) was

established by Shannon in 1948.44 This measure, whose basic form is

H(p(x) Ix E X) = - L p(x) log, p(x),
xeX

( 17)

where (p(x) Ix E X) denotes a probability distribution on X, is usually called the
Shannon entropy. It is well justified, in a number of alternative ways, as a unique
measure of uncertainty conceptualized in terms of probability theory.23,29.41,45
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What type of uncertainty does the Shannon entropy measure? We may easily

conclude that it does not measure nonspecificity: the probabilities pix) are required
to be real numbers in [0, I], and thus fully specific, and each of them focuses on a

single (i.e., specific) alternative x. We observe, however, that each probability pix)

in Eq. (17) expresses the degree of belief (based upon some evidence) that x is the

true alternative in a given context. In probability theory, X (when finite) is always

viewed as a set of exhaustive and mutually exclusive alternatives (outcomes, states,
elementary events, basic propositions). Hence, the beliefs expressed by the prob-

abilities in the distribution (p(x) Ix E X) conflict with each other. The greater the
lack of discrimination among the beliefs, the greater the conflict. This is precisely
how the Shannon entropy behaves. Hence, the Shannon entropy is a measure of

dissonance in a probability distribution (using the terminology introduced in
Section 2).
Although we understand now that the Hartley measure and the Shannon

entropy quantify different types of uncertainty, this fact was obscured by two
prevailing views of experts in probabilistic information theory about the Hartley

measure. According to one of the views, the Hartley measure is a special case of
the Shannon entropy that distinguishes only between zero and nonzero probabili-
ties; otherwise, it is totally insensitive to the actual values of the probabilities. That

is, probabilities are withdrawn according to this view and only possibilities of
elements of X are retained. There is certainly no need to introduce probabilities

and, then, withdraw them to obtain the Hartley measure.
According to the second view, the Hartley measure is a special case of the

Shannon entropy that emerges from the uniform probability distribution. This
view is ill-conceived since the Hartley measure is totally independent of any
probabilistic assumptions, as correctly recognized by Kolmogorov-? and Renyi."'
Strictly speaking, the Hartley measure is based upon one concept only-the
concept of a finite set of possible alternatives, which can be interpreted as
experimental outcomes, states of a system, events, messages, and the like, or as

sequences of these. In order to use this measure, possible alternatives must be
distinguished, within a given universal set, from those that are not possible. It is
thus the possibility of each relevant alternative that matters in the Hartley

measure. Hence, the Hartley measure can be meaningfully generalized only
through broadening the notion of possibility. This avenue is now available in
terms of possibility theory.

A natural generalization of the Hartley measure in possibility theory was
discovered by Higashi and Klir in 1983.20 They coined for it the name

U-uncertaillty. When a possibility distribution is expressed in terms of a norm-
alized fuzzy set A, the V -uncertainty has the form

[

UtA) =f log2lA.1dIX,
o

(I 8)

where IA.I denotes the cardinality of the o-cut of the fuzzy set A. The uniqueness
of this function as a possibilistic measure of nOllSpecificity under appropriate
requirements was proved by Klir and Mariano."? For fuzzy sets that are not

normalized and for which max x e x JlA(X) =a, each value V(A), given by Eq. (I 8),
must be divided by a.

When possibility theory is interpreted in terms of the Dempster-Shafer theory,
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the possibilistic measure of nonspecificity is expressed by a function V that for any
given nested body of evidence (F, m) assumes the form

V(m)= l: m(A)log21Ai-
AeF

(19)

Clearly, when m corresponds to a possibility distribution represented by a fuzzy set
A via Eq. (12), then V(m)= U(A). Furthermore, it is now well established that

function V defined by Eq. (19) is applicable as a measure of nonspecificity to any
arbitrary body of evidence, not only those that are nested.i? Its uniqueness in this
general setting was proved by Ramer.t"

Since focal elements of probability measures are singletons, V(m) =0 for every
probability measure. That is, there is no nonspecificity in probability measures; all

probability measures are fully specific, as already anticipated on intuitive grounds.
Hence, probability theory is not capable of conceptualizing nonspecificity, one of the
basic types of uncertainty.
Let me discuss now the meaning of the Shannon entropy within the Dempster-

Shafer theory. Since the Dempster-Shafer theory is a generalization of probability
theory, obtained by relaxing the additivity requirement, is it reasonable to expect

that some appropriately generalized form of the Shannon entropy exists that is
universally applicable within the broader theory? This question has already been

answered in the affirmative by establishing that the Shannon entropy in fact
bifurcates within the Dempster-Shafer theory into the following two generalized

forms:

E(m) = - l: m(A) log, PI(A),
AeF

C(m)= - l: m(A) log, BeI(A).
AeF

(20)

(21)

Function E defined by Eq. (20) is usually called a measure of dissonance and
function C given by Eq. (21) is called a measure of confusion. Since both E and C
collapse into the Shannon entropy when m represents a probability distribution,

they are sometimes referred to as entropy-like uncertainty measures.
What do functions E and C actually measure? From Eq. (2) and the general

property of basic assignments (satisfied for every A E P(X)),

l: m(B) + l: m(B) = I,
Bi'lA=tP B("lA'f-tP

we obtain

The term

E(m) = - l: m(A) log; [1- l: m(B)].
AeF BnA=tI>

K= l: m(B)
BnA=4J

(22)
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in this expression for E(m) clearly represents the total conflict between the belief in
A and other beliefs within a given body of evidence. It is obtained simply by
adding the basic assignment values of all focal elements that are disjoint with A

and, consequently, the beliefs allocated to them are in conflict with the belief
focusing on A. The value of K ranges from 0 to I. The function

which is employed in Eq. (22), is monotonic increasing with K; it extends the
range from [0, I] to [0, CD). The choice of the logarithmic function is based on the
same motivation as the choice of the logarithmic function in the Shannon entropy.
Now, we can readily see that E(m) defines the mean (expected) value of the conflict
in beliefs associated with a given body of evidence (F, m); the name "measure of
dissonance" is thus quite appropriate. This observation reinforces my previous
argument that the Shannon entropy measures the degree of conflict (dissonance)
among beliefs expressed by a probability distribution.
Let me now explain the meaning of function C given by Eq. (21). From Eq. (I)

and the general property of basic assignments (satisfied for every A E P(X)),

L m(B)+ L m(B)= I,
BSA B,/-A

we get

The term

C(m)=- L m(A)IOg2[1- ) m(B)].
AeF 81A

L= L m(B)
8'1 A

(23)

in this expression of C(m) stands for the sum of all focal elements that either do
not overlap with set A or overlap with it only partially. Since beliefs in these focal
elements B are in actual or potential conflict with the belief in A (since B 't A by
definition), L represents the total real and potential conflict with the belief in A.

The reasons for using

instead of L in Eq. (23) are the same as already discussed in the context of
function E. The conclusion is that C(m) defines the mean (expected) value of not
only the real conflict (as function E does), but also of the potential conflict
associated with a given body of evidence. This multitude of partially or totally
conflicting focal elements is a source of confusion; hence the name "measure of
confusion".
Since focal elements of possibility measures are nested, the plausibility of each

focal element must be I (by Eq. (2)) and, consequently, E(m)= 0 when m defines a
possibility measure. That is, consonant bodies of evidence (and the associated
possibility and necessity measures) are free of dissonance (real conflict in beliefs).
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358 G. J. KLIR

However, they are not free of potential conflict since C(m);eO in general; C(m)=O
if and only if the body of evidence contains only one focal element.

The question of how to measure the degree of vagueness or fuzziness of a fuzzy
set has been one of the basic issues of fuzzy set theory. Various measures of
vagueness, more often called measures offuzziness, have been proposed.i? One way
of measuring fuzziness, which was suggested by Yager52 and further investigated

by Higashi and Klir,'9 is to view it as the lack of distinction between the fuzzy set

and its complement. Clearly, the less a fuzzy set differs from its complement, the
fuzzier it is. Using this approach, the measure of fuzziness depends on the

complementation operator employed (which is not unique!") and on the distance

function by which the distinction between the set and its complement is expressed.

Let Fe denote a measure of fuzziness based upon the complementation operator c
and the Hamming distance. Then, assuming again a finite universal set X, F, is
given by the formula

FAA) =IXI- L IJlA(x) -c(JlA(x))I·
xeX

(24)

Observe that the concept of the amount of fuzziness, measured by function Fe> has
no applicability in probability theory: no vagueness is allowed in defining

probabilities.
When the Dempster-Shafer theory is fuzzified, measures of the three relevant

types of uncertainty, given by Eqs. (19), (20), (21), are still applicable provided that

the entries in their formulas are properly interpreted: since focal elements A are
now fuzzy sets, IAI in Eq. (19) must be calculated by the formula

IAI = L JlA(X),
xeX

(25)

which defines a simple (scalar) cardinality of fuzzy set A; in Eqs. (20) and (21),
values of PI(A) and Bel(A) must be calculated by Eqs. (2') and (I'), respectively. In

addition, it becomes also meaningful to measure fuzziness of a given fuzzified body
of evidence. We may, for example, use the formula

F,(m) = L m(A)F,(A),
AeF

(26)

where F,(m) denotes the fuzziness of (F,m) and F,(A), which is determined by Eq.
(24), denotes the fuzziness of the focal element (a fuzzy set) A.

5. LIMITATIONS OF PROBABILITY THEORY

The purpose of this section is to discuss some limitations or inadequacies of
probability theory for dealing with various situations under uncertainty. Com-

parisons are restricted only to the theories identified in Figure I by the shaded
area. The section is organized in the form of a collection of independent or loosely

related remarks regarding various conceptual, formal, computational, methodo-
logical, and application-related issues. The remarks are general; specific examples

are discussed in Section 6.
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All bodiesof evidencein

the Dempster-Shafer theory

All probabilistic
bodies of evidence:

m(A)+O iff A={x}.

No uncertainty
bodyof evidence:

m (Ix)} = 1 for
some x !. X

All possibilistic
bodiesof evidence:
nested focalelements

Figure 2 Subset relationship of probabilistic and possibilistic bodies of evidence within the Dempster-
Shafer theory.

I. First, it is essential for our purpose to compare mathematical structures of
the theories of our concern, using probability theory as a reference. When
comparing probability theory with the Dempster-Shafer theory, it is clear that the
latter is more general. This follows from the fact that the additivity axiom of
probability theory is replaced with the weaker superadditivity and subadditivity
axioms. As a consequence, it is not required in the Dempster-Shafer theory that
degrees of belief be allocated to singletons of the universal set. When such
allocations are possible and make sense in a particular application, the Dempster-
Shafer theory assumes automatically the mathematical structure of probability
theory. Hence, probability theory is a subset of the Dempster-Shafer theory in
terms of the bodies of evidence that can be conceptualized by either of the
theories. Another subset of the Dempster-Shafer theory is possibility theory, which
is virtually disjoint with probability theory. The only body of evidence they share
consists of one focal element that is a singleton (the case of total certainty). Since
the additivity axiom of probability theory is replaced with the maximum axiom
(Eq. (7)) of possibility theory, which guarantees the nested structure of focal
elements in possibility theory, the two theories are complementary (neither is
contained in the other). The subset relationship among the three theories is
summarized in Figure 2.
As far as fuzzy set theory is concerned, it is clearly a generalization of classical

set theory: the range {O, I} of characteristic functions extends to the range [0, I] of
the membership grade functions. This results in the violation of some properties of
the Boolean lattice of classical set theory. Which properties are violated depends
on the chosen operators for fuzzy set union, intersection, and complement, which
are not unique and whose choice depends on the context of each application. For
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360 G. J. KLIR

the standard fuzzy set operators, only the law of excluded middle and the law of

contradiction are violated. A direct comparison of fuzzy set theory with prob-

ability theory is not possible since fuzzy set theory does not involve the power set
P(X) or a a-field of selected subsets of X, which are essential for the formalization

of probability theory. As already mentioned, however, probability theory can be
compared with the fuzzy set interpretation of possibility theory. In this compari-

son, the two theories emerge as totally distinct except in the one (trivial) body of

evidence. Probability theory can be effectively combined with fuzzy set theory by

defining, for example, probabilities of fuzzy events.l" or by characterizing prob-
abilities in terms of fuzzy numbers.' 3. 24 These combinations are, however,

generalizations (enrichments) of probability theory and, consequently, they should

not be considered as part of probability theory in this debate.

2. It follows from the brief exposition in Section 4 that uncertainty and

uncertainty-based information are, in general, multidimensional concepts. Depend-
ing on the mathematical framework employed, uncertainty is manifested by one or

more of the following four types we now recognize: fuzziness (vagueness),
nonspecificity (lack of informativeness), dissonance (pure conflict), and confusion

(pure and potential conflict). The multidimensionality of uncertainty was obscured

when uncertainty was investigated solely in terms of classical set theory and
probability theory, in each of which uncertainty is manifested only by one of its

dimensions: by nonspecificity in classical set theory (expressed by the Hartley
measure), and by dissonance in probability theory (expressed by the Shannon

entropy). The following is a summary of the applicability of the individual
measures of the four types of uncertainty in the six mathematical theories of our

concern:

a) classical (crisp) set theory-nonspecificity (Hartley measure), expressed by
Eq. (16);

b) probability theory--dissonance and confusion collapse into one measure
(Shannon entropy) expressed by Eq. (17);

c) fuzzy set theory-fussiness, exemplified by Eq. (24), and nonspecificity,
expressed by Eq. (18);

d) possibility theory-confusion, expressed by Eq. (21), and nonspecificity,

expressed either by Eq. (18) or by Eq. (19), depending on the interpretation

employed;

e) Dempster-Shafer theory-nonspecificity, dissonance, and confusion, given by

Eqs. (19), (20), (21), respectively;

f) [uzzified Dempster-Shafer theory-nonspecificity, dissonance, and confusion,
expressed by modified Eqs. (19), (20), (21), respectively, in which m is replaced with

Iii, IAI is obtained by Eq. (25), and Pl(A), Bel(A) are calculated by Eqs. (2'), (1'),
respectively.

The undeniable fact that probability is capable of expressing only one of the
four distinct types of uncertainty we now recognize and are able to measure makes

the extreme probabilistic claim that "every uncertainty statement must be in the
form of a probability" unattainable.

3. It is clear from the foregoing that the one-dimensional probabilistic infor-
mation theory will have to be extended into a multidimensional information
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theory, far better equipped to capture the semantic richness of the concepts of
uncertainty and uncertainty-based information. Such a research program involves

many challenging philosophical, mathematical, and computational issues. In the

four non-classical mathematical frameworks (c)-( f), the maximum and minimum
uncertainty principles emerge as multiple objective criteria optimization problems

or, alternatively, single objective optimization problems with objective functions

that are justifiable aggregates of relevant measures of uncertainty. Considering the

Dempster-Shafer theory as an example, the uncertainty principles would be
expressed either in terms of three objective functions, V, E, and C, or, alternatively,
in terms of an appropriate aggregate of these functions. For instance, we may take

the total uncertainty, expressed by the sum

.. ,.;.... S(m)= Vim) +E(m)+C(m), (27)

as the objective function. In this latter case, for example, the principle of maximum

uncertainty for a problem within a finite universal set X would be formulated as
follows: determine a basic assignment m(A), for all A E PiX), that maximizes the

function

-
S(m) - m(A) log, PI(A)' Bel(A) (28)

subject to the given contraints C\, C2,'''' which represent the available information
relevant to the matter of concern, as well as the general constraints of the
Dempster-Shafer theory.

4. In probability theory, total ignorance is expressed (employing the maximum

entropy principle) by the uniform probability distribution on X. This choice is well
justified (on several different grounds) providing we require that the situation be
characterized by a single probability distribution (the usual requirement of
probability theory). This requirement, however, is too strong to allow us to obtain
an honest characterization of total ignorance. Indeed, if no information is available

about the situation under consideration, then every probability distribution on the
given universal set is equally possible (or equally probable, if you like). Hence, an

honest characterization of total ignorance should be expressed in terms of the full
set of possible probability distributions on X, allowing thus nonspecificity in the

formulation. Such a formulation, however, is foreign to probability theory. In the
broader framework of the Dempster-Shafer theory (as well as in the narrower

framework of possibility theory), where uncertainty in the form of nonspecificity is

acceptable, total ignorance is expressed by miX) = I and m(A) =0 for all A;e X.
This is certainly an honest expression of total ignorance that perfectly agrees with
our common sense: we know that the element is in the universal set X, but we
have no evidence about its location in any subset of X. Using Eq. (I) or Eq. (2),
we can also express total uncertainty in the form

Bel(X)= 1 and Bel(A)=O for all A;eX,

or in the form

GEN. SYS.··-D
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362 G. J. KLIR

PI(cf»=O and Pl(A)= I for all A#cf>,

respectively. These equivalent forms are also perfectly agreeable to our common

sense: the degree of our belief in every set except the universal set X is zero while,
at the same time, every set except the empty set is considered fully plausible

(PI(A) = I). When we measure the three applicable types of uncertainty, we obtain

VIm)= 10gz1XI, E(m)= 0, and C(m) =0. This, again, is perfectly compatible with
our intuition: total ignorance is expressed fully in terms of nonspecificity (lack of

informativeness). Indeed, having no information, we have no basis to form any
meaningful beliefs and, consequently, there cannot be any contlict {be it real or

potential) among beliefs that do not exist. In theory, total ignorance
involves the same amount of uncertainty (H(p) = 10gz1XIl, but this uncertainty is
expressed solely in terms of the maximized contlict among beliefs (measured by the

Shannon entropy); these beliefs are not derived from any evidence (which is
nonexistent), but are dictated by the restrictive formalism of probability theory.

5. As already mentioned, probability theory captures totally different bodies of

evidence (with the one trivial exception) than possibility theory. These theories
also involve different types of uncertainty. In probability theory, our ignorance is

expressed solely in terms of dissonance (measured by the Shannon entropy). In
possibility theory, it is expressed predominantly in terms of nonspecificity

(measured by function V), even though some amount of potential contlict
(measured by function C) may also be included. Furthermore, since possibility

distributions are in a one-to-one correspondence with fuzzy sets, it is also
meaningful to characterize possibility distributions by their degrees of fuzziness. All
these observations indicate that the two formalisms are complementary in their
applicability. For example, probability is suitable for characterizing the number of

persons that are expected to ride in a particular car each day. Possibility theory,
on the other hand, is suitable for characterizing the number of persons that can
ride in that car at anyone time. Since the physical characteristics of a person
(such as size or weight) are intrinsically vague, it is not realistic to describe the

situation by a sharp distinction between possible and impossible instances. A more
realistic possibility distribution (defined here on the set of positive integers) might

be, for example, r(x)= I for x;£5, r(6)=0.9, r(7) =0.5, r(8)=0.1, and r(x)=O for
x 9. The need for possibilistic (consonant) characterization of uncertainty in
economics has been argued for many years by the British economist Shackle.t?

6. Possibility theory is computationally less sensitive to errors in the assessment
of possibility degrees than probability theory is in the assessment of probability

degrees. This follows from the type of operations employed in the two theories. In
possibility theory, where the basic operations are the maximum and minimum, the
error does not accumulate when we operate on possibility distributions. That is,
the error cannot exceed the largest error in the assessment of possibilities no
mailer how many times we operate with them. In probability theory, where the

basic operations are the sum and product, the error increases with the number of
operations performed.

7. An interesting and conceptually useful notion of a geometry of fuzzy sets was
recently introduced by Kosko.P He interprets fuzzy subsets of a finite universal
set X with n elements as points in the n-dimensional unit cube [0, IJ". That is, the
entire cube represents the fuzzy power set P(X), its vertices represent the crisp
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PROBABILITY

DISTRIBUTIONS

PROBABILITY

DISTRIBUTIONS

NORMALIZED

FUZZY SETS

Figure 3 Examples illustrating the geometry of fuzzy sets.

x
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power set P(X). This interpretation suggests that a suitable distance d(A, B) be

defined between fuzzy sets. Using, for example, the concept of the Hamming
distance, we have

d(A, B) = L IJl..(x) - JlB(x)l·
xeX

(29)

The cardinality IAI of a fuzzy set A, given by Eq. (25), can be then viewed as the
distance d(A, 4» of A from the empty set. Observe that probability distributions are
represented by sets whose cardinality is 1. Hence, the set of all probability
distributions definable on X is represented by an (II-I)-dimensional simplex of the
II-dimensional unit cube. Examples of this simplex for 11= 2, 3 are shown in
Figure 3.

8. The geometry of fuzzy sets introduced in the previous remark suggests that,
perhaps, theorems of probability theory can be derived, in a unified fashion, from
some more fundamental laws that hold for the whole n-dimensional unit cube and
not only for the probabilistic (n-I)-dimensional simplex. Kosko demonstrates
that, indeed, this can be done." First, he defines for every pair of fuzzy sets
A,BeP(X) the degree of subset hood, S(A,B), of A in B by the formula

(30)

The L term in this formula describes the aggregated (summed) violations of the
subset inequality Jl..(x) JIB(X), the difference in the numerator describes the lack of
these violations, and the cardinality IAI in the denominator is a normalization
factor to obtain the range

1. (31)
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z

x

y

Figure 4 Illustration of the meaning of a probabilistic Boolean lattice in terms of the geometry of
fuzzy sets.

Kosko showst" that S(A, B) can also be expressed, in a more convenient form, as

Using this formula, it is easy to derive the following properties of S(A, B):

S(A,B)= I iff As;B;

S(A, B u C) =S(A, B)+S(A, C) -S(A, B ('\ C);

S(A, B ('\ C) =S(A, B)' S(A n B, C);

S(A n B, C) S(A n C, B) S(A, C)

S(A ('\ B,C) = S(A ('\ C, B) S(A, C)'

(32)

(33)

(34)

(35)

(36)

(37)

Let me introduce now a probabilistic interpretation of the cardinality and the

subsethood function S(A, B). In order to easily visualize the interpretation, let me
utilize the fuzzy set geometry within the 3-dimensional unit cube; a generalization

to n> 3 is trivial. Figure 4 is used as a guide. Let X = {IX, p, y} denote the universal
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set in our case and let membership grades of the various fuzzy sets be represented
in the unit cube [0,1]3 by values of the coordinates z,y,x, respectively. Consider a
point (a, b,c) in the 2-dimensional probabilistic simplex (shaded in Figure 4), which
represents a fuzzy set Q defined by

Since Qis located on the probabilistic simplex, IQI=a+b+c = 1 by definition, and
we may interpret the triple (a, b,c) as a probability distribution. Consider now the

fuzzy power set P(Q). Its geometrical representation is a rectangular parallelepiped
(shown in Figure 4), whose vertices are of our interest. One of them is the original

point (a, b, c) and the other vertices are obtained by replacing one or more entries
in (a, b,c) with a zero. The family of fuzzy sets represented by these vertices forms
a Boolean lattice under standard fuzzy set operators. Let gB(a, b,c) denote this
lattice. Observe that the following one-to-one correspondence as well as numerical
equality holds between cardinalities of the fuzzy sets in gB(a, b,c) and probabilities
ptA) obtained from the probability distribution (a,b,c) for all A eP(X):

la, b,cl =a+b+C= p({rx,fJ, y}),

la,b,OI=a+b =p({rx,fJ}),

la,O,cl=a+c =p({rx, y}),

10, b,cl=b +c = p({fJ, y}),

la,O,OI=a = p({rx}),

10,b,0[=b = p({fJ}),

10,0,cl=c =p({y}),

10, 0, 01= 0 =p(rJ».

Hence, given a probability distribution (a, b,c), we have

p(A)=IA'I, (38)

where A e P(X), A' e gB(a, b,c), and supp(A) = supp(A'). Now, using Eqs. (32) and
(38), we readily obtain

p(BI A)=S(A', B'), (39)

where A,BeP(X), A',B'e/!if(a,b,c), supp(A)=supp(A'), and supp(B)=supp(B').
Applying Eqs. (38) and (39) to Eqs. (31) and (33)-{37), we can convert all the latter
equations to their probabilistic form. Observe that the obtained equations all
conform to laws of probability theory: Eqs. (31), (34), and (35) become identical
with the properties described by Lindley as convexity, addition, and multiplication
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Discount rate functions

G. J. KLiR

Discount rate functions

I
EVENT A

(a)

I
EVENT B

I
EVENT Au B

(b)

Figure 5 An example illustrating the violation of the additivity axiom of probability theory.

rules. respectivelyr'" Eq. (36) becomes Bayes theorem; and Eq. (37) becomes Bayes
theorem in odds form. 38 Although the concept of fuzzy subsethood S(A, B) is

capable of capturing all conditional probabilities within any Boolean lattice

!!d(a"a2 •... ,an) embedded in P(X), it is more general and fundamental than the

concept of conditional probability: S(A, B) is applicable to any pair of fuzzy sets in

P(X) while conditional probabilities are meaningful only within specific subsets of
P(X), each of which is a Boolean lattice !!d(a t,a2' .... an), at +a2 + .... +an=1.
Moreover.

S(A, B)+S(A. B) t (40)

in general, with equality obtained within any Boolean lattice !!drat,a2.... , an)'

9. Numerous arguments have been or can be raised against the necessity and
adequacy of the various axioms of probability theory. Let me mention just a few

of them. One argument questioning the adequacy of the additivity axiom was
presented by Viertl. 4 9 It is based on the. fact that measurements are often
inherently fuzzy due to unavoidable measurement errors. Consider. for example,
two disjoint events. A and B, defined in terms of adjoining intervals of real

numbers, as shown in Figure 5a. Observations in close neighborhoods (within a
measurement error) of the endpoint of each event are unreliable and should be

properly discounted. for example. according to the discount rate functions shown
in Figure 5a. That is, observations in the neighborhood of the endpoints should

carry less evidence than those outside them. When measurements are taken for the
union of the two events, as shown in Figure 5b, one of the discount rate functions
is not applicable. Hence, the same observations produce more evidence for the

single event A v B than for the two disjoint events A and B. This implies that the
degree of belief in A v B (probability of A v B) should be greater than the sum of

the degrees of belief in A and B (probabilities of A and B). The additivity axiom is
thus violated.
Some of the axioms that Cox employed for proving his theorem, to which are

explicitly stated by Horwitz et a/. 2 l and also by Cheeseman," can be questioned as

well, For example. it is not obvious why, according to the complementarity axiom,
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belief in the complement of a proposition should be "a monotonically decreasing
function of the belief in the proposition itself". 5.2' This is too strong to capture

realistic situations characterized by the lack of belief in both a proposition and its
negation. The axioms of completeness and scalar continuityv " are also question-

able. They require that a specific real number representing a degree of belief must
be assigned to each proposition that is meaningful in a given context. This

req uirement rules out imprecision of any kind in expressing beliefs, be it
imprecision in the form of vagueness or nonspecificity. It does not allow us, for
example, to express our beliefs in terms of intervals of real numbers and deal with

them by interval analysis,"? or to express them by fuzzy numbers and manipulate
them by fuzzy arithmetic. '3. 24 It is questionable whether such a strict and rigid

requirement of precision is realistic and desirable in modelling complex humanistic

phenomena such as national economies, where human psychology, reasoning, and
communication play essential roles.

Cox's proof is also based on one hidden axiom, which is usually not listed
explicitly: in solving his functional equations, he assumes that both of the

unknown functions have continuous second-order derivatives. It is likely that
alternative solutions of the functional equations might be obtained if this
assumption is withdrawn. For example, minimum and maximum functions do not

satisfy this hidden axiom. This question, for which we have no answer at this time,
is a difficult one, but certainly worthy of investigation.

6. EXAMPLES

Several very simple examples involving uncertainty are discussed in this section to

illustrate the four types of uncertainty introduced in Section 4. In each case, I use

a mathematical theory that I consider most appropriate for dealing with the

situation. Probabilistic conceptualizations of the examples are left to my opponent,
Peter Cheeseman.

l. Bogler ' describes the following example of multiple sensor target identifi-

cation in which intelligence reports are also employed as a source of information.
It is assumed, based on an intelligence report, that there are 100 possible target

types. Let X ={x" x2 , ... , x 'oo} denote the set of these target types. It is also
known, from another intelligence report, that only target type x, entered the
relevant tactical area, but the reporting agent had access only to records

pertaining to 40%of the targets entering the tactical area. What is the probability
that an aircraft drawn at random is any particular target type?

The formulation of this problem in the Dempster-Shafer theory is very simple

and noncontroversial. Let A={xtl. Then, using the given (initial) evidence, e" we
have m,(A)=O.4 and m,(X)=0.6. By Eqs. (I) and (2), we readily obtain:

BeldA) =0.4, PI, (A) = I;

Bel, (A) =0, PI, (A) =0.6.

Interpreting the belief and plausibility functions as lower and upper probabilities,
respectively, we obtain the following nonspecific determination of the relevant
probabilities: p,(A)E[O.4, I], p,(A)E[0,0.6], p,(X)= I. Consider now a later report
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368 G. J. KLIR

from a sensor (evidence ez) indicating that not only targets of type Xl might be in
the population of incoming targets, but also ten other target types, say

Xz,X3'"'' Xl" Let B= {XI' Xz,"" x ll } . Then, roz(B)= 1, Belz(B) =Plz(B)= 1,
Bel(8) = PI(8) =0. Hence, pz(B)=1 and pz(8)=O. Using now the Dempster rule for
combining evidence e, and ez, we obtain:

mil Bel" PI" p"

A 0.4 0.4 1 [0.4, I]

A a a 0.6 [0,0.6]

B 0.6 1 I 1
jj a a a a
x a 1 1 I

Calculating amounts of the three types of uncertainty 10 the three bodies of

evidence, we obtain:

V(m) E(m) C(m)

nil 4 a 0.5

'"'
3.5 0, a

ml2 2.1 a 0.5

We can see that by combining evidence e l with evidence ez, nonspecificity is
substantially reduced. Observe that the three bodies of evidence are nested in this

example (E(m) =0 for each of them). Hence, we can also use the possibilistic 'rule
of combining evidence (minimum of possibility distributions) to obtain exactly the

same result.

2. Let me discuss another example in the area of multiple sensor target
identification described by Bogler.? Assume that the universal set is again the set

of 100 possible target types, but only two of the target types are involved in this
example, a fighter and a bomber, which 1 denote by f and b, respectively.
Evidence came in this case from two sensors. A short range sensor provides a

support of 0.6 that the target is a fighter, while the radar warning receiver gives a
support of 0.95 that the detected target is a bomber. What degree of support does
the combined evidence provide? Using again the Dempster-Shafer theory, we
obtain:

r= 111. m2 "'12 Bel" PI" p"

u: 0.6 a am 0.07 0.12 [0.07, 0.12]

{h} a 0.95 0.88 0.88 0.93 [0.88, 0.93]

X 0.4 0.05 0.05 1 I 1

The three types of uncertainties have the values:
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V(m) E(m) C(m)

m, 2.7 0 0.4
m, 0.3 0 7

mIl 0.3 0.3 0.4

369

.We can see that by combining the two conflict-free bodies of evidence

(E(mtl =E(m2 ) =0), which conflict with each other, we obtain a conflicting body of
evidence (E(m , 2)=0.3). By combining bodies of evidence based upon the two

sensors, nonspecificity of the first body of evidence and confusion (potential
conflict) of the second body of evidence are substantially reduced at the cost of a

small amount of dissonance.

3. This example has the same context as the two previous examples, but

involves a different problem. Since the purpose is to illustrate a general principle,
the example is discussed first in general terms and, then, some numerical instances

of the results are examined. Let X denote a set of possible target types and let A

and B denote particular subsets of X that can be identified by two sensors in the
incoming population of targets with some degrees of belief, say a and b,
respectively. Assume that An B", 1jJ. Knowing that a and b are the total degrees of
beliefs in A and B, respectively, what degree of belief should be allocated to the set
An B? Conceptualizing the problem again in terms of the Dempster-Shafer
theory, I propose to deal with it in terms of a relevant principle of maximum
uncertainty. The principle may be employed as an optimization problem with

either three objective functions (V, E, and C, given by Eqs. (19), (20), and (21),
respectively) or with a single aggregate of these objective functions (e.g., their sum

S, given by Eq. (28)). Regardless of the optimization alternative chosen, the
constraints of the optimization problem are expressed in this example by the

equations and inequalities

m(X)+m(A)+m(B)+m(A n B) = I,

m(A)+m(A n B) =a,

m(X), m(A), m(B), m(A n B) ;;;0,

where a,bE [0, 1] are given numbers (total beliefs focusing on A, B, respectively).
The equations are consistent, independent and underdetermined, with one degree
of freedom. Selecting, for example, m(A n B) as the free variable, we readily obtain

m(A)=a-m(A n B),

m(B)=b-m(A n B),

m(X) = l-a-b+m(A n B).

(41)

Since all the unknowns must be nonnegative, the first two equations set the
upper bound of m(A n Bj, whereas the third equation specifies its lower bound; we
obtain
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370 G. J. KLIR

max(O,a+b-I);;';m(A 11 B);;';min(a,b). (42)

Let R=[max(O, a + b - I), min (a, b)] denote this range of values of m(A 11B)

that satisfy the given constraints. .

Using Eqs. (41), the objective functions can be expressed solely in terms of the

free variable m(A 11 B). After a simple rearrangement of terms, we obtain

E(m)=O,

C(m)= -m(A 11 B)log2m(A 11 B)+m(A 11 B)log2(a'b)+K 3 ,

where

t -lfil.!IW'

K J = -a log2a-b log2b.

Let Mv, ME' and Me denote the values or sets of values of m(A IlB) for which
functions V, E, and C, respectively, reach their maxima. Then, we can determine by
simple considerations that .

{

maX(O, a + b - l ) when K 1 < I

M v= min(a+b) when K, > 1

R when K t=l,

{

maX(O, a + b - l) when abje<max(O,a+b-l)

Me= min(a,b) when abje>min(a,b)

abje when ab]e E R,

where e is the base of natural logarithms (e';'2.7).

Let R; denote the set of admissible (nondominated or noninferior) solutions of
our optimization problem. There are nine possible combinations of Mv and Me,
each of which determines Ra • These combinations are specified in Table 1. We can

Table I Admissible solutions in the example discussed

R, K,<I K 1>1 K 1=1

a!'le<max(a+b-l) max(O,a+b-l) R max(O,a+b-l)

able>min(a,b) R min(a, b) min (a, b)

ablee R [max(O,a+b-l),able] [able, min (a, b)] able
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Figure 6 Example of the use of the maximum uncertainty principle in the Dempster-Shafer theory.

see that there are actually only six different types of Ra , three of which are

represented by unique numbers and the remaining three by intervals of real
numbers.
When employing the total uncertainty S(m), given by Eq. (28), as the objective

function in our example, we obtain

We can readily determine the maximum, Ms, of this objective function within

the restricted domain R:

{

maX(O,a + b - l ) when K tabje<max(O,a+b-l)

Ms= min(a,b) when Ktabje>min(a,b)

K t abje when K t able e R.

Let us examine now three numerical instances of this example.

i) Let IXI=150, IAI=40, IBI=50, IAnBI=20, a=0.5, and b=O.3. Then, R=
[0,0.3], K t = 1.5, abje=0.055, M; =0.3, Ra= [0.055, 0.3], Ms =0.083 (Figure 6a).
Hence, the solution is interval-valued when we view the problem as a multiple-

objective criteria optimization problem: m(A n B) E [0.055,0.3]. Depending on the
selected value of m(A n B), using possibly some additional objective criteria, the

values of m(A), m(B), and miX) are determined by Eqs. (41). When we use the total
uncertainty S(m) as the only objective function, we obtain

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
l
i
r
,
 
G
e
o
r
g
e
 
J
.
]
 
A
t
:
 
1
9
:
3
1
 
2
5
 
F
e
b
r
u
a
r
y
 
2
0
1
1



372 G. J. KLIR

m(A n B) =0.083, Bel (A n B) =0.083, PI(A n B)= I,

IIl(A) =0.417, Bel (A) =0.5, PI(A) = I,

m(B) =0.217, Bel (B) =0.3, PI (B) =1,

IIl(X) =0.283, Bel(X) = I, PI (X) =1.

ii) Let IXI=20, IAI=8, IBI=9, IAnB/=3, a=0.7, and b=0.9. Then, R=
[0.6,0.7), K I =0.833, able =0.232, M v =0.6, R.=0.6, M s=0.6 (Figure 6b). Hence,
the solution is unique, IIl(A n B)=0.6, independent of the approach employed. We

obtain,

m(A n B) =0.6, Bel(A n B) =0.6, PI(A n B)= I,

IIl(A)

III(B)

=0.1, Bet(A)

=0.3, Bel (B)

=0.7, PI (A)

=0.9, PI(B)

= I,

= I,

m(X) =0, Bel(X) = I, PI(X) =1.

iii) Let IXI=80, IAI=40, IBI=50, IAnBI=20, a=0.5, and b=0.6. Then, R=
[0.1,0.5), K , = 0.8, able=O.II, M v = O.l , R.=[O.I,O.II), M s = O.1. Hence,
m(A n B) E [0. 1,0.1\) for the multiple-objective criteria approach and

m(A n B)= 0.1 for the single-objective criteria approach.

4. Consider two variables V,, V2, each of which has two possible states, say 0
and I. For convenience, let the joint states of the variables be labelled by an index

i in the following way:

V, ", i

0 0 0
0 I I

1 0 2
I I 3

Assume that we have a record of 1,000 observations of the variables; some of

the observations contain values of both variables, some of them contain a value of
only one variable due to some measurement or communication constraints (not
essential for our discussion). Observing a value of one variable only may be
interpreted in the Dempster-Shafer theory as observing a set of two joint states.
For example, observing that V ,= 1 (and not knowing the state of V2) may be
viewed as observing the subset {2,3} of the four joint states. Numbers of

observations N of the eight relevant sets of states (defined by their characteristic
functions) are given in Table 2, which also contains values of the estimated basic

assignment Ill, based on frequency interpretation, as well as the corresponding
degrees of belief Bel and plausibility PI.

Belief and plausibility degrees can readily be calculated for any of the eight
remaining subsets of states. For example, Bel({I, 2, 3})= 0.721 and

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
K
l
i
r
,
 
G
e
o
r
g
e
 
J
.
]
 
A
t
:
 
1
9
:
3
1
 
2
5
 
F
e
b
r
u
a
r
y
 
2
0
1
1



CAMBRIDGE DEBATE ABOUT UNCERTAINTY

Table 2 Illustration to Example 4

i: 0 I 2 3 N(A) m(A) Be/(A) PI(A)

A: 1 I 0 0 2\2 0.2\2 0.373 0.839

0 0 I \ 128 0.\28 0.16\ 0.627

I 0 I 0 315 0.315 0.446 0.786

0 \ 0 I 151 0.151 0.214 0.554

I 0 0 0 106 0.\06 0.106 0.633
0 I 0 0 55 0.055 0.055 0.418

0 0 I 0 25 0.025 0.025 0.468
0 0 0 \ 8 0.008 0.008 0.287

Figure 7 Estimates of L5 experts regarding the location of the epicenter of an earthquake.

373

PI = ({I, 2, 3})= 0.992. We can also calculate how the total amount of uncertainty

of this body of evidence is distributed among the three types of uncertainty:

V(m)= 0.806, E(m)= 0.559, C(m) = 2.104. A comparison of these results with a
probabilistic treatment of this example should be illuminating.

5. Dong and Wong l l describe an example in which a group of experts give

their estimates of possible location of the epicenter of an earthquake. Suppose that

15 estimates are given as shown in Figure 7. Observe that these estimates are both
nonspecific and conflicting with each other. Using the evidence on hand, what is
the likelihood that the epicenter is inside of any particular area of interest (e.g.,

densely populated areas A and B)? Each of the estimates has a weight of evidence
1/15, provided that we consider all reports as equally reliable and otherwise
equivalent in their value. Then, degrees of belief and plausibility can readily be

calculated: BeI(A)=2/15=0.13, Pl(A)=5/15=0.33; Bel(B)= 1/15=0.07, PI(B)=
3/15 = 0.2. Hence, we obtain the following interval-valued estimates of probabilities

ptA) and p(B) that the epicenter is in area A or B, respectively: p(A)e[0.13,0.33],
p(B) e [0.07, 0.2].

6. A convenient and computationally efficient way of solving integer optimi-
zation problems with variables uk(k= 1,2, ... , n) is to replace the constraints "Uk is
an integer" with less specific and fuzzy constraints "Uk is almost an integer". The

latter constraints are fuzzy sets (fuzzy nurnbers'{v'"), For each variable, these fuzzy
sets can be expressed, for example, by the membership grade functions
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374 G. J. KLIR

I
JlA,(X) = I + C(X _ i)2'

where; is a nonnegative integer (i E I), x denotes values of the variable (usually

nonnegative real numbers), and c is some positive constant (usually I), which

can be properly adjusted to achieve a good performance. The total constraint is

the fuzzy set of all approxiinate integers, say set A, which is obtained by taking

union of sets A; for all ; E I:

I I
J1A(X)=rr::,x I +C(X-;)2 = I +c[x-tr(x+0.5)]2'

where tr denotes the truncation function (the largest integer not greater than x).

By fuzzifying the constraints, an integer optimization problem becomes an

ordinary optimization problem and, according to our experience (with c= 10),
computational efficiency increases.

The area of fuzzy optimization and decision making (as illustrated by this

example) is now well established and very successful." The use of fuzzy

constraints is motivated not only by the desire to reduce computational com-

plexity, but also by the desire to allow the decision maker to express his problem

(if preferred) in fuzzy terms of natural language.

7. There are many applications described in the literature (and some successfully
implemented) in which it is essential or, at least, advantageous to use descriptions

in natural language (with all its imprecisions) and common sense reasoning. In

medicine, for example, hepatitis can be well described by the inherently fuzzy and
nonspecific proposition "total proteins are usually normal, albumin is decreased, (X-

globulins are slightly decreased, p-globulins are slightly decreased, and)' globulins

are increased", but any attempt to reduce the nonspecificity or fuzziness of this

description is unwarranted. In this way, the medical knowledge can be expressed

in terms of a fuzzy relation M by which diseases in set A are related to symptoms

in set B. Then, given M and a fuzzy set S of symptoms observed in a patient, the

fuzzy set D of possible diseases can be inferred by means of the compositional rule

of inference

D=SoM,

where 0 denotes the max/min composition, i.e.,

Jlo(d)= max [min (/1s(s), JLs(s, d)]
,.s

for each de D. Further details regarding this application, including the process of
compiling medical knowledge (constructing the fuzzy relation M), are discussed in

my book.i"
Linguistic descriptions have already proved very successful in the design of

control systems."? Here, we deal with a set of fuzzy rules, such as "if the

temperature is very high and the pressure is decreasing rapidly, then reduce the
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CAMBRIDGE DEBATE ABOUT UNCERTAINTY 375

temperature significantly", which can often be elicited from experienced human

operators.
It is not clear to me how probability theory could effectively describe and

manipulate the great variety of descriptions or rules that are possible in natural

language.

7. CONCLUSIONS

The principal conclusion emerging from my arguments should be that probability
theory is capable of conceptualizing only one type of uncertainty. This is by
design: axioms of probability theory do not allow any imprecision in character-
izing situations under uncertainty, be it imprecision in the form of nonspecificity
or vagueness. The only type of uncertainty that remains is conflict, Probability
theory conceptualizes uncertainty strictly in terms of conflict among degrees of
belief allocated to mutually exclusive alternatives; it can be well characterized as a
conflict-oriented mathematical theory of uncertainty. This restriction of probability

theory to one type of uncertainty-----<:onflict-is a virtue in some application
contexts and a vice in others.
Few would disagree with the following remarkable principles of wisdom,

expressed by the ancient Chinese philosopher Lao Tsu: 36

Knowing ignorance is strength.

Ignoring knowledge is sickness.

At first sight, it might seem that these principles are perfectly operationalized by
the principles of maximum and minimum entropy. This, unfortunately, is not the

case, not because of any defect in the maximum and minimum entropy principles,
but because of the principal limitations of probability theory. Due to the nature of
probability theory, ignorance in the form of nonspecificity or vagueness cannot be
recognized. This violates the first principle of Lao Tsu: we should fully recognize
our ignorance. Moreover, probability theory is not capable of conceptualizing

knowledge that involves nonspecificity or vagueness and, consequently, such
knowledge must be ignored. This violates the second principle of Lao Tsu: utilize
all knowledge available, regardless of its form. In order to fully operationalize the

Lao Tsu principles of wisdom, we need much broader principles of maximum and
minimum uncertainty, principles that involve all types of uncertainty.

The relationship among uncertainty, complexity and credibility of systems
models, which is of utmost importance to systems modelling, is not well

understood as yet. We only know that uncertainty is a valuable commodity, which

can be traded for a reduction of complexity or an increase of credibility of models
in the modelling business. Since well-justified measures of the various types of
uncertainty are now available for several mathematical frameworks in which
uncertainty can be conceptualized (Section 4), this trading can be made opera-

tional at a scale previously unsuspected. It is undeniable that major research must
yet be undertaken not only to develop sound multidimensional principles of
uncertainty in the novel mathematical theories (Section 3), but also to learn how
to use these theories in various application areas. After all, probability theory has
been with us for over three centuries, 17 while the new theories for conceptualizing

uncertainty are a phenomenon of less than three decades.

A turning point in our understanding of the concept of uncertainty was reached
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376 G. J. KLIR

when it became clear that more than one type of uncertainty must be recognized
within the Dempster-Shafer theory, and even within the restricted domain of

possibility theory. This new insight into the concept of uncertainty was obtained
by examining uncertainty within mathematical frameworks more general than the

two classical theories employed for characterizing uncertainty (classical set theory
and probability theory).

The emergence of generalizations of existing mathematical theories is a signifi-
cant current trend in mathematics, as exemplified by the change in emphasis from

quantitative to qualitative, from functions to relations, from graphs to hyper-
graphs, from ordinary geometry (Euclidean as well as non-Euclidean) to fractal

geometry, from ordinary automata to dynamic cellular automata, from classical
analysis to a study of singularities (catastrophe theory), from ordinary artificial
languages to developmental languages, from precise analysis to interval analysis,
from classical logic to logic of inconsistency, from two-valued logic to multiple-

valued logics, from single objective to multiple objective criteria optimization, and,
as most relevant to the subject of this debate, from probability measures to fuzzy
measures and from classical set theory to fuzzy set theory. These generalizations,

stimulated primarily by advances in computer technology and modern systems
thinking, have enriched not only our insights but also our capabilities for
modelling the intricacies of the real world.

The issue of our next debate should not be whether probability theory and the
other theories are right or wrong. It should rather be the question of which of the
theories are relevant and appropriate for conceptualizing and dealing with

uncertainty in each particular context. Furthermore, probability theory and the
other theories should not be viewed as necessarily conflicting with each other.
Some may usefully complement each other (as probability and possibility theories

do), others may supplement and reinforce each other (as fuzzy events imported
into probability theory do). Therefore, let us cooperate rather than compete.
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Abstract

Cox’s theorem states that, under certain assumptions, any measure of belief is iso-
morphic to a probability measure. This theorem, although intended as a justification of
the subjectivist interpretation of probability theory, is sometimes presented as an
argument for more controversial theses. Of particular interest is the thesis that the only
coherent means of representing uncertainty is via the probability calculus. In this paper
I examine the logical assumptions of Cox’s theorem and I show how these impinge on
the philosophical conclusions thought to be supported by the theorem. I show that the
more controversial thesis is not supported by Cox’s theorem.
! 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Benacerraf [6] once warned that when philosophical conclusions are argued
from formal mathematical results, one should look very carefully at the
assumptions of the arguments in question. For any such argument cannot rest
on the formal result alone; there must be some philosophical premise, and this
is often illicitly smuggled through the back door. Benacerraf is not suggesting
that one can never draw philosophical conclusions from formal results, or that
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all such arguments are flawed––just that it is important to identify the often
suppressed philosophical premises and to assess their plausibility. I think this is
very good advice and with this advice in mind I wish to examine the formal
result known as Cox’s theorem. This theorem states that, under the assump-
tions of the theorem, any measure of belief is isomorphic to a probability
measure [9,10]. The theorem has been used to support a variety of philo-
sophical conclusions, ranging from a justification of the Bayesian approach to
probability, to a more radical thesis that probability is the only coherent
representation of uncertainty. In particular, I will examine the logical under-
pinnings of the theorem––classical propositional calculus––and show that, in
certain contexts at least, these logical assumptions are hard to defend. This, in
turn, undermines the more radical philosophical theses that the theorem might
be thought to support. I begin by discussing a kind of uncertainty for which
classical logic is inappropriate.

2. Belief and non-epistemic uncertainty

Agents typically do not believe propositions to degree one or zero. Belief
comes in degrees. This is because there is typically uncertainty about the truth
value of the proposition in question. Good epistemic agent recognise this and
set about quantifying the extent of the uncertainty and/or their degree of
certainty. Providing the details of a representation of reasoning carried out by
human (or more commonly, ideal) agents operating under uncertainty is often
referred to as the project of delivering the logic of plausible inference. 1 It is
usually assumed that uncertainty arises because of incomplete information––it
is simply an epistemic matter. I will argue that this is not the case. Some
uncertainty may remain even when the agent is in possession of all the relevant
data. This is bad news for classical logic and classical probability theory.

There are two ways in which an agent can be uncertain about the state of a
system. The first is familiar. This is where there is uncertainty about some
underlying fact of the matter: System S is either in state r or it is not, but agent
A does not know which. A might be in possession of some probabilistic
information about the state of S––either numerical (‘‘the probability that S is in
state r is x’’) or non-numerical (‘‘it is more likely that S is in state r than not’’).
Call this epistemic uncertainty. Now compare this with a second, quite different
kind of uncertainty; uncertainty where there is no fact of the matter about

1 I share Shafer’s [48] concerns about the use of the term !plausible’ here, but this term is well
entrenched in the literature, and since I can think of no better term, I’ll continue to use it. I stress
however, that I am using the term more broadly than is usual. I include any formal account of belief
and reasoning under uncertainty.
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whether system S0 is in state r0 or not. Indeed, here the uncertainty arises be-
cause there is no underlying fact of the matter. Call this second kind of
uncertainty non-epistemic uncertainty. The idea here is that, for reasons I’ll
discuss shortly, the system S0 is neither in state r0 nor not in state r0––S0 is not
in a determinate state with respect to r0. It follows that even an agent in
possession of all the relevant data will be uncertain as to the truth value of the
proposition !S0 is in state r0’. (Or, equivalently, the agent will not know the
answer to the question !Is S0 in state r0?’.)

It follows that if there are any instances of non-epistemic uncertainty, an
agent could not be in possession of probabilistic information in such cases.
After all, what would it mean to say that the probability that system S0 is in
state r0 is x when there is no fact of the matter about the state of S0? Classical
probability theory presupposes that there is an underlying fact of the matter.
To see this we need only consider one of the axioms of classical probability
theory:

PrðQ _ :QÞ ¼ 1:

This implies that the proposition Q _ :Q is certain (because it is a logical
truth). This axiom of probability theory is the probabilistic analogue of the
logical principle of excluded middle. It would thus seem that in any domain
where excluded middle fails, (classical) probability theory is an inappropriate
tool for representing uncertainty. 2

Now there are several candidates for such domains, none of which, admit-
tedly, are entirely uncontroversial. To start with, consider fictional discourse.
In a work of fiction such as H.G. Wells’ The Time Machine there is nothing
more to the story than what is written (and perhaps the logical and natural
implications of what is written). There is no fact of the matter about details not
in the story. So, for example, in the 1960 movie of the novel the time traveller
sets off for the future taking with him three books. What were the three books?
Well that’s (quite deliberately) not part of the story so (plausibly) there’s no
fact of the matter about what the three books were. It seems that classical
logic––in particular excluded middle––fails here. It is not true that either the
time traveller took or did not take Descartes’ meditations with him. Moreover,
the probability of this disjunction is not one (as standard probability theory
insists). Indeed, it seems quite misguided to talk of probabilities at all in such
cases. 3 I should add that this example is not as irrelevant to science as it might

2 See [7,13,14] for more on this issue.
3 Some might insist that the question about what the books were is meaningless, but this is very

hard to sustain. There is nothing ungrammatical about the sentence and the meaning is perfectly
clear. On what grounds is the case for the sentence’s meaningless to be based? I can think of none.
Indeed, the reason that some are inclined to call such questions meaningless is because they do
understand the meaning, see what the implications are, and only then deny that it has meaning.
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at first seem. Science makes wide use of fictional entities (like incompressible
fluids, and Turing machines) and others that turn out to be fictional (like the
planet Vulcan, which was supposed to have an orbit inside Mercury’s). And it
is clear that there are true propositions about such fictions––!the halting
problem is unsolvable’, for instance. So it would not do to dismiss fictional
discourse as a mere philosophical curiosity. 4

Another example of a domain in which excluded middle might be thought to
fail is mathematics. Consider the status of Goldbach’s conjecture: all even
numbers greater than two can be written as the sum of two primes. At present
this conjecture has not been proven nor has its negation been proven. Now let
us suppose that you are a constructivist about mathematics. That is, you be-
lieve that !P is true’ is just to say that P has a constructively respectable proof
from some constructively respectable set of axioms. It is well known that such
constructivists embrace intuitionistic logic where both double negation elimi-
nation and excluded middle fail [26]. But even non-constructivists may accept
that there are no-fact-of-the-matter propositions in mathematics. Take, for
example, an independent question of set theory such as the continuum
hypothesis. Neither this nor its negation is provable from the standard ZFC
axioms––it is provably independent of those axioms. Many non-constructivists
(for example, mathematical fictionalists like Field [12]) also believe that at least
some independent statements are neither true nor false (and so it is not true
that such an independent statement or its negation holds).

A third example of where excluded middle might be thought to fail is in
domains where vague predicates are employed. Let us suppose that we wish to
know how many young people there are in a crowd. We might be uncertain
about this because there are some borderline cases. Take, for example, some-
one who is in their late 1920s. Do we count such a person as young or not?
There seems no definitive way to answer this question. The problem is that the
word !young’ is vague (in the sense that it permits borderline cases). 5 There are
some well-known approaches to vagueness according to which excluded middle
holds––for example, Williamson’s [55] epistemic account of vagueness, the

4 See [20, pp. 70–73], [21, Chapter 7] and [40, pp. 128–131] for more on the logic and semantics
of non-denoting fictional terms. Fictional discourse also raises problems at the level of predicate
logic. In classical predicate logic all names refer––even names like !Vulcan’. Another deviation from
classical logic motivated by such considerations is free logic where ‘‘empty’’ names are permitted
(see [17,18,35,43]).

5 It is also context sensitive. But let us put that aside; let us assume that the context is fixed. I
should also mention that vagueness is rather widespread in both natural language and in science so
it is unreasonable to dismiss it as another philosophical curiosity. See [44,45] for some of the
problems arising from vagueness in ecology and conservation biology.
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supervaluational account [15,51] and the paraconsistent approach [4,28,29].
Still, rejecting excluded middle remains a very plausible strategy. 6

Indeed, those who would like to apply probability theory to domains with
vague predicates should take little comfort from the above excluded-middle-
preserving approaches. For example, on what is generally thought to be the
leading contender among these approaches––the supervaluational account––
probabilities are still out of place. Although P _ :P is a theorem, if P is bor-
derline, P is usually thought to be neither true nor false. In either case, it seems
to make little sense to speak of the probability of P being true (when P is
borderline). On the paraconsistent approach, excluded middle is preserved at
the expense of (one sense of) the law of non-contradiction. That is, borderline
statements (such as !a 28 year old is young’) are seen as both true and false.
That is, we have some true instances of P ^ :P . Those who find giving up
excluded middle objectionable are unlikely to be happy with this. Williamson’s
epistemic approach (according to which there is an unknowable fact of the
matter concerning borderline cases) is the only option that would seem pal-
atable to defenders of the view that probability theory is appropriate in such
domains. The problem is that Williamson’s view is deeply unintuitive and finds
few supporters because of this. It would be inappropriate to try to settle the
matter of the correct account of vagueness here; I simply mention vagueness as
another very plausible source of non-epistemic uncertainty.

It is worth pausing for a moment to emphasise how vagueness gives rise to
uncertainty. Consider a scientific question such as !how many species are there
in a given eco-system?’ Obviously there will be epistemic uncertainty associated
with this question but let us suppose that an agent is in possession of all the
relevant data. It turns out that even in possession of all the data, the answer to
the question may remain out of reach because of the vagueness of the scientific
terms !eco-system’ and !species’. The boundary of a eco-system will always
admit borderline cases. Less obvious, perhaps, is that the term !species’ is va-
gue. Consider the possibility of a speciation event occurring at the moment that
the question is asked. Do we count the species in question as one or two? It is
also worth stressing that no further information can be brought to light that
will settle the matter. Perhaps we must settle for upper and lower bounds as the
answer to the question. In the example of a speciation event taking place, we
might give the interval ½n; nþ 1& as our answer. So we see that vagueness can
give rise to this peculiar kind of uncertainty––an uncertainty that cannot be
eliminated by gathering further data.

Now it might be argued that since the uncertainty in question here is
uncertainty about the truth value of a vague proposition, we can state the
problem classically in the meta-language. We can say that we do not know

6 See, for example, [19,22,34,42] for some of the approaches that abandon excluded middle.
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whether P (for some vague proposition P ) is true. Let v be the valuation
function (which maps from the domain of discourse D to the truth value set
TV ), then the problem is that of determining whether vðPÞ ¼ a, where a is a
particular truth value in TV . But, so the argument goes, !vðP Þ ¼ a’ is either true
or false and so we have forged a link between non-epistemic uncertainty at the
object-language level and epistemic uncertainty at the meta-language level.
Indeed some do opt for a classical metalogic, but there is a case to be made for
non-classicality all the way up. A non-classical metalogic would be called for,
for instance, if there is higher-order vagueness. An adequate discussion of this
would take us too far a field; I mention it merely to make the point that
non-epistemic uncertainty does not reduce to epistemic uncertainty in any
straightforward fashion. 7

So far I have argued that in domains where excluded middle fails, the
applicability of probability theory is highly questionable. The claim that
classical probability theory is the only coherent representation of uncertainty
suggests (among other things) that there are no domains about which we
reason with uncertainty, where excluded middle fails. On the face of it at least,
this is false: there are many such domains: there are fictional domains, con-
structive domains and domains with vague predicates. Thus any defender of
classical logic needs to convince us that classical logic can, despite appearances,
cope with these problematic domains. This is a large (if not impossible) task,
for it involves, among other things, providing a classical account of fictional
discourse, a defence of certain philosophical views about the philosophy of
mathematics (perhaps defending platonism) and a defence of something like
Williamson’s epistemic approach to vagueness. 8

Before I move on to a discussion of Cox’s theorem, let us consider a couple
of objections to my conclusion that probability theory is not appropriate for
non-epistemic uncertainty. The first objection comes from quantum mechanics.
According to the Copenhagen interpretation of quantum mechanics, there is
no fact of the matter about the state of certain quantum systems before a
measurement is made. But quantum theory itself provides us with probabilities
about the state of the system in question (see [27]), so it seems that we have a

7 See [55] for a discussion of higher-order vagueness.
8 Worse still, there would seem to be inconsistent domains about which we reason. I have in

mind here inconsistent mathematical theories (such as the early calculus and naive set theory) and
inconsistent scientific theories (such as the conjunction of general relativity and quantum
mechanics). Classical logic and classical probability theory are inappropriate in such domains since
in classical logic everything follows from a contradiction and in classical probability theory, all
contradictions have probability zero and all conditional probabilities conditional on a contradic-
tion are undefined. Again if we reason about such domains, as we surely do, then it is clear that the
classical theories are inadequate. See [38] for some recent papers on inconsistency in science and
[37] for an account of a paraconsistent belief revision theory.
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counterexample to the claim that we cannot use probability theory unless there
is an underlying fact of the matter. The problem with this objection, however,
is that it confuses what the quantum mechanical probabilities are about. The
quantum mechanical probabilities are not about the state of the quantum
system in question before measurement; rather, the probabilities are usually
construed to be about the state of the system were it to be measured (or, if you
prefer, they might be construed to be about the measurements themselves––the
probability of the measurement turning out a particular way). Either way, the
probabilities are not construed as being about systems in indeterminate states.

The next objection concerns denotational failure. According to some (e.g.,
[49]), when there is failure of denotation, there is no fact of the matter about
the truth of the offending sentence (i.e., the offending sentence is truth-value-
less). Let us, for the sake of argument, accept this view. (Indeed, I have already
entertained fictional discourse––which is one special kind of denotational
failure––as a source of non-epistemic uncertainty.) Suppose you see a male
colleague, whom rumour would have it was supposed to be having marital
problems, looking rather depressed and you speculate that his wife has left him.
You might even believe that this is the most likely explanation for his depressed
state. That is, you assign a subjective probability of greater than 0.5 to the
truth of the proposition !My colleague’s wife has left him’. Now, as it turns out,
your colleague is not, nor has he ever been, married. We thus have a case of
denotational failure and so, by hypothesis, the sentence in question does not
take a truth value. But, it still seems sensible to attribute a probability of truth
to the sentence in question. 9 I agree that it seems sensible to entertain a
probability of truth for the sentence in question, but it is not clear that it is
sensible to do this on the view under consideration. After all, it also seems
sensible to say that the sentence in question is false (this was Russell’s [46]
view), and on this view it does make sense to talk of the probability of such
sentences being true. The issue is not whether it seems sensible to attribute
truth-value gaps to sentences that have non-referring terms and whether it
seems sensible to speak in terms of probability about these same sentences; the
issue is whether the latter is sensible given a commitment to the former. That is,
is it sensible to say, for instance, that some sentence is neither true nor false but
it is probably true? It would seem not, for this would commit one to a kind of
Moore’s paradox. 10

Now if it still seems sensible, on the view under consideration (i.e., the truth-
value-gap view), to talk about the probability of truth for sentences with non-
referring terms, it is because there is an implicit assumption that there is no
denotational failure. So, for example, the probability that your colleague’s wife

9 I thank Daniel Nolan for raising this objection.
10 This is the paradox of an agent asserting !P but I don’t believe it’.
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has left him is something like the probability that his wife has left him, given
that he is married. If it turns out that he is not married, the probability in
question is the probability that his wife has left him, given that he is both
married and not married. This probability is undefined. So even if it may seem
sensible on this view to talk about the probability of truth for sentences with
non-referring terms, it is not.

3. Coxs theorem and its assumptions

Thus far I’ve outlined two quite distinct sorts of uncertainty and argued that
only epistemic uncertainty is amenable to probabilistic treatment. Now I turn to
Cox’ theorem 11 and how the lessons of the last section impact on the philo-
sophical significance of this theorem. Cox’s theorem can be stated as follows:

Theorem 1 (Cox). Any measure of belief is isomorphic to a probability measure.

The theorem is explicitly premised on the following assumptions: (i) belief is
a real-valued function (ii) an agent’s belief in :P is a function of his/her belief
in P and (iii) an agent’s belief in P ^ Q is a function of the agent’s belief in P
given Q and the agent’s belief in Q.

There has been a great deal of discussion on the assumptions of Cox’s
theorem and alternatives to these assumptions [7,11,23,24,48,52], but there has
been little if any discussion of the logical assumptions (or alternatives to these),
and yet these are crucial to understanding the significance of the theorem. It is
those logical assumptions I now wish to examine.

The logical assumptions of the theorem are, of course, none other than
classical propositional logic, though very few state this explicitly and unam-
biguously. For example, Cox invokes ‘‘the algebra of symbolic logic’’ (italics
added). But even in Cox’s day there was more than one such logic. Jaynes [30]
tells us that the logic is ‘‘deductive logic’’. But again !deductive logic’ is
ambiguous between the many logics deserving of this title. Elsewhere [31, p. 9]
Jaynes suggests that the logic is ‘‘two-valued logic or Aristotelian logic’’,
obviously thinking that classical (two-valued) propositional calculus and
Aristotelian logic are the same (which they are not). Others such as van Horn
[52] refer to !the propositional calculus’ (italics added), again as though there
were only one such logic. 12 But what they all have in mind is quite clearly

11 There are, in fact, a number of theorems along similar lines (e.g., [1,2,8,16,25,36,39,52]). Cox’s
theorem [9,10], however, is undoubtedly the most well known and so I’ll be content to focus on it,
although I’ll often use the phrase !Cox’s theorem’ to apply to the more general class of results.

12 Though in footnote 1 on [52, p. 5] van Horn suggests that we may also consider numerical
identity statements. This suggests that full (classical) first-order logic is what is needed.

78 M. Colyvan / Internat. J. Approx. Reason. 37 (2004) 71–85



classical propositional calculus. The problem is that none of them calls the
logic in question by name and so it is (at least initially) unclear what logic they
have in mind. Worse still, some suggest (e.g., by the use of the definite article
!the’) that there is only one choice here. Those (like Jaynes [31]) who do point
out that there are other logics to choose from do not bother to defend the
choice of classical logic in any systematic fashion. 13

Combine this unclarity about the logic in question (or the number of can-
didate logics) with a very commonly held view that logic is domain indepen-
dent. 14 According to this view, the choice of logic does not depend on the
domain of application. 15 So if we combine this commonly held view about
logic with the view that ‘‘logic’’ is classical propositional logic (or first-order
classical predicate calculus), then we are led to a view that classical logic is all
we need for deductive inferences on any domain. Again it is clear that some
commentators on Cox’s theorem hold such a view. Indeed, Van Horn states
this quite explicitly: ‘‘the propositional calculus is applicable to any problem
domain for which we can formulate useful propositions’’ (p. 11, italics in
original). Of course there is a sense in which Van Horn is right––classical
propositional logic is applicable to any domain, but that is not the issue. The
issue is whether classical propositional logic can be applied to any domain and
get the right answers. It is clear that it cannot. One needs only consider argu-
ments involving modality to see the inadequacy of classical propositional
logic. 16 VanHorn, of course, is not alone in holding such a view of logic, though
I have never seen anyone suggest that classical propositional calculus is the
universal logic––the usual candidates are classical first-order logic or a exten-
sion of it such as S5 modal logic. But what I’m arguing here is that no classical

13 Jaynes does make some rather obscure comments by way of defence of classical propositional
logic. For instance, in a section of his book [31, p. 23] called !Nitpicking’ Jaynes raises the
possibility of alternative logics and suggests that ‘‘[multiple-valued logics] can have no useful
content that is not already in two-valued logic; that is, that an n-valued logic applied to one set of
propositions is either equivalent to a two-valued logic applied to an enlarged set, or else it contains
internal inconsistencies.’’ It is not clear what he means by this, and the appendix where the
argument for this claim is supposed to be found is of no help. In any case, Jaynes seems to be
thinking of multi-valued logics as the only non-classical logics. As we have already seen, there are
others––for example, free logics.

14 This widely held view found a powerful advocate in Tarski [50].
15 In essence, this is a monist or one-size-fits-all view of logic, as opposed to a more pluralist

horses-for-courses view. See [5,41] for discussion on the monism–pluralism debate.
16 Consider the argument from !there is uncertainty’ to !possibly there is uncertainty’. This

argument is clearly valid and yet the validity cannot be demonstrated by classical propositional
calculus, because the only way to formalise this argument in this logic is as P therefore Q which is
invalid. To demonstrate the validity of such arguments, modal logic is required. See [18] for a good
introduction to modal logics and their applications.
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logic is up to this task. Classical logic simply fails in some domains in which we
routinely perform logical inferences.

Cox’s theorem, if it is to demonstrate the adequacy of probability theory for
plausible reasoning across all domains, it must be derivable from assumptions
that are not domain specific. But as I’ve already argued, classical logic is do-
main specific. Or at least, we have been offered no argument to the effect that it
is not. All we are typically given are rather casual acceptances of classical
propositional calculus as though there were no other, or, at least, no other
worthy of serious consideration. So what is delivered is not a logic of plausible
reasoning, simpliciter, instead we have a logic of plausible reasoning that is
defensible only when there is no referential failure, vagueness or the like. Now
perhaps this is all some commentators have in mind––a limited-scope logic of
plausible reasoning. If this is the case, then this limitation needs to be stressed.
But it is clear that not all contributors to the literature on Cox’s theorem have
such a modest project in mind. 17 Again Van Horn states this point of view
very clearly: ‘‘recall the purpose of this enterprise: to construct a universal
system or logic of plausible reasoning’’ (p. 11, again emphasis in original). My
point is simply that if the enterprise is, as Van Horn suggests, that of con-
structing a universal system, it had better not rest on classical logic. On the
other hand, if the enterprise is the more modest one suggested above, this needs
to be made clear.

Now let us turn briefly to the question of whether the proof of the theorem
requires any of the contentious features of classical logic? What if, for instance,
the proof only relied on inferences and logical equivalences that are not con-
troversial in the context of the representation of belief––inferences such as
modus ponens and equivalences such as de Morgan laws? There is no need to
ponder such questions too long, for the standard proofs of Cox-style results
quite clearly rely on disputed logical principles. First, an example from Cox’s
original proof and then another example from a more recent proof. In Cox’s
proof that the belief in Q _ :Q is maximal, Cox quite explicitly assumes the
classical principle of double negation elimination: ::Q ' Q. If we limit our
attention to epistemic uncertainty and exclude all forms of non-epistemic
uncertainty, then the assumption seems harmless. On the other hand, if we are
interested in uncertainty in the broadest sense (including constructive domains,
vague domains and so on) the assumption is highly controversial. 18 For a
more recent example I once again turn to Van Horn [52] who also uses double
negation elimination (in the proof of Proposition 2 on p. 11) and assumes, in

17 And I stress that this is a modest project, because vagueness is ubiquitous in both scientific
and everyday discourse. The limited-scope logic of plausible reasoning will thus be rarely applicable
outside pure mathematics.

18 Indeed, intuitionists deny this principle.
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the proof of Lemma 11 (on p. 20), that :B ' ððA _ :BÞ ^ ð:A _ :BÞÞ. This last
assumption is very closely related to excluded middle. With the usual classical
assumptions in place about the distribution of _ over ^, 19 it amounts to
the assumption that A ^ :A is false, which under further (classical) assumptions
is equivalent to excluded middle. So at the end of the day, controversial fea-
tures of classical logic are assumed in the original proof of Cox’s theorem and
these assumptions remain in modern presentations.

The assumption of classical logic is particularly troublesome if Cox’s the-
orem is to be wielded as a weapon against non-classical systems of belief
representation. And, I should add, that some commentators do put Cox’s
theorem to such a purpose. For example, Lindley [36] draws the following
conclusion (from a similar theorem): ‘‘The message is essentially that only
probabilistic descriptions of uncertainty are reasonable’’ (p. 1) and Jaynes [31]
suggests that ‘‘the mathematical rules of probability theory [. . .] are [. . .] the
unique consistent rules for conducting inference (i.e., plausible reasoning) of
any kind’’ (p. xxii). 20 But Cox’s result is simply a representation theorem
demonstrating that if belief has the structure assumed for the proof of the
theorem, classical probability theory is a legitimate calculus for representing
degrees of belief. But as it stands it certainly does not legitimate only classical
probability theory as a means of representing belief, nor does it prove that such
a representation is adequate for all domains.

What are the alternatives then? What would these alternate belief theories
look like? If we want a probability theory for non-epistemic uncertainty, we
may wish to base it on a logic in which excluded middle fails. This means that
propositions of the form P _ :P would not automatically receive maximal
probability. There are a couple of ways of doing this. One approach would be
to allow tautologies to take probability assignments less than one. The other
approach is to underwrite the probability theory with a non-classical logic. In
this latter case, the tautologies of the non-classical logic will receive maximal
probability––it is just that classical tautologies such as P _ :P would not, in
general, get assigned the maximal value. 21 In some of the logics in contention,
there may be no tautologies (as is the case with Kleene’s three valued system
K3 and the most popular fuzzy logics [40]). If we use one of these as the
underlying logic, there would not be any logical truths and so there would not
be any propositions automatically assigned the maximal probability. Some
work has been carried out in these directions but there is much more to do.

19 Interestingly, distribution fails in quantum logics. So quantum logicians may contest the
logical equivalence that Van Horn relies on, but for slightly different reasons. See [3] for an early
presentation of quantum logic.

20 Shafer [48] also notes (disapprovingly) this use of Cox’s theorem to rule against anything
other than standard probability theory.

21 See [54] for a constructive probability theory.
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4. Conclusion

Let me finish by noting a few points of contact between this paper and Glen
Shafer’s recent discussion of Cox’s theorem in this journal [48]. Shafer notes
that Cox’s theorem relies not only on its stated, explicit assumptions, but it also
relies on implicit assumptions––such as the assumption that belief should be
represented by a real-valued function. I note one other implicit (or at least
undefended) assumption––the use of classical propositional logic. Shafer’s
work on belief functions [47] casts doubt over the plausibility of the assump-
tion that belief is adequately represented by a real-valued function. 22 I’ve
pointed out that work in logic in the latter part of the 20th century casts doubt
over the plausibility of the assumption (used by Cox and others) that classical
logic is the appropriate logic to underwrite a formal theory of plausible rea-
soning.

The connection between this paper and Shafer’s runs even deeper. Not only
are both papers questioning implicit assumptions of Cox’s theorem. It turns
out that our concerns may well be two sides of the one coin. Although our
starting points are apparently quite different––mine being logic, Shafer’s being
the representation of imprecise belief. It turns out that starting with concerns
such as mine (i.e., concerns about vagueness and other forms of non-epistemic
uncertainty), one very natural way of responding to these issues is to give up
the classical logical principle of excluded middle. This in turn naturally leads to
a non-classical belief theory that is very similar to Shafer’s. 23 In essence we are
both reject the unrealistic precision assumed by standard belief theory. Shafer
rejects the assumption that belief functions are real valued; I reject the logical
assumption of excluded middle.

Another point of contact is that Shafer stresses that the assumptions of
Cox’s theorem need to be more than merely plausible, they need to be self-
evident. He points out that both the explicit assumptions and the implicit
assumption that belief functions are real-valued fail in this regard. I concur and
I add one further assumption to this list of non-self-evident assumptions. In the
context of the representation of uncertainty classical logic is not self-evidently
the appropriate logic. Indeed, I think it is demonstrably not the appropriate
logic, but even if you disagree with me on this stronger claim, the fact remains
that classical logic is not self-evident. So those who would employ Cox-style
results for the purpose of providing a logic of plausible inference, need to first
mount a defence of classical logic.

22 And I find myself in full agreement with Shafer on this issue. See [32,53] and for other
approaches to abandoning the assumption that a single real number is adequate for characterising
belief.

23 See [13] for details.
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The final point of contact between my discussion here and Shafer’s is that we
are both interested in widening the historical focus of the discussion of Cox’s
theorem. Shafer wants to draw to the attention of commentators on Cox’s
theorem the earlier work (by continental probability theorists) on the logical
interpretation of probability––frequentism and subjectivism are not, nor were
they in 1946 (when Cox wrote his paper), the only games in town. I wish to
bring to the discussion the issue of the underlying logic––classical logic is not,
nor was it in 1946, the only game in town. 24 I think a lot is to be gained by
considering these broader historical and, I might add, interdisciplinary per-
spectives. Once one does this, one sees that Cox’s theorem is an interesting
representation theorem that has prompted some fruitful debate, but ultimately
the theorem rests on some rather questionable assumptions about the structure
of human belief.
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SOME CRITICISM OF FUZZY LOGIC 

 

Quote from Zadeh's Obituary for Joe Goguen in Fuzzy Sets and Systems, 2007, 158(8), pp. 

809-810: 

My first paper on fuzzy sets was published in June 1965, while I held the position of the Chair of 

the Department of Electrical Engineering at UC Berkeley. Shortly after the publication of my 

paper, a student walked into my office and identified himself as Joe Goguen, a graduate student 

in mathematics. He told me that he did read my paper and was interested in developing the 

concept of a fuzzy set within the framework of category theory. We discussed his ideas for a 

while. At the end of our discussion, he asked me to become his research supervisor. I responded 

affirmatively, since it was quite obvious that Joe Goguen was not an average graduate student — 

he was a superior intellect. This meeting was the beginning of my lifelong relationship with 

Goguen. We met frequently to discuss various issues of fuzzy set theory. Nobody in the 

mathematics department took interest in his work. 

 

Criticism of fuzzy sets by Rudolf Kalman at the International Conference on Man and 

Computer in Bordeaux, France, in 1972, after Zadeh introduced the concept of a linguistic 

variable: 

I would like to comment briefly on Professor Zadeh's presentation. His proposal could be 

severely, ferociously, even brutally criticized from a technical point of view. This would be out 

of place here. But a blunt question remains: Is Professor Zadeh presenting important ideas or is 

he indulging in wishful thinking? ... 

    No doubt Professor Zadeh's enthusiasm for fuzziness has been reinforced by the prevailing 

political climate in the US — one of unprecedented permissiveness. "Fuzzification" is a kind of 

scientific permissiveness; it tends to result in socially appealing slogans unaccompanied by the 

discipline of hard scientific work and patient observation. I must confess that I cannot conceive 

of "fuzzification" as a viable alternative for the scientific method. 

 

Another criticism of fuzzy sets made in 1975 by William Kahan, a mathematician at 

University of California-Berkeley: 



Fuzzy theory is wrong, wrong, and pernicious. I cannot think of any problem that could not be 

solved by ordinary logic. ... What Zadeh is saying is the same sort of thing as, "Technology got 

us into this mess and now it can't get us out." Well, technology did not get us into this mess. 

Greed and weakness and ambivalence got us into this mess. What we need is more logical 

thinking, not less. The danger of fuzzy theory is that it will encourage the sort of imprecise 

thinking that has brought us so much trouble. 

 

Typical criticism expressing extreme claims of some probability theorists, especially those 

supporting the Bayesian methodology: 

Our thesis is simply stated: the only satisfactory description of uncertainty is probability. By this 

is meant that every uncertainty statement must be in the form of probability; that several 

uncertainties must be combined using the rules of probability; and that the calculus of 

probabilities is adequate to handle all situations involving uncertainty. In particular, alternative 

descriptions of uncertainty are unnecessary. We speak of "the inevitability of probability." ... Our 

argument may be summarized by saying that probability is the only sensible description of 

uncertainty. All other methods are inadequate. ... My challenge that anything that can be done 

with fuzzy logic, belief functions, upper and lower probabilities, or any other alternative to 

probability, can better be done with probability, remains. 

 

A peculiar criticism of fuzzy logic by Charles Elkan: 

In July 1993, Charles Elkan presented a paper entitled "The paradoxical success of fuzzy 

logic" at the Eleventh National Conference on Artificial Intelligence in Washington, D.C., 

sponsored by the American Association for Artificial Intelligence (AAAI). The paper is also 

included in the Conference Proceedings (Elkan 1993). In this paper, Elkan claims that the 

apparent success of fuzzy logic in many practical applications is paradoxical since fuzzy logic 

collapses upon closer scrutiny into the classical, bivalent logic. To support this claim, he uses 

one definition and one theorem expressed in terms of the following notation: A,B denote 

assertions;  denote the degrees of truth in A,B, respectively; and  denote 

logical connectives of conjunction, disjunction, and negation, respectively. The following is the 

definition (exactly as it appears in the paper), which is supposed to define a particular system of 

fuzzy logic:  

t(A), t(B)![0,1] !,",¬



Definition 1: 

  

  

  

 if A and B are logically equivalent. 

The definition is followed by the following clarification of the term "logically equivalent": "In 

the last case of this definition, let "logically equivalent" mean equivalent according to the rules 

of classical two-valued propositional calculus". Next is the statement of Elkan's theorem, 

preceded by his short remark "Fuzzy logic is intended to allow an indefinite variety of numerical 

truth values. The result proved here is that only two different truth values are in fact possible in 

the formal system of Definition 1." 

Theorem 1:  For any two assertions A and B, either   
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t(A! B) =min{t(A), t(B)}

t(A! B) =max{t(A), t(B)}

t(¬A) =1! t(A)

t(A) = t(B)

t(A) = t(B) or t(A) =1! t(B).
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A HOVERING helicopter is one of the world's more improbable sights. It teeters forever on the 
edge of instability; only continuous adjustments by the pilot keep it airborne. The pilot is able to 
do this because, during his training, he has learnt to "feel" what the machine is up to. He knows 
how to respond to each little pitch and yaw. Automating such a process is a nightmare, but 
Michio Sugeno, of the Tokyo Institute of Technology, has done it. Better still, to fly his remote-
controlled helicopter you simply talk to it. 

Putting the human voice in charge of what is already a difficult task may sound like unnecessary 
complication. In fact, it makes perfect sense. Dr Sugeno's machine is controlled by a system that 
was originally devised to mimic the imprecision of language: fuzzy logic. 

Information technology is classically binary. On or off. There or not there. It would be nice to 
report that there are two reasons for this, but there are more. Discrete variables are easy to 
handle. They are not confusing. And a lot of mathematics and philosophy tells you how to handle 
them. Ever since Aristotle, a dominant theme in Western thinking has been the idea of the law of 
the excluded middle: that everything is, in principle at least, A or not-A. In the jargon of 
logicians, logic is two-valued: each statement has a "truth value" of one or zero. 

Fuzzy is different. Fuzzy logicians recognise that in reality things are often a bit A and a bit non-
A: a half-eaten apple is still, to a degree, an apple. They have developed new mathematical 
theory to handle the idea. Other logicians disagree. For industrialists, to whom an excluded 
middle is something you sweat for at a health farm, the debate is beside the point. Whether or not 
fuzziness is mathematically respectable, they see it as the tool they need for controlling complex 
processes. From washing machines to video cameras, from making markets to making cement, 
commerce is going fuzzy at the edges. 

Fuzzy logic came, as you would expect, out of the University of California, Berkeley, in the 
1960s. Lotfi Zadeh, an electrical engineer, observed that a lot of words are used as if they were 
mathematical concepts. Words such as "many" and "few" are like numbers. "Frequently" and 
"rarely" are like probabilities. "Very" and "somewhat" are like mathematical operators such as 
multiplication and division. Dr Zadeh thought these words were like mathematical concepts, but 
not the same as them, because they were fuzzy (as is the idea of being "like"). Philosophers such 
as Bertrand Russell and Max Black had tinkered with ideas of this sort, but Dr Zadeh put them in 
a form familiar to mathematicians by incorporating them into set theory. 

Game, set and match? 

http://store.eiu.com/
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A set is a collection of things, such as the socks in your chest of drawers, or the numbers 
between one and eight. Something can belong to more than one set; tennis socks, for instance, 
also belong to the set of sports clothes. But they are either in or out. Your tennis socks are not 
part of the set of your shirts, not even a little bit. That, at least, is classical set theory. And thanks 
to Russell and others, set theory is taken as the basis of mathematics in general, so that by 
meddling with it, you can change the way a lot of other mathematics, from logic onwards, is 
done. 

Fuzzy set theory allows something to be partly in one set and partly in another. It answers a 
paradox first propounded by Zeno, an ancient Greek philosopher: if you remove the grains from 
a pile of sand one at a time, at what point does it cease to be a pile? The fuzzy answer is that it 
leaves the set of piles of sand as smoothly as the individual grains are taken away from it. 

This sort of set theory is apt for describing things that vary continuously. Suppose you have two 
sets: hot and cold. Is air at 20 degrees C hot? Not really. Is it cold? Up to a point. Inventing the 
categories "warm" and "cool" helps, but not much. 20 degrees C might be right in the middle of 
"warm", but what about 27 degrees C? In a fuzzy world such questions, and the need for ever 
smaller sets, do not arise. 27 degrees C might be 10% warm and 40% hot. 0 degrees C, however, 
is 100% cold--so is -5 degrees C. Fuzzy sets allow the qualitative question "how hot?" to be 
answered mathematically. 

At first, fuzzy set theory was an embarrassment to researchers. According to Dr Zadeh's 
adherents, "ordinary" set theory, and therefore all the mathematics that derive from it--ie, all 
mathematics to date--is actually just a special case of fuzzy set theory: one with the fuzziness 
turned down to zero so that the "membership value" of each element is either one or zero for any 
given set. This was widely denied by mathematicians. Many claimed that partial membership of 
a number of sets was simply a restatement of probability theory (it is 10% probable that 27 
degrees C is warm; 40% probable that it is hot). And many natural scientists objected to the 
implication of "fuzziness" when it came to their results. 

In fact, the scientists' objections are as much semantic as real. Philosophers have often been 
amazed that mathematics can describe the world. But the mathematical models themselves have 
to be tweaked and rounded to do their jobs. The resulting equations may give an adequate 
representation of reality, but precise they are not. 

Fuzzy logicians say that the probability argument is based on a misapprehension. Probability 
measures the likelihood of something happening. Fuzziness measures the degree to which it is 
happening. Knowing how likely it is to rain tomorrow is not the same as knowing how heavily it 
is raining today. To emphasise the difference and reinforce fuzzy logic's claim to mathematical 
fundamentalism, Bart Kosko, of the University of Southern California, has recently derived some 
of the basic principles of probability theory from fuzzy sets. 

Nevertheless there is still resistance from some quarters. A theorem devised by Charles Elkan, of 
the University of California, San Diego, suggests that fuzzy logic may not be all that it claims--
that it collapses to a more traditional sort of two-valued logic under close scrutiny. 



Such arguments might be the stuff of Nobel prizes, were they to be awarded for mathematics. 
What has caused non-academics to sit up and take notice of fuzzy logic is that, in the physical 
world, systems that incorporate it seem to work rather well. 

Soft sell 

Think again about the temperature of the air. Air conditioners are designed to keep it constant. 
Nature varies it continuously. Devices like air conditioners are generally run by mathematical 
models. Information is gathered (in this case from temperature sensors), processed in some way, 
and the results used to control something (such as the speed of a fan-motor). The maths may be 
"wired in", by being embedded in the components of a traditional, analogue, electrical circuit. Or 
the calculations may be performed by a digital computer program stored in a chip. Either way, 
the engineer who designs a machine has first to devise a model of what it is supposed to do. 

This is difficult to do precisely, but lack of precision can exacerbate problems such as "hunting"-
-a tendency to overshoot or undershoot that is caused by the lag between a change in the motor 
speed and a change in the air temperature. It has to be damped by anticipating the change, which 
needs more complex maths, and lots of it. Yet cooling a room is a relatively simple task--there is 
only one input (the temperature) and one output (the motor speed). Most control processes have 
several inputs, and may have more than one output. Turning the relationships between them into 
explicit, accurate maths can be tricky. 

Fuzzy systems do not need to be precise. The underlying model is not a string of differential 
equations, but a set of simple rules such as "if the air is hot, run the motor fast". "Hot" and "fast" 
are fuzzy sets. The fuzzy controller takes the temperature in the same way as a traditional air 
conditioner, but then "fuzzifies" it by working out how much it belongs to each fuzzy input set 
(see diagram). By applying the relevant rules to each input set, the membership of each fuzzy 
output set can be calculated. After this, the result is "defuzzified" into a single value that the 
motor can understand, using a process known as centroid averaging. And presto, the air 
conditioner responds. 

The advantage of this imprecision is that it reacts well to tinkering. To build a mathematical 
model requires a good understanding of what is being modelled. Fuzzy logic does not. As long as 
the underlying rules are sensible, all that is needed is to tune the device by trial and error--
changing the boundaries of the fuzzy sets until the desired outcome is achieved. It is also quicker 
than traditional model-building, cutting down costly development time. 

Fuzzy logic was first picked up as an industrial tool by Hitachi in Japan. Seiji Yasunobu (the 
engineer who invented centroid defuzzification) used it in an automatic control system for the 
city of Sendai's subway system. Even in a country famed for the precision of its underground 
railways, Sendai's is impressive. Each train stops to within 7cm (3 inches) of the right spot on the 
platform. In addition, the trains travel more smoothly and use about 10% less energy than their 
human-controlled equivalents. The person in the driver's compartment is there for little more 
than reassurance. 



Hitachi's success at Sendai set off a scramble to apply fuzzy logic to other equipment. At the 
head of the race was a company called Omron, in Kyoto, which acquired a series of patents 
registered by Takeshi Yamakawa of the Kyushu Institute of Technology in Fukuoka. In 1987 
(the year the Sendai subway opened) Dr Yamakawa demonstrated a set of chips that could cope 
with large numbers of rules and defuzzify the results 100 times faster than conventional chips--
fast enough to keep an inverted pendulum upright. (Sounds easy? Try balancing a ruler on your 
finger.) 

Dr Yamakawa achieved this trick by eschewing digital technology in the chips themselves. Once 
he had worked out the rules, he designed the chips around them. Instead of wasting time turning 
them into ones and zeroes, his analogue chips worked directly with the signals from the system's 
sensors. Without time spent translating back and forth between analogue and digital signals, the 
processing was much quicker and control of unstable, rapidly changing systems became possible. 

Since 1987, the market for machines and factories with fuzzy controllers has exploded. Japan's 
Ministry of International Trade and Industry estimates that, worldwide, it was worth $2 billion in 
1991. Omron alone expects its 1995 sales of fuzzy devices to top YEN 100 billion (about $1 
billion). The company now makes around 80 products, from counterfeit banknote detectors to 
blood-pressure monitors, that depend on fuzzy-logic control. 

After a slow start, fuzzy control is taking off outside Japan too. Cement manufacturers 
worldwide are spending about $15m a year to equip their plants, following the example of the 
Danish cement works that was one of the first places to use fuzzy production control. The car 
industry is pretty fuzzy everywhere. American car makers expect to use fuzzy-logic gear worth 
about $6 billion by 1997. Plenty of American products, from petrol pumps to computer 
spreadsheets, embody fuzzy logic, but often masquerading as "human- like reasoning" or a 
"knowledge-based system". Marketing departments worry that customers are not yet ready to be 
told that fuzzy is good. 

As the tasks to which fuzzy controllers are put become more sophisticated, so do the ways of 
working out the rules. Early controllers were tuned by hand. Now they are often linked to neural 
nets--computer programs that mimic nervous systems. These "learn" by reinforcing successful 
behaviour, much as a rat in a laboratory learns to associate performing a trick with receiving 
food. 

Other fuzzy controllers are "expert systems"--attempts to embody the knowledge of a human 
expert in computer software. The idea of "downloading" a human lifetime's experience into a 
machine appeals to computer programmers. In some areas, such as assisting medical diagnosis, 
expert systems using conventional logic have been successfully designed. But expertise itself is 
intractable stuff. Often people cannot quantify just how they go about things. However, they can, 
if pushed, usually describe it. Such descriptions are the stuff of fuzzy logic. 

Expertise can be as specialised as flying a helicopter, or it can be quite mundane. Driving, for 
instance. Car makers have already fuzzified their transmissions, brakes and suspensions. But 
now there are expert systems that can control the vehicle itself. In 1987 Nissan demonstrated the 
first fuzzy driver. It steered a car using the white lines on a road for guidance. In 1989 Dr Kosko 



and Seong-Gon Kong devised an expert system that could park an articulated lorry. The race is 
now on to build something that can drive itself in traffic, and take its owner safely home after a 
night on the town. 

Beyond control 

Negotiating rush-hour traffic and landing a helicopter may sound tricky, but true believers in 
fuzzy logic think that it is destined for greater things. They reckon that a system of logic that 
draws its inspiration from human language should be ideal for modelling the intelligence behind 
language. 

Artificial intelligence (AI) is a tantalising prize. Many have grasped for it using traditional 
computing methods but it has remained beyond reach. Toshiro Terano, the director of the 
Laboratory for International Fuzzy Engineering Research (LIFE), in Yokohama, hopes that his 
team will do better. LIFE has dropped the study of fuzzy control in order to concentrate on fuzzy 
information processing and fuzzy computing. Anca Ralescu, a professor from the University of 
Cincinnati who is working as the institute's assistant director, is running a project that explores 
the relationship between images and language. One of its applications is face recognition, a 
classic example of a task that people find easy and machines find hard. AI researchers usually 
solve it using neural nets, which have proved good at recognising pictures. Dr Ralescu's team, 
though, has written programs which can recognise verbal descriptions as well. Tell one of them 
what a particular face looks like (big nose, long hair, round face) and it will analyse the images 
and pick out your choice from a couple of dozen possibilities. One of the programs is so sensitive 
that it can recognise moods from facial expressions. 

Dr Ralescu's work is largely theoretical. A more practical example of LIFE's work is Satoru 
Fukami's attempt to build a foreign- exchange dealing model. Fuzzy expert systems for financial 
dealing already exist. Yamaichi Securities has developed one for stockmarket trading. So far, 
however, the models have relied solely on price information. The LIFE forex model will use 
numbers but will also use the sort of non-numerical information that markets thrive on, such as 
feelings about politics, to refine the outcome. 

Perhaps the biggest prize that LIFE is pursuing is general-purpose fuzzy computing. Along with 
other computer research groups, it is seeking a way of overcoming that bane of programmers, the 
bug. Computer programs are fragile creatures, apt to fall apart if the slightest piece is awry. 
Being able to write programs that do not trip on bugs but that can gloss over errors in the code as 
easily as a person can make sense of a mis-spelt word or a distorted voice would be a triumph. 
Such "soft" computing is the target of several projects around the world, including the Berkeley 
Initiative in Soft Computing and Japan's Real World Computing project. Not all use fuzzy logic. 
Another iconoclastic system of logic known as Bayesian reasoning, which deals in estimates of 
the probability of events about which there is little or no information, is also popular. But, on the 
face of it, using fuzzy logic at the points in the program where decisions are made (and bugs are 
often found) looks sensible. 

Some people, however, doubt that fuzzy logic will work better than other methods. Dr Elkan, for 
instance, thinks that the success of fuzzy controllers will be hard to repeat in more sophisticated 



applications. Fuzzy control is "structurally shallow": it does not involve long chains of 
reasoning. The rules that combine the inputs control the output more or less directly. Computer 
programs are not like this. They usually involve many layers of processing, with the results of 
one layer being fed into the next. 

Shallow thinking has two big advantages. It makes it easy to tune the system, because the effects 
of different changes in input do not interfere with each other. And it reduces the likelihood of 
getting mutually contradictory results from parallel chains of reasoning. If it involved long 
chains of reasoning, fuzzy AI would probably still suffer from the problems that have scuppered 
other attempts at AI, doubly so if Dr Elkan is right that fuzzy logic collapses into a more 
traditional two-valued logic. 

Dr Kosko agrees that increasing complexity causes problems, but argues that fuzzy logic can be 
kept simple, even for complex jobs. This means limiting the number of rules. That, in turn, 
means concentrating on what is critical--lots of rules for areas where small changes in input can 
have big effects on output; broader strokes for the stable regions in between. If this approach 
works, technology will be fuzzy in future--but only fairly fuzzy. Such is fuzziness. 
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The Paradoxical Success of 
Fuzzy Logic 
Charles Elkan, University of California, San Diego 

Fuzzy logic methods have been used suc- 
cessfully in many real-world applications, 
but the foundations of fuzzy logic remain 
under attack. Taken together, these two 
facts constitute a paradox. A second para- 
dox is that almost all of the successful 
fuzzy logic applications are embedded con- 
trollers, while most of the theoretical pa- 
pers on fuzzy methods deal with knowl- 
edge representation and reasoning. I hope 
here to resolve these paradoxes by identify- 
ing which aspects of fuzzy logic render it 
useful in practice, and which aspects are 
inessential. My conclusions are based on a 
mathematical result, on a survey of litera- 
ture on the use of fuzzy logic in heuristic 
control and in expert systems, and on prac- 
tical experience developing expert systems. 

An apparent paradox 
As is natural in a research area as active 

as fuzzy logic, theoreticians have investi- 
gated many formal systems, and a variety 
of systems have been used in applications. 
Nevertheless, the basic intuitions have re- 
mained relatively constant. At its simplest, 
fuzzy logic is a generalization of standard 
propositional logic from two truth values, 
false and true, to degrees of truth between 
0 and 1. 

Formally, let A denote an assertion. In 
fuzzy logic, A is assigned a numerical value 
t (A) ,  called the degree of truth of A ,  such 
that 0 5 t (A)  I 1. For a sentence composed 
from simple assertions and the logical con- 
nectives “and” (A), “or” (v), and “not” (1) 
degree of truth is defined as follows: 

~ 

An earlier version with the same title 
appeared in Proceedings of the Eleventh Na 
trona1 Conference on Artificial Intelligence 
(AAA1 ’93), MIT Press, 1993, pp 698-703 

Definition 1: Let A and B be arbitrary as- 
sertions. Then 

t ( A  A B )  = min [ t (A) ,  t (B) )  
t (A  v B )  = max { t (A ) ,  t ( B ) ]  

t (A)  = t(B) if A and B are logically 
t ( 4 )  = 1 - t (A)  

equivalent. 

Depending how the phrase “logically equiv- 
alent” is understood, Definition 1 yields 
different formal systems. A fuzzy logic sys- 
tem is intended to allow an indefinite variety 
of numerical truth values. However, for 
many notions of logical equivalence, only 
two different truth values are possible given 
the postulates of Definition 1. 

Theorem 1: Given the formal system of Def- 
inition 1, if l ( A  A 4) and B v (4 A 4) 
are logically equivalent, then for any two 
assertions A and B, either t ( B )  = t ( A )  or 
t (B)  = 1-t(A). W 

A direct proof of Theorem 1 appears in the 
sidebar, but it can also be proved using 
similar results couched in more abstract 

Proposition: Let P be a finite Boolean al- 
gebra of propositions and let z be a truth- 
assignment function P + [0,1], supposedly 
truth-functional via continuous connec- 
tives. Then for all p E P, Q) E { 0, 1 ] W 

The link between Theorem 1 and this propo- 
sition is that l ( A  A 4) = B v (4 A -IB) is 
a valid equivalence of Boolean algebra. 
Theorem 1 is stronger in that it relies on 
only one particular equivalence, while the 
proposition is stronger because it applies to 
any connectives that are truth-functional 
and continuous (as defined in its authors’ 

The equivalence used in Theorem 1 is 
rather complicated, but it is plausible intu- 

paper). 

itively, and it is natural to apply it in rea- 
soning about a set of fuzzy rules, since 
7 ( A  A 4) and B v (4 A 4) are both 
reexpressions of the classical implication 
4 4 B. It was chosen for this reason, but 
the same result can also be proved using 
many other ostensibly reasonable logical 
aquivalences. 

It is important to be clear on what ex- 
actly Theorem 1 says, and what it does not 
say. On the one hand, the theorem applies 
to any more general formal system that 
includes the four postulates listed in Defin- 
ition 1. Any extension of fuzzy logic to 
accommodate first-order sentences, for 
example, collapses to two truth values if it 
admits the propositional fuzzy logic of 
Definition 1 and the equivalence used in 
the statement of Theorem 1 as a special 
case. The theorem also applies to fuzzy set 
theory given the equation ( A  fl B‘)‘ = 
B U (A‘ n BC), because Definition 1 can be 
understood as axiomatizing degrees of 
membership for fuzzy set intersections, 
unions, and complements. 

On the other hand, the theorem does not 
necessarily apply to versions of fuzzy logic 
that modify or reject any of the postulates of 
Definition 1 or the equivalence used in The- 
orem 1. However, it is possible to carry 
through the proof of the theorem in many 
variant fuzzy logic systems. In particular, 
the theorem remains true when negation is 
modeled by any operator in the Sugeno 
class,’ and when disjunction or conjunction 
are modeled by operators in the Yager 
classes! The theorem also does not depend 
on any particular definition of implication in 
fuzzy logic. New definitions of fuzzy impli- 
cation are still being proposed as new appli- 
cations of fuzzy logic are investigated.’ 

Of course, the last postulate of Definition 
1 is the most controversial one. To preserve 
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Proof of Theorem 1 
Theorem I; Given the formal system t(B) < 1 - r(B) < 1 - r(A), 

of Definition 1, if l(A A 4l) and B v 
(4 A lB)  are logically equivalent, then 
for any two assertions A and E ,  either t(B) = 
t(A) or r(B) = 1-t(A). 

P r m j  Given the assumed equivalence, 
(,(A A 4)) = t(B v (-A A TB)) .  Now 

tf7(A A 7B))  = 1 - min [ r(A), 1 - t (B)]  
= 1 + max {-r(A), -1 + t ( B ) )  

= max [ 1 - (A), t ( B ) )  

and 

f ( B  V (4 A iB ) )  = 
max {t(B),  min { 1 - t (A) ,  1 - t (B) )  1. 

The numerical expressions above are dif- 
ferent if 

that is if t (B)  < 1 - t(B) and t (A)  < r(B), 
which happens if t (A)  < t(B) < 0.5. So it 
cannot be true that r(A) < t(B) < 0.5. 

Now note that the sentences -(A A 4) 
and E v (-A A 4) are both reexpressions of 
the material implication A 4 B. One by one, 
consider the seven other material implication 
sentences involving A and B, which are 

4 4 B  
A + y B  
434 

B + A  
i B + A  
B - 4  

-lB 4 4 

a continuum of degrees of truth, one natu- 
rally wants to restrict the notion of logical 
equivalence. In intuitive descriptions, fuzzy 
logic is often characterized as arising from 
the rejection of the law of excluded middle: 
the assertion A v 4. Unfortunately, reject- 
ing this law is not sufficient to avoid col- 
lapse to just two truth values. Intuitionistic 
logic rejects the law of excluded middle, 
but the formal system of Definition 1 still 
collapses when logical equivalence means 
intuitionistic equivalence? (The Godel 
translations of classically equivalent sen- 
tences are intuitionistically equivalenL6 For 
any sentence, the first three postulates of 
Definition 1 make its degree of truth and 
the degree of truth of its Godel translation 
equal. Thus the proof in the sidebar can be 
carried over directly.) Dubois and Prade 
note that if all the properties of a Boolean 
algebra are preserved except for the law of 
excluded middle, their proposition no 
longer holds? This observation is compati- 
ble with a collapse assuming only the 
equivalences of intuitionistic logic, because 
although intuitionistic logic rejects the law 
of excluded middle, it admits a doubly 
negated version of the law, namely 

7(7 4 v -A). Of course, collapse to 
two truth values is avoided if we admit only 
the equivalences generated by the operators 
minimum, maximum, and complement to 
one. However, these equivalences are es- 
sentially the axioms of de Morgan, which 
allow only restricted reasoning about col- 
lections of fuzzy assertions. 

Fuzzy logic in expert systems 
The basic motivation for fuzzy logic is 

clear: While many ideas resemble tradi- 
tional assertions, they are not naturally 
either true or false; uncertainty of some 
sort is attached to them. Fuzzy logic is an 
attempt to capture valid reasoning pattems 
about uncertainty. The notion is now well 
accepted that there are many different types 
of uncertainty, vagueness, and ign~rance .~  
However, there is still debate as to what 
types of uncertainty are captured by fuzzy 
logic. Many papers have discussed (at a 
high level of mathematical abstraction) the 
question of whether fuzzy logic provides 
suitable laws of thought for reasoning 
about uncertainty - and if so, which vari- 
eties of uncertainty. The question of inter- 
est here is more empirical: whether or not 
fuzzy logic is in practice an adequate for- 
malism for uncertain reasoning in knowl- 
edge-based systems. 

nical literature using the Inspec and Com- 
puter Articles databases of more than 1.3 
million papers published since 1988. Using 
the abstracts as a guide, I found no 
published report of a deployed expert sys- 
tem that uses fuzzy logic as its primary for- 
malism for reasoning under uncertainty. 
While many theoretical papers on fuzzy 
logic in expert systems have been published, 
and several prototype systems have been 
described, it is hard to find reports of fielded 
systems doing knowledge-intensive tasks 
such as diagnosis, scheduling, or design. 

I conducted a thorough search of the tech- 

Recent conferences give a representative 

By the same reasoning as before, none of 
the following can be true: 

1 - r(A) < [ ( E )  < 0.5 
!(A) < 1 - t (B )  < 0.5 

1 - t(A) < 1 - t ( B )  < 0.5 
r(B) < t (A)  < 0.5 

1 - t (B)  < t (A)  < 0.5 
t(B) < 1 - [ (A)  < 0.5 

1 - t(B) < I - t (A)  < 0.5 

Now let x = min { r(A), 1 - r(A)) and let 
y = min [ t(B), 1 - t ( B ) ] .  Clearly x I 0.5 and 
y < 0.5 so if x # y. then one of the eight 
inequalities derived must he satisfied. Thus 
t(B) = t(A) or r(B) = 1 - r(A). 

view of the extent of fuzzy logic applica- 
tion in current commercial and industrial 
knowledge-based systems. All the systems 
in actual use described at the 1992 IEEE 
Intemational Conference on Fuzzy Sys- 
tems are controllers, as opposed to reason- 
ing systems. At the 1993 IEEE Conference 
on AI for Applications, no applications of 
fuzzy logic in knowledge-based systems 
were reported. Of the 16 deployed systems 
described at the 1993 AAA1 Conference on 
Innovative Applications of AI, three - the 
CAPE,* D ~ d g e r , ~  and DYCE'" systems - 
used fuzzy logic in some way. However, 
none of these systems uses fuzzy logic op- 
erators for reasoning about uncertainty. 
Input observations are assigned degrees of 
membership in fuzzy sets, but inference 
with these degrees of membership uses 
other formalisms. 

In addition to DYCE, a team at IBM has 
developed and fielded several knowledge- 
based systems over the past five years. 
Some of these systems are used for software 
and hardware diagnosis, for data analysis, 
and for operator The systems 
have varying architectures and cope with 
different varieties of uncertainty. Experience 
with them suggests that fuzzy logic is rarely 
suitable in practice for reasoning about un- 
certainty. The basic problem is that items of 
uncertain knowledge must be combined 
carefully to avoid incorrect inferences. 
Fixed domain-independent operators like 
those of fuzzy logic do not work. 

The correct propagation of certainty 
degrees must account for the content of the 
uncertain propositions being combined. 
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This is necessary whether the uncertain 
propositions constitute deep or shallow 
knowledge. In the case of shallow knowl- 
edge, which may be defined as knowledge 
that is valid only in a limited context (for 
example, a correlation between a symptom 
and a fault), how degrees of uncertainty are 
combined must be adjusted to account for 
unstated background knowledge. 

A simple example illustrates the diffi- 
culty. Consider a system that reasons in a 
shallow way using a notion of “strength of 
evidence,” and assume that, as in many 
expert systems, this notion is left primitive 
and not analyzed more deeply. (Certainly 
“strength of evidence” is an intuitively 
meaningful concept that may or may not be 
probabilistic, but it is definitely different 
from “degree of truth.”) For concreteness, 
suppose the context of discourse is a col- 
lection of melons, and in this context by 
definition wnfermelon(x) e redinside(x) A 

greenoutside(x). For some melon m, sup- 
pose that t(redinside(m)) = 0.5 and t(green- 
oufside(m)) = 0.8, meaning that the evi- 
dence that m is red internally has strength 
0.5, and that m is green externally with 
strength of evidence 0.8. Are the rules of 
fuzzy logic adequate for reasoning about 
this particular type of uncertainty? They 
say that the strength of evidence that m is a 
watermelon is t(watermelon(m)) = min 
(0.5,0.8] = 0.5. However, implicit back- 
ground knowledge in this context says that 
being red inside and green outside are mu- 
tually reinforcing pieces of evidence to- 
ward being a watermelon, so m is a water- 
melon with strength of evidence over 0.5. 

Deep knowledge can be defined as 
knowledge that is detailed and explicit 
enough to be valid in multiple contexts. 
Deep knowledge is general purpose and 
usable in complex chains of reasoning. 
However, Theorem 1 says that if more than 
two different truth values are assigned to 
the input propositions of long inference 
chains using fuzzy logic rules and one 
plausible equivalence, then it is possible to 
arrive at inconsistent conclusions. Fuzzy 
logic cannot be used for general reasoning 
under uncertainty with deep knowledge. 

The fundamental issue here is that a con- 
junction’s degree of uncertainty is not in 
general determined uniquely by the degree 
of uncertainty of the assertions entering into 
the conjunction. There does not exist a 
functionfsuch that the rule t(A A B )  = 
flt(A), t(B)) is always valid, whatever the 
type of uncertainty represented by t(.). For 
example, in the case of probabilistic uncer- 
tainty, the rule t(A A B )  = t(A) . t(B) is valid 
if and only if A and B represent independent 
events. In general, for probabilistic uncer- 
tainty all one knows is that max [ 0, t(A) + 
t(B) - 1 ] 5 t(A A B )  5 min (t(A), t (B)] .  

Methods for reasoning about uncertain 
evidence are an active research area in AI, 
and the conclusions here are not new. How- 
ever, our practical experience independently 
confirms previous arguments about the in- 
adequacy of systems for reasoning about 
uncertainty that propagate numerical factors 
according only to which connectives appear 
in assertions.I3 

Fuzzy logic in heuristic tontrol 
The application of fuzzy logic has been 

most successful in heuristic control, where 
there is wide consensus that traditional 
techniques of mathematical control theory 
are often inadequate. The reasons for this 
include the reliance of traditional methods 
on linear models of systems to be 
controlled, their propensity to produce 
“bang-bang” control regimes, and their 
focus on worst-case convergence and sta- 
bility rather than typical-case efficiency. 
Heuristic control techniques give up math- 
ematical simplicity and performance guar- 
antees in exchange for increased realism 
and better performance in practice. For 
example, a heuristic controller using fuzzy 
logic has been shown to have less over- 
shoot and quicker settling.’4 

The first demonstrations that fuzzy logic 
could be used in heuristic controllers were 
published in the 1970s.15*16 Work continued 
through the 1980s, and recently there has 
been an explosion of industrial interest in 
the area.17,18 One reason for this recent 
interest in fuzzy controllers is that they can 

be implemented by embedded specialized 
microprocessors. l 9  

Despite industry interest, and consumer 
interest in Japan, fuzzy logic technology 
:ontinues to meet resistance. For example, 
at IJCAI ’9 1, Takeo Kanade gave a talk on 
computer vision, describing at length Mat- 
sushita’s camcorder image stabilizing sys- 
tem without mentioning its use of fuzzy 
logic. Also, while a fuzzy logic controller 
is embedded in the 1994 Honda Accord’s 
automatic transmission, the advertising 
brochures describe it as “grade logic.” 

Almost all currently deployed heuristic 
controllers using fuzzy logic are similar in 
five important aspects (a good example of 
this standard architecture appears in a 
paper by Sugeno and his colleagues2’): 

(1) The typical fuzzy controller knowl- 
edge base consists of fewer than 100 
rules; often fewer than 20 rules are 
used. Fuzzy controllers are orders of 
magnitude smaller than systems built 
using traditional AI formalisms. 

( 2 )  The knowledge entering into fuzzy 
controllers is structurally shallow, 
both statically and dynamically. Con- 
clusions produced by rules are not 
used as premises in other rules; stati- 
cally rules are organized in a flat list, 
and dynamically there is no runtime 
chaining of inferences. 

(3) The knowledge recorded in a fuzzy 
controller typically reflects immediate 
correlations between the inputs and 
outputs to be controlled, as opposed to 
a deep, causal model of the system. 
The premises of rules refer to sensor 
observations, and rule conclusions 
refer to actuator settings. (Rule 
premises refer to qualitative or “lin- 
guistic” sensor observations, and rule 
conclusions refer to qualitative actua- 
tor settings, whereas outputs and in- 
puts of sensors and actuators are typi- 
cally real-valued. This means that 
normally two controller components 
map between numerical values and 
qualitative values. In fuzzy logic ter- 
minology, these components are said 
to defuzzify outputs and implement 
membership functions.) 
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(4) In deployed fuzzy controllers, the nu- 
merical parameters of their rules and 
of their qualitative input and output 
modules are tuned in a learning 
process. The tuning can be done by 
human engineers or by leaming algo- 
rithms; neural network methods have 
been especially successful.22 What the 
tuning algorithms themselves have in 
common is that they are gradient-de- 
scent “hill-climbing” algorithms that 
learn by local 0ptimi~ation.l~ 

( 5 )  By definition, fuzzy controllers use 
fuzzy logic operators. Typically, mini- 
mum and maximum are used, as are 
explicit possibility distributions (usu- 
ally trapezoidal) and some fuzzy im- 
plication operator. 

The question that naturally arises is, Which 
of these five features are essential to the 
success of fuzzy controllers? It appears that 
the first four are vital to practical success, 
because they make the celebrated credit 
assignment problem solvable, while the use 
of fuzzy logic is not essential. 

In a nutshell, the credit assignment prob- 
lem is to improve a complex system by 
modifying a part of it, given only an evalua- 
tion of its overall performance. In general, 
solving the credit assignment problem is 
impossible: the task is tantamount to gener- 
ating many bits of information (a change to 
the internals of the system) from just a few 
bits of information (the system’s inputlout- 
put performance). However, the first four 
shared features of fuzzy controllers can 
solve this problem for the following reasons. 

First, since it consists of only a few rules, 
the knowledge base of a fuzzy controller is 
a small system to modify. Second, the short 
paths between the fuzzy controller’s inputs 
and outputs localize the effect of a change, 
making it easier to discover a change with a 
desired effect without producing undesired 
consequences. Third, because of the itera- 
tive way in which fuzzy controllers are re- 
fined, many observations of inputloutput 
performance are available for system im- 
provement. Fourth, the continuous nature of 

he controller’s parameters allows small 
pantities of performance information to be 
ised to make small system changes. 

Thus, what makes fuzzy controllers use- 
[ul in practice is the combination of a rule- 
Jased formalism with numerical factors 
palifying rules and the premises entering 
into rules. The principal advantage of rule- 
xsed  formalisms is that knowledge can be 
acquired from experts or from experience 
incrementally. Individual rules and 
premises can be refined independently, or 
at least more independently than items of 
knowledge in other formalisms. Numerical 
factors have two main advantages. They 
allow a heuristic control system to inter- 
Face smoothly with the continuous outside 
world, and they allow it to be tuned gradu- 
ally - small changes in numerical factor 
values cause small changes in behavior. 

None of the features contributing to the 
success of systems based on fuzzy logic is 
unique to fuzzy logic. It seems that most 
current fuzzy logic applications could use 
other numerical rule-based formalisms 
instead - if a human or a learning algo- 
rithm tuned numerical values for those 
formalisms, as is customary when using 
fuzzy logic. A quote from the originator of 
fuzzy heuristic control is relevant here: 

... it should be remarked that the work on 
process control using fuzzy logic was inspired 
as much by Waterman and his approach to 
rule-based decision making as by Zadeh ... 
and his novel theory of fuzzy subsets.23 

Several knowledge representation for- 
malisms that are rule-based and numerical 
have been proposed besides fuzzy 10g ic .~~ ,*~  
To the extent that numerical factors can be 
tuned in these formalisms, they should be 
equally useful for constructing heuristic 
controllers. Indeed, at least one has already 
been so used.26 

Retapitulating mainstream AI 
Several research groups are attempting 

to scale up systems based on fuzzy logic 
and lift the architectural limitations of cur- 
rent fuzzy controllers. For example, a 
methodology for designing block-struc- 
tured controllers with guaranteed stability 

properties has been ~tudied,~’ as have 
methodological problems in constructing 
models of complex systems based on deep 
knowledge.** Controllers with intermediate 
variables, thus with chaining of inferences, 
have also been in~es t iga t ed .~~  

However, the designers of larger systems 
based on fuzzy logic are encountering all the 
problems of scale already identified in tradi- 
tional knowledge-based systems. It appears 
that the research history of fuzzy logic is 
recapitulating that of other areas in AI as 
well, particularly those dealing with knowl- 
edge engineering and state information. 

The rules in the knowledge bases of cur- 
rent fuzzy controllers are obtained directly 
by interviewing experts. Indeed, the origi- 
nal motivation for using fuzzy logic in 
building heuristic controllers was that fuzzy 
logic is designed to capture human state- 
ments involving vague quantifiers such as 
“considerable.” More recently, consensus 
has developed around the idea that research 
must focus on obtaining “procedures for 
fuzzy controller design based on fuzzy 
models of the process.”30 Mainstream work 
on knowledge engineering, however, has 
already transcended the dichotomy between 
rule-based and model-based reasoning. 

Expert systems with knowledge consist- 
ing of $-then rules have at least two disad- 
vantages. First, maintenance of a rule base 
becomes complex and time-consuming as 
the system size increases. Second, rule- 
based systems tend to be brittle: If an item 
of knowledge is missing from a rule, the 
system may fail to find a solution, or 
worse, may draw an incorrect conclusion. 
The main disadvantage of model-based 
approaches, on the other hand, is that it is 
very difficult to construct sufficiently de- 
tailed and accurate models of complex sys- 
tems. Moreover, the models constructed 
tend to be highly application-specific and 
not generali~able.~’ 

Many recent expert systems, therefore, 
are neither rule-based nor model-based in 
the standard way.12 For these systems, the 
aim of the knowledge engineering process 
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is not simply to acquire knowledge from 
human experts, but rather to develop a the- 
ory of the experts’ situated performance 
(this is true regardless of whether the de- 
sired knowledge is correlational, as in pre- 
sent fuzzy controllers, or deep, as in 
model-based expert systems). Concretely, 
under this view of knowledge engineering. 
knowledge bases are constructed to model 
the beliefs and practices of experts and not 
“objective” truths about underlying physi- 
cal processes. An important benefit of this 
approach is that the organization of an ex- 
pert’s beliefs provides an implicit organiza- 
tion of knowledge about the external 
process with which the knowledge-based 
system is intended to interact. 

The more sophisticated view of knowl- 
edge engineering just outlined is clearly 
relevant to research on constructing more 
intricate fuzzy controllers. For a second 
example of relevant AI work, consider con- 
trollers that can carry state information 
from one moment to the next (mentioned 
as a topic for future research by von Al- 
trock and  colleague^^^). Symbolic AI for- 
malisms for representing systems whose 
behavior depends on their history have 
been available since the 1960s. Neural net- 
works with similar properties (called recur- 
rent networks) have been available for sev- 
eral years, and have already been used in 
control  application^.^^ It remains to be seen 
whether research from a fuzzy logic per- 
spective will provide new solutions to the 
fundamental issues of AI. 

Applications of fuzzy logic in heuristic 
control have been highly successful, de- 
spite the collapse of fuzzy logic to two- 
valued logic under an apparently reason- 
able condition, and despite the inadequacy 
of fuzzy logic for general inference with 
uncertain knowledge. These difficulties 
have not been harmful in practice because 
current fuzzy controllers are far simpler 
than other knowledge-based systems. The- 
orem 1 is not an issue for fuzzy controllers 
because they do not perform chains of in- 

’erence, and they are developed informally, 
Nith no formal reasoning about their rules 
:hat applies equivalences such as the one 
ised in the statement of Theorem 1. Sec- 
md, the knowledge recorded in a fuzzy 
:ontroller is not a consistent causal model 
3f the process being controlled, but rather 
m assemblage of visible correlations be- 
tween sensor observations and actuator 
settings. Since this knowledge is not itself 
general-purpose, the inadequacy of fuzzy 
logic for general reasoning about uncer- 
tainty is not an issue. Moreover, the ability 
to refine the parameters of a fuzzy 
controller iteratively can compensate for 
the arbitrariness of the fuzzy logic opera- 
tors as applied inside a limited domain. 

The common assumption that heuristic 
controllers based on fuzzy logic are suc- 
cessful because they use fuzzy logic ap- 
pears to be an instance of the post hoc, ergo 
propter hoc fallacy. The fact that using 
fuzzy logic is correlated with success does 
not entail that using fuzzy logic causes 
success. In the future, as fuzzy controllers 
are scaled up, the technical difficulties 
identified in this article can be expected to 
become important in practice. 

Theorem 1 is a crisp demonstration of 
one of several deep difficulties of scale in 
AI: the problem of maintaining consistency 
in long sequences of reasoning. Other diffi- 
culties of scale can also be expected to be- 
come critical - in particular, the issue of 
designing learning mechanisms that can 
solve the credit assignment problem when 
the simplifying features of present 
controllers are absent. 
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The Unique Strength of 
Fuzzy Logic Control 
Hamid R. Berenji, Intelligent Inference SystemdNASA Ames Research Center 

I am pleased to see that Elkan has revised 
his paper based on comments from fuzzy 
logic experts. His reference to Dubois and 
Prade indicates that he has realized, finally, 
that his alleged “new discovery” has long 
been known by specialists in fuzzy and 
multivalued logics. 

Unfortunately, the new version still con- 
tains many misunderstandings and errors. I 
will briefly respond to some of them, 
avoiding a discussion of the supposedly 
startling proof about the purported incon- 
sistency of fuzzy logic, which is covered in 
responses by Enrique Ruspini and others. I 
will confine my comments primarily to a 
fundamental misunderstanding that is the 
source of many of Elkan’s mistaken asser- 
tions about the use of fuzzy logic in heuris- 
tic control and expert systems. 

Elkan lists a number of powerful fea- 
tures of fuzzy-logic control, but then erro- 
neously concludes that none is unique to 
fuzzy logic. He fails to realize that the 
unique strength of fuzzy-logic control is its 
dependence on fuzzy-set theory and its 
representational capabilities. The small 
number of rules typical in these systems is 
not the result of mere luck, but the direct 
consequence of the fuzzy predicates that 
appear in the rules. Each of these predi- 
cates covers a wide range of state variable 
values while facilitating interpolation of 
rule consequents. Fuzzy sets provide for a 
general, yet compact characterization of 
system state that requires fewer rules. 

of fuzzy controller knowledge is simply 
wrong. Recent fuzzy-logic controllers, 
developed for more challenging tasks, use 
hierarchical fuzzy control methods.’ Exam- 
ples include the helicopter control devel- 
oped by Sugeno and his collaborators at the 
Tokyo Institute of Technology (a system 
that can appear trivial only to those unfa- 
miliar with control theory), and the con- 
troller for a three-linked inverted pendulum 
developed at Aptronix. In applications such 

Elkan’s assertion about the shallowness 
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as these, the result of the first level of con- 
trol is used in deriving control rules for the 
second set, and so on. These examples 
prove that fuzzy-logic control systems can 
be developed to reason with considerable 
depth of complexity. Similarly, the control 
mechanisms for the local-motion control of 
SRI’s autonomous robot2 rely on several 
deliberation levels to determine the rele- 
vance level of each control rule (by evalu- 
ating the operational environment charac- 
teristics); to identify current goals and their 
state of achievement; to activate control 
rules according to the current context; and 
to blend their control recommendations. 

At any rate, the “depth” of a reasoning 
process as Elkan seems to understand it is 
not even a well-defined measure of infer- 
ential system complexity. This is seen in 
the fact that the two-level forward chain 
A -+ ( B  -+ c) is often “compiled” in real- 
time applications (such as control systems) 
into the single-level rule A A B -+ C to sim- 
plify and speed computation. This simplifi- 
cation mechanism, which turns what Elkan 
would consider “complex” into an equiva- 
lent “simple” version, is used to introduce 
contextual and goal-dependence considera- 
tions into the reasoning chain both in the 
SRI’s mobile robot controller and in our 
own two-goal inverted pendulum. 

Using fuzzy sets to describe a general 
linguistic variable also significantly 
reduces the complexity of the search 
process in fuzzy systems that learn from 
experience. Elkan correctly points out that 
using fewer rules simplifies the credit as- 
signment problem, but he fails to realize 
that this is a consequence of using fuzzy 
logic rather than an indicator of its current 
or future applicability. This feature is desir- 
able in any control system, as is seen in the 
fuzzy-logic controller developed at NASA 
Ames for the Space Shuttle’s rendezvous 
and docking  operation^.^ This controller 
learns to improve itself from experience 
using reinforcement learning  technique^:,^ 

a complex task that would have been very 
difficult, if not impossible, if other sym- 
bolic control techniques had been used. 

In summary, I see two major misunder- 
standings in Elkan’s paper. First, it relies on 
a theorem that is irrelevant to fuzzy logic to 
argue that the methodology is paradoxical. 
Second, it fails to note that the advantages 
provided by fuzzy-set constructs give fuzzy 
control a unique methodological strength 
- a fact Elkan mistakenly interprets as 
technological immaturity. 

References 
1. H.R. Berenji et al., “A Hierarchical Approach 

to Designing Approximate Reasoning-Based 
Controllers for Dynamic Physical Systems,” 
in Uncertainty in Arti$cial Intelligence, P.P. 
Bonissone et al, eds. North-Holland, Amster- 
dam, 1991, pp. 331-343. 

2. A. Saffiotti, E. Ruspini, and K. Konolige, 
“Blending Reactivity and Goal-Directedness 
in a Fuzzy Controller, Proc. Fuzzy Logic, in 
Proc. Second IEEE Int’l Con$ Fuzzy Sys- 
t e m ,  IEEE Computer Society Press, Los 
Alamitos, Calif., 1993, pp. 134-139. 
H.R. Berenji et al., “Space Shuttle Attitude 
Control by Fuzzy Logic and Reinforcement 
Learning,” in Proc. Second IEEE Int ’ 1  Con$ 
Fuzzy Systems, IEEE Press, Pistcataway, 

H.R. Berenji and P. Khedkar, “Learning and 
Tuning Fuzzy Logic Controllers through 
Reinforcements,” IEEE Trans. on Neural 
Networks, Vol. 3, No. 5 ,  1992, pp. 724-740. 

5. H.R. Berenji, “An Architecture for Design- 
ing Fuzzy Controllers using Neural Net- 
works,” in Int ’1 J.  Approximute Reasoning, 
Vol. 6., No. 2, Feb. 1992, pp. 267-292. 

Hamid R. Berenji is a senior research scientist 
and principal investigator on intelligent control 
in the AI branch of the NASA Ames Research 
Center. He was a program chair for the IEEE 
International Conference on Neural Networks, 
and was a program cochair of the 1994 IEEE 
Conference on Fuzzy Systems. He serves on the 
editorial board of several technical publications, 
and is an associate editor of IEEE Transactions 
on Fuzzy Systems and IEEE Transactions on 
Neural Networks. He is a member of IEEE, and 
chairs the Neural Networks Council’s Technical 
Committee on Fuzzy Systems. Hamid Berenji 
can be reached at berenji@ptoIemy.arc.nasa.gov 

3. 

N.J., 1993, pp. 1396-1401. 
4. 

I 

mailto:berenji@ptoIemy.arc.nasa.gov


Broader Issues At Stake 
A Response to Elkan 
B. Chandrasekaran, Ohio State University 

The fuzzy set approach has clearly cap- 
tured the interest of many researchers 
around the world and has been used to 
build applications of various sorts, of 
which fuzzy control applications are cur- 
rently the most prominent. The approach, 
however, remains controversial. While this 
controversy has many sources, there are 
relatively few places where the arguments 
are set out in a fashion that allows debate. 
It is thus useful to have both Charles 
Elkan’s analysis of the fuzzy set approach 
to representing uncertainty, and his exami- 
nation of which features of fuzzy set theory 
are responsible for the success of fuzzy 
control systems. In particular, I commend 
Elkan for making his arguments about 
these techniques in a nonpolemical way, 
letting technical arguments and results do 
most of the talking. 

In Elkan’s first argument, he claims that 
the axioms of fuzzy set theory, in conjunc- 
tion with what appear to be a number of 
reasonable versions of logical equivalence 
between sentences, lead to a collapse of 
truth functions into just two values - a 
fate that fuzzy set theory was expressly 
meant to avoid. 

As Elkan points out, a result similar to 
his collapse theorem was already known to 
researchers within the fuzzy set community 
(Dubois and Prade). My understanding is 
that they weren’t too worried by this result, 
since they think that the traditional notion 
of logical equivalence or any of its variants 
should be abandoned for fuzzy sets. This 
response seems to me to be formally rea- 
sonable, but I think in practice it would be 
hard to work with a system in which logi- 
cal equivalence itself is a fuzzy relation. 
Ultimately, we will have to see how much 
really interesting work is possible with this 
notion of fuzzy equivalence. 

In the second argument, Elkan asserts 
that when fuzzy control systems that work 
well are analyzed, the real source of their 
success seems to be not the inferential ca- 
pabilities of fuzzy set theory (derived from 
the theory’s composition axioms) but 
rather a combination of things exclusive of 
fuzzy set axioms. Among these are the abil- 
ity to represent certain things as continuous 
quantities rather than all-or-nothing quanti- 
ties; certain heuristic techniques - that are 
themselves outside fuzzy set theory -to 
get the right parameters for the problems; 
and the fact that there is little complex rule- 
chaining going on. A number of alterna- 
tives and rivals to fuzzy set theory would 
work as well in those applications. 

Part of Elkan’s point - that the success 
of fuzzy control systems thus far is not 
really a full test or proof of the axioms and 
claims of fuzzy set theory - is actually an 
instance of a larger phenomenon in AI. I 
think that Elkan’s point can be made 
against the claims of not only fuzzy control 
proposals, but also against a number of 
other proposals in AI, including the rivals 
of fuzzy sets, such as belief nets. 

The general problem is a kind of credit 
allocation problem and can be stated as 
follows. Given some mechanism M ,  and 
some specific task T, suppose I write a pro- 
gram P, using M as the basis for the pro- 
gram. And, let us say that P does well in 
the task T. What conclusions can we draw 
about mechanism M from the success of P 
in tackling T? How much credit should M 
get for the success of P? 

A historical perspective. In the late 
1970’s, rule-based expert systems were 
capturing the imagination of many people. 
Mycin and R1 were great successes. In the 

above terminology, rule-based languages 
would be M ,  Mycin and R1 would be the 
P’s, and simple diagnosis and configura- 
tion would be the corresponding tasks, T. 
The success of the two programs led to 
claims about the power of the rule-based 
mechanism. Similar examples involving 
other mechanisms, such as belief nets and 
truth maintenance systems, can be 
constructed. 

In a series of articles (such as one from 
1986,’ for example), I made the following 
points regarding rule-based systems as a 
mechanism. The specifics of the mecha- 
nism were incidental in accounting for 
many aspects of why the programs worked. 
The mechanism was computation-univer- 
sal, and of course could be used to imple- 
ment any other mechanism or strategy. A 
higher order strategy - classification in 
the case of Mycin, or linear sequencing of 
subtasks in the case of R1 -was the prob- 
lem-level strategy that was responsible for 
the programs’ performance. Not only was 
the rule-based mechanism not the direct 
cause of the good performance, but they 
actually hid the reasons for success: The 
higher level strategies were programmed in 
the language of the lower level mechanism. 
The strategies had to be brought out by 
analysis, rather than seen by a direct in- 
spection of the mechanism. The limitations 
and success of Mycin and R1 could be 
more insightfully analyzed by examining 
the adequacy of classification for diagnosis 
and linear subtasking for configuration 
design. Clancey also analyzed Mycin as a 
heuristic classifier2 and pointed out the 
power such high-level analysis brought to 
building diagnostic systems. In the last 
decade or so, there has been a decisive shift 
in emphasis in the field of knowledge- 
based systems from mechanisms at the rule 
level to phenomena at the task level. 
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Thus, given an M-T-P triad, it is not al- 
ways easy to decide exactly what the role of 
M was in the success of P in achieving that 
version of T. This is not to say that M’s 
properties are irrelevant. There are several 
ways a given mechanism might play less of 
a role than is readily apparent, among them: 

M might simply be one among many 
perfectly reasonable lower level mecha- 
nisms to implement the causally more 
relevant higher level mechanism. 
M might have features which actually 
impede good performance for the class 
of problems in T. This might not be 
evident from the specific instance of T 
for which P was written. In this 
instance, the troublesome features of M 
might not have been used or their effect 
might be minimal. Fuzzy set theory has 
been successfully applied to simple 
versions of the control problem. As 
Elkan argues, however, the problematic 
features of the theory might start show- 
ing up as more complex versions of the 
control problem are encountered. 
In some cases, M has many more fea- 
tures than needed for capturing the 
essence of T. Hence, using M to build P 
for solving T calls for making commit- 
ments to details that are either irrelevant 
or that detract from building good P’s. 
However, when such a program is built, 
it takes quite a bit of analysis to tell 
which features of M are necessary. 
There is often a tendency, especially 
among those who are enthusiasts of M 
for other reasons, to ascribe the success 
of P to those features of M that were 
actually incidental to P’s success. Even 
more seriously, success with M might 
lead to its use for more complex ver- 
sions of T,  where these additional fea- 
tures actually make building successful 
P’s more difficult. Elkan makes a good 
case for this possibility as fuzzy control 
approaches are applied to more com- 
plex control problems. 

The history of Mycin is another source of 
wisdom about the role of uncertainty-han- 
dling mechanisms. When Mycin came out, 

much was made of the uncertainty-factor 
formalism. Debates raged about this for- 
malism versus Bayesian formalism versus 
fuzzy set formalisms as an appropriate cal- 
culus. Cooper and Clancey got the idea of 
doing an experiment in which they coars- 
ened the uncertainty factors in Mycin’s 
knowledge base rules and examined how 
well the modified Mycin did in the same 
cases3 The modified Mycin solved the 
problems as well as the original Mycin. 

How could this be? Clearly the calculus 
as such didn’t play as fundamental a role in 
the ability of Mycin to solve the problems. 
The fine structure of uncertainty didn’t 
really matter. The knowledge base had 
enough knowledge to establish or reject the 
conclusions in a near-definitive way. None 
of the conclusions were based on even 
moderate distinctions in uncertainty be- 
tween the candidates. There were multiple 
ways to get to or reject conclusions, and 
even moderate changes in the uncertainties 
didn’t matter. The correct conclusions were 
very strongly established, and the incorrect 
conclusions were very strongly rejected. 
Mycin did well, not because of the fine 
points of its uncertainty calculus - it 
would have done just as well with any of a 
number of alternative calculi -but be- 
cause of the robustness of its knowledge 
base. This is another instance of the alloca- 
tion of credit problem. 

The nature of fuzzy theory 
I have followed fuzzy set theory almost 

from its inception. The theory’s claim that 
all senses of uncertainty in human knowl- 
edge cannot be reduced to some version of 
probability has always struck me as right. 
One of the most useful consequences of the 
fuzzy set movement has been the identifi- 
cation of different types of uncertainty. In 
particular, the theory suggests that many 
predicates such as “bald,” “most,” and 
“large” are neither binary predicates, nor 
are they simply probabilistic. This also 
seems to me to be true. However, the spe- 
cific solutions offered and claims made by 
fuzzy set theory, and the way they have 
often been applied to problems like control, 
are problematic for me. 

A psychological theory? At the heart of 
fuzzy set theory is an ambiguity about the 
nature of the theory, and how one goes 
about validating it. If it is a psychological 
theory - that is, a theory of how humans 
deal with certain types of uncertainty - 
we would need certain kinds of evidence 
about human behavior in uncertainty han- 
dling. I am unconvinced that fuzzy set the- 
ory is a psychological theory. I have not 
done an extensive literature survey, but the 
work of Kempt0n~3~ raises doubts that 
human behavior in uncertainty handling 
follows the axioms of fuzzy set theory. 

Even if it turns out that the theory does 
correspond to human behavior in this area, 
we must then decide what kinds of scaling 
and rationality properties the relevant 
human behavior has before it is used to 
make machines that make decisions. 

Two relevant analogies are found in 
commonsense physical reasoning and rea- 
soning about probabilistic uncertainty. We 
all have approximate rules about how the 
physical world behaves: “If we push this a 
little, this will move a moderate distance, 
while the other object would hardly move.” 
We use such rules when we have to predict 
behavior in the physical world, but these 
rules are typically chained over a few steps. 
When a problem calls for many steps, these 
rules start accumulating large errors (to be 
expected), but curiously, they also start 
accumulating ambiguities of another sort. 
So many alternative possibilities are gener- 
ated that we adopt all kinds of goal- and 
context-specific strategies to select a “fu- 
ture history” over other alternatives. Or, if 
we are physicists, we resort to a pencil and 
paper for more exact calculations even if 
what we really want are approximate an- 
swers. Clearly such approximate reasoning 
by humans does not scale up very well. 

In the case of probability assessment 
behavior, human behavior is not always 
what an outside observer might regard as 
rationaL6 Thus, in addition to the scalabil- 
ity problem, there is the problem of ratio- 
nality of human behavior as well. 
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The point that I want to make with these 
two examples is that, in many domains, 
automated decision systems should not be 
designed to emulate human behavior. Thus, 
even if fuzzy set theory turns out to be a 
model of how humans handle a certain type 
of uncertainty, we need additional argu- 
ments to make the theory the basis of auto- 
matic control. 

A mathematical theory? On the other 
hand, fuzzy set could be a theory of an ab- 
stract mathematical system whose proper- 
ties model some domain of human interest. 
Examples of such systems are arithmetic 
and deductive logic. The formalization of 
arithmetic starts with our intuitive notions 
about numbers, but it is not a psychological 
theory. It posits a world of numbers and 
operations on them, and the formalization 
is an attempt to capture the properties of 
this world. We can in fact construct the 
abstract world, recognize its objects as the 
familiar numbers and perform operations 
on them, and then verify those operations 
against the predictions of the axiomatiza- 
tion. For example, we can multiply 2 and 3, 
and check if the axiom system in fact gen- 
erates the number 6 for the answer. 

If fuzzy set theory is a theory of an ab- 
stract world whose constituents are uncer- 
tainties of certain types, and whose opera- 
tions are the sort of things we do when we 
combine uncertainties, then the theory has to 
give two kinds of evidence. First, there must 
be evidence that such an abstract world in- 
deed exists. Many abstract worlds that can 
be postulated fail to exist because their ax- 
ioms lack a certain internal coherence. Sec- 
ond, it must give evidence that the fuzzy set 
axioms capture the operations of this world. 
Establishing that such an abstract world 
exists is actually quite hard. In fact, I think it 
is quite possible that there is no abstract 
world of uncertainty combination of the 
type that fuzzy set theory attempts to cap- 
ture. In any case, fuzzy set theory has to 
worry about validation of its assumptions 
and about the existence of an abstract calcu- 
lus for combining this kind of uncertainty. 

What do I mean by “such an abstract 
world may not exist”? Again, the analogy 
of qualitative physics is relevant. We know 
there is a real physics, whose laws relate 
values of some state variables to the values 
of other state variables. If we have an exact 
value for the independent variables, we can 
calculate, using these laws, the exact val- 
ues of the dependent variables. 

The equations of physics are not a psy- 
chological theory. However, consider the 
ordinary commonsense reasoning about the 
physical world that I discussed earlier. Peo- 
ple do make qualitative predictions about 
the physical world in response to qualita- 
tive changes in some state of the world. As 
I said, the qualitative rules people have 
cannot be chained into long inferences: The 
ambiguities multiply, resulting in too many 
possible future histories. Which one of the 
histories will be realized often depends on 
a more exact value for some variables than 
we can get from qualitative rules alone. I 
have described elsewhere a number of 
strategies people use to handle such an 
explosion of possibilities, but almost all of 
the strategies depend on the problem-solv- 
ing goal and ~ o n t e x t . ~  The conclusion is not 
the result of applying an abstract, context- 
independent calculus. In short, there is no 
qualitative physics that is a homomorphism 
of the quantitative physics such that the 
qualitative physics gives answers that are 
just qualitative versions of the answers 
given by the quantitative physics. 

With respect to uncertainty handling, 
many researchers seem to be looking for a 
similar abstract system that may not exist. 
They are looking for a calculus of uncer- 
tainty handling which has the following 
features: 

The semantics of its uncertainty terms 
capture the intuitive meaning of uncer- 
tainty terms that people use in their 
commonsense behavior. 
The operations of combination in the 
calculus capture human behavior when 
their uncertainties are combined. 

This assumes that there is in fact a calculus 
that underlies the combining of uncertain- 

ties through human common sense. What if 
human behavior, in combining everyday 
uncertainties, is really governed by a com- 
bination of goal- and context-dependent 
strategies that make use of a rich body of 
domain-specific knowledge? What if this 
cannot be captured by a calculus of the 
type that fuzzy set or other theorists are 
looking for? If human conclusions are ro- 
bust with respect to moderate changes in 
the uncertainty values of the constituents 
- as in the Mycin experiment by Cooper 
and Clancey - then the real explanation of 
human behavior is not given by a calculus, 
fuzzy or otherwise, but by the complex 
collection of situation- and goal-specific 
knowledge that people bring to bear on 
instances of the problem. 

Like the case in qualitative reasoning 
mentioned earlier, people might in fact 
avoid anything like a chain of uncertainty 
combination. If the conclusion seems ro- 
bust with respect to moderate changes in 
the uncertainty values of its constituents, 
people feel comfortable with the conclu- 
sion. If not, they might get additional data 
so that a robust conclusion can be reached, 
postpone making a decision, or make deci- 
sions that may not in general be considered 
the best, but that are fine for the specific 
goal at hand. In other words, the same val- 
ues of uncertainties for two constituent 
beliefs would lead to a conclusion with an 
uncertainty value A in one situation, an 
uncertainty value B in another, additional 
information gathering in a third, explicit 
use of probability models in a fourth, and 
simply a shrugging of shoulders and no 
decision at all in a fifth. If this is the case, 
then the search for a calculus of the type 
fuzzy set theorists (and many others in the 
research community concerned with mod- 
eling uncertainty in reasoning) are looking 
for is likely to be futile. The issue is illus- 
trated well in Elkan’s example of his expert 
system, for which neither the probability 
scheme nor the fuzzy set approach was 
appropriate. 

The problem with fuzzy set theory, in 
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my view, is not in the mathematics of the 
formal system. It is clearly a mathematical 
system of some interest. However, a theory 
of this type has to be judged either as a 
psychological theory or as a theory that has 
captured an abstract calculus that underlies 
some type of human reasoning. As I have 
just argued, an abstract calculus of this type 
may not exist. 

The problem of context. In the 1980’s, my 
colleagues and I were faced with a similar 
problem with uncertainty in medical diag- 
nosis. Physicians have to come up with an 
assessment of the “likelihood” of some 
disease for which a number of data were 
potentially relevant. The relation between 
the data and the strength of belief in the 
disease was of course a classic example of 
uncertainty. For various reasons - not the 
least of which was that we didn’t have the 
data needed to use the frequency version of 
the probabilities for this relationship - we 
needed a technique to model human exper- 
tise in this area. Bayesian approaches, 
fuzzy set theory, Dempster-Shafer theory, 
and uncertainty factor calculus were all 
available to us. All these calculi shared one 
important property or assumption about 
human expertise -that there was a situa- 
tion- and goal-independent way of combin- 
ing uncertainties. 

For example, if two symptoms, s l  and s2, 
were relevant to making a decision about 
disease d, such calculi would provide ways 
in which evidence for sl and s2 would be 
combined to give evidence about d, and 
additionally, that the rule of combination 
itself is independent of the specific labels for 
s 1, s2, and d. If the evidence for sl is large, 
and s2 is medium, the rule would specify 
what the evidence for d would be. But the 
rule cannot be one thing where sl  is “biliru- 
bin,” s2 is “alkaline phosphatase,” and d is 
“liver disease,” while another rule is used 
where sl is “cholesterol level,” s2 is “alka- 
line phosphatase,” and d is “heart disease.” 

We found, however, that expert behavior 
in uncertainty combination in fact differed 
from context to context, and problem-solv- 
ing goal to problem-solving goal. We had 

to resist the mathematical attractions of an 
abstract calculus. Instead, we developed a 
formalism in which we could incorporate 
the uncertainty-combining behavior of 
experts,8 who were compiling a complex of 
background knowledge in such context- 
specific rules. It was also important to note 
that the chaining length was relatively 
small: Two or three steps were all that were 
used. If the problem called for much longer 
chaining, we took it as a sign that we were 
modeling the expert knowledge inaccu- 
rately, and sought additional pieces of 
knowledge that would shorten the chain. 

Fuzzy set theory has done quite well as a 
formal mathematical system. Whether its 
theorems are interesting is a subjective 
opinion among mathematicians, but a large 
body of mathematical work exists. Where 
more work needs to be done is in establish- 
ing that fuzzy set theory actually captures 
something real and can make a pragmatic 
difference, for the right reasons. 

initiating a debate about the properties of 
fuzzy set theory. I have argued that the 
points Elkan makes about fuzzy sets are 
really an instance of problems that apply to 
a number of other AI mechanisms and 
ideas, and specifically to many other pro- 
posals for subjective calculi for handling 
uncertainty. The issues raised are large in 
scope, and not only the fuzzy set commu- 
nity, but the AI community as a whole 
could benefit from giving them thought. 

I think Elkan has performed a service by 
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A Better Path to Duplicating 
Human Reasoning 
ChristopherJS. desilva and Yianni Attikiouzel, University of Western Australia 

The paradox that arises from Elkan’s Theo- 
rem 1 is mild in comparison to some of the 
logical problems that lurk behind the ap- 
parently innocent equations in Definition 1. 
In fact, although fuzzy logic has been pro- 
moted as a way of writing programs that 
carry out inference in the same way a per- 
son might, the equations of Definition 1 
can lead inescapably to conclusions that no 
human being would accept. 

Consider a simple example: You know 
that the airplane on which John Doe was 
traveling has crashed in some remote loca- 
tion, but you have no information about 
whether anyone on board has survived. In 
this situation, you might make the follow- 
ing assignment: t(“John Doe is alive”) = 
0.5. The equations of Definition 1 would 
lead you immediately to t(“John Doe is 
dead”) = 0.5. While this is a reasonable 
assignment, it would in tum lead you to 
t(“John Doe is both dead and alive”) = 0.5. 
Thus, there is an element of truth in the 
statement “John Doe is both dead and 
alive.” However, any rational person will 
argue that it is impossible for John Doe to 
be both dead and alive, so that the state- 
ment “John Doe is both dead and alive” 
must always be false, and have a truth 
value of zero. 

We can imagine putting a fuzzy logic 
system to the Turing test on the matter of 
John Doe’s well-being: 

Interrogator: 
Respondent 1: It is half-true that John Doe 

Respondent 2: I don’t know. 

Is John Doe alive ? 

is alive. 

Interrogator: Is John Doe dead ? 
Respondent 1 : It is half-true that John Doe 

is dead. 
Respondent 2: I don’t know. 

Interrogator: Is John Doe both dead and 
alive? 

Respondent 1: It is half-true that John Doe 
is both dead and alive. 

Respondent 2: It is impossible for John Doe 
to be both dead and alive. 

While there is an element of caricature 
in this dialogue, it serves to highlight the 
problem. It is clear that if A is any proposi- 
tion with a non-zero truth value, the equa- 
tions of Definition l will lead to the con- 
clusion that the truth value of the compound 
statement (A and (not A)) is also non-zero. 
This is a very simple example of how fuzzy 
logic diverges from human logic. It is to be 
expected that this divergence will increase 
with the complexity of the inference process. 

Of course, people have been assigning 
truth values between zero and one to make 
inferences since the time of Laplace, on the 
basis of probability theory. As Cox has 
shown,’ using the axioms of probability 
theory is essentially the only way to carry 
out this form of inference and remain con- 
sistent with human reasoning - any other 
way will lead to contradictions and incon- 
sistencies. However, proponents of fuzzy 
logic appear to be unaware of Cox’s work 
and that of Jaynes2 and T r i b ~ s , ~  where the 
question of how to write programs that 
make inference based on incomplete 
knowledge is discussed. 

As Cheeseman4 pointed out for AI in gen- 
eral, the bottom line is that if you want to 
write a program or build a machine that 
will perform inference in the same way as 
people, then you must build the basic equa- 
tions of probability theory into it, or face 
the inevitable outcome that it will not per- 
form as required. 

Perhaps the real paradox of fuzzy logic’s 
success is that proponents hail it as a suc- 
cessful technology despite the fact that it is 
incapable of performing as they claim it 
can and does. 
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1 Partial Truth is not Uncertainty I Fuzzy Logic versus Possibilistic Logic 
Didier Dubois and Henri Prade, Universitk Paul Sabatiw de Toulouse 
Philippe Smets, Universit6 Libre de Bruxelles 

Charles Elkan has questioned fuzzy logic 
and cast serious doubts on the reasons for 
its success, arguing that “fuzzy logic col- 
lapses mathematically to two-valued 
logic.” We completely disagree, and we 
especially object to two points: 

(1) Elkan’s proof uses too strong a notion 
of logical equivalence. The particular 
equivalence he considers, while valid 
in Boolean algebra, has nothing to do 
with fuzzy logic. 

( 2 )  Elkan claims that De Morgan’s alge- 
bra “allows very little reasoning about 
collections of fuzzy assertions,” al- 
though he correctly states that when 
logical equivalence is restricted to De 
Morgan algebra equalities’ “collapse 
to two truth values is avoided.” 

Furthermore, Elkan fails to understand the 
important distinction between two totally 
different problems that fuzzy-set-based 
methods address. These are the handling 
of gradual (thus non-Boolean) properties 
whose satisfaction is a matter of degree 
(even when information is complete) on 
the one hand, and the handling of uncer- 
tainty pervading Boolean propositions, the 
uncertainty being induced by incomplete 
states of knowledge that are represented by 
means of fuzzy sets, on the other hand.’ 
The first problem requires the plain use of 
fuzzy sets, while the second is the realm of 
possibility the0ry~9~ and possibilistic logic5. 
We now discuss in greater detail the points 
above and the distinction between truth 
functional fuzzy (multivalued) logic and 
non-fully compositional possibilistic logic. 

~ 

Fuzzy logic equivalence is not classical. 
Elkan claims that in fuzzy logic, four re- 
quirements hold for any assertions A and B, 
t being a truth assignment function such 
that VA, t(A) E [0,1]: 

t(A A B )  = min(t(A), t(B)) (1) 
t(A v B )  = max(t(A), t(B)) ( 2 )  
t(1A) = 1 - t(A) (3) 

equivalent. (4) 
t(A) = t(B) if A and B are logically 

While Equations 1-3 are indeed the 
basic relations governing degrees of truth 
in fuzzy logic (as well as fuzzy set mem- 
bership degrees) as proposed by Zadeh? 
Equation 4 (where “logically equivalent” is 
understood in a stronger sense than the 
equivalences induced by 1-3) has never 
been seriously considered by any author in 
the fuzzy-set literature. (There are, as can 
be expected, a few erroneous attempts at 
the subject in a corpus of more than 10,000 
published papers). Obviously, some classi- 
cal logic equivalences still hold with fuzzy 
assertions obeying Equations 1-3, namely, 
those allowed by the De Morgan structure 
induced by 1-3, such as 

A AA = A  ; A v A =A (idempotency) 

A A ( B  v C) = (A AB)  v (A A C )  ; 
A v ( B A  C)=(A v B )  A (A v C )  
(distributivity) 

But other Boolean equivalences do not 
hold, for instance: 

A A - A + L  

since Equations 1 and 3 entail only 

t(A A -A) = min(t(A), 1 - t(A)) < 1/2; 

and 

A v i A + T  

since Equations 2 and 3 entail o ~ l y  

t(A v ’A) = max(t(A), 1 - t(A)) Z 1/2 

where t ( l )  = 0 and t(T) = 1. Indeed, as 
many authors have emphasized, the failure 
of contradiction and excluded-middle laws 
is typical of fuzzy logic. This is natural 
with gradual properties like “tall.” For ex- 
ample, in a given context, somebody who 
is 1.75 meters high might be considered 
neither as completely tall (tall with degree 
1) nor as completely not tall (tall with de- 
gree 0). In this case, we might have, for 
example, ptall( 1.75) = 0.5 = pYtal1( 1.75). 

to binary logic, Elkan uses the logical 
equivalence 

To establish the collapse of fuzzy logic 

-(A A i B )  = B v (’A A i B )  ( 5 )  

postulated as being “plausible intuitively.” 
If Equations 1-3 hold, the left-hand part of 
Equation 5 can be equivalently written in 
fuzzy logic as 

’(A A i B )  -A V B 

while the right-hand part can be equiva- 
lently written as 

B v (TA A i B )  (’A v B)  A ( B  v i B ) ,  

which clearly relates to the excluded-middle 
law. Thus, it is expected that Equation 5 fails 
to hold in fuzzy logic -and indeed it can 
be checked, using Equations 1-3, that a 
counterexample to Equation 5 is provided 
by t(A) = 0, t(B) = 0.5, for instance. Thus, 
Elkan’s claim of “a paradox in fuzzy logic” 
relies only on faulty assumptions, or at best 
on a logical equivalence, the rationale of 
which is far from natural in the scope of 
fuzzy logic. 

Gradual and interpolative reasoning. 
Fuzzy logic is concerned with the handling 
of assertions like “John is tall” - asser- 
tions whose truth is a matter of degree due 
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to gradual predicates within them. The de- 
gree of truth of compound expressions can 
be easily computed using Equations 1-3. 
(Although we restrict ourselves here to the 
operators minimum, maximum, and com- 
plement to one, there is a panoply of 

that enable us to model different 
kinds of AND and OR operations between 
properties in a multicriteria aggregation 
perspective.) 

More than 20 years ago, R.C.T. Lee9 
provided the basic machinery for reasoning 
in fuzzy logic by extending the resolution 
rule in accordance with Equations 1-3. He 
established that if all the truth values of the 
parent clauses are greater than 0.5, then a 
resolvent clause derived by the resolution 
principle always has a truth-value between 
the maximum and the minimum of those of 
the parent clauses. 

We can also use an implication operator 
to model “gradual rules,”I0 which express 
knowledge of the form “the more Xis  A, 
the more Y is B,” such as, “the taller you 
are, the heavier you are.” This is captured 
by the implication defined by 

t (A  -+ B )  = 1 if t (A)  5 t(B)  
= 0 if t(A) > t(B) 

This implication is the natural counter- 
part of Zadeh’s fuzzy set inclusion defined 
by the pointwise inequality of the member- 
ship functions.6 It is also directly associ- 
ated with Equations 1-3, since A + B = T 
if and only if A A B =A. Such an implica- 
tion expresses a purely gradual relationship 
and has nothing to do with uncertainty. 
Besides, Takagi and Sugeno” have pro- 
posed an interpolation mechanism between 
n rules with fuzzy condition parts and non- 
fuzzy conclusions of the form “if X is A, 
and Y is B, then Z = cl”, by computing the 
following output when X = x0 and Y = yo is 
observed 

(6) 

(7) 

where K = min(pA,(xd, pei(yd), i = 1,n. 
Again, this kind of “inference” (which is 
widely used in fuzzy control) has nothing 
to do with uncertainty handling, since only 

an interpolation between typical conclu- 
sions is performed, based on degrees of 
similarity between the input (xo, yo) and the 
prototypical values in the core of the fuzzy 
set A, x B,. This similarity is measured by 
the coefficients yl which cannot be consid- 
ered as degrees of uncertainty in any case. 
In spite of its apparently ad hoc nature, 
Equation 7 can be justified with one- 
premised rules using Equation 6 and view- 
ing the rules as expressing “the more Xis  
A, and Y is B,, the closer Z is to cL” and 
using appropriately shaped membership 
functions.l* 

As this shows, contrary to Elkan’s claim, 
some kinds of reasoning, as exemplified by 
Takagi and Sugeno’s, and Lee’s methods, 
can be handled in a De Morgan algebra 
framework. 

Possibility theory and uncertainty. In 
addition to modeling the gradual nature of 
properties, fuzzy sets can be used to repre- 
sent incomplete states of knowledge. In 
this second use, the fuzzy set plays the role 
of a possibility distribution that provides a 
complete ordering of mutually exclusive 
states of the world according to their re- 
spective levels of possibility or plausibility. 
For instance, if we know only that “John is 
tall” (but not his precise height), where the 
meaning of ‘‘tall’’ is described, in context, 
by the membership function of a fuzzy set 
(that is, ptall), then the greater ptall(x) is, the 
greater the possibility that height(John) = 
x ;  the smaller ptall(x) is, the smaller this 
possibility. 

Given a [O,l]-valued possibility distribu- 
tion n: describing an incomplete state of 
knowledge, Zadeh4 defines a so-called pos- 
sibility measure n such that 

(8) 

where A is a Boolean proposition (a propo- 
sition that can only be true or false). It can 
be easily checked that for Boolean proposi- 
tions A and B, we have 

n(A) = sup( ~ ( x ) ,  x makes A true} 

n(A v B )  = max(n(A), n ( B ) )  (9) 
but that we only have the inequality 

n(A A B )  5 min(n(A), n ( B ) )  (10) 

n the general case (equality holds when A 
ind B are logically independent). Indeed if 
!3 TA, n(A AB) = n(l) = 0, while 
nin(n(A), n(-.A)) = 0 only if the informa- 
.ion is sufficiently complete for having 
:ither n(1A) = 0 (A is true) or n(A) = 0 (A 
is false). If nothing is known about A, we 
lave n(A) = n(-A) = 1. By duality, a ne- 
Zessity measure N is associated to n ac- 
:ording to the relation (which can be 
viewed as a graded version of the relation 
between what is necessary and what is pos- 
iible in modal logic) 

(11) 

which states that A is all the more necessar- 
ily true as TA has a low possibility to be 
true. It entails 

N(A) = 1 - n(-A) 

N(A A B )  = min(N(A), N(B))  (12: 

and 

N(A v B )  2 max(N(A), N(B)) .  (13: 

Equations 9, 1 I ,  and 12 should not be 
confused with Equations 2 , 3 ,  and 1, respec- 
tively. In 9, 11, and 12 we deal with 
Boolean propositions pervaded with uncer- 
tainty due to incomplete information, while 
1-3 pertain to non-Boolean propositions 
whose truth is a matter of degree (the infor- 
mation being assumed to be complete). 
Very often, discussions about fuzzy expert 
systems or uncertain knowledge base sys- 
tems get confused because of a lack of dis- 
tinction between degrees of truth and de- 
gree of uncertainty. Fuzzy logic, as 
understood by Elkan, is a logic where the 
truth status of propositions is multiple-val- 
ued; that is, there are intermediary truth 
values between true and false (like “very 
true,” “rather true,” and so on). On the con- 
trary, degrees of uncertainty apply to all-or- 
nothing propositions, and do not model 
truth values but express the fact that the 
truth value (true or false) is unknown. The 
uncertainty degrees then try to assess which 
one of “true” or “false” is the most plausi- 
ble truth value. This distinction was made 
by one of the founders of subjective proba- 
bility theory -De Finetti13 -but with a 
few exceptions (including ourselves) it has 
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been quite forgotten by the AI community 
in general and by Elkan in particular. Still, 
we consider this distinction a crucial pre- 
requisite in any discussion about fuzzy sets 
and possibility theory and their use in auto- 
mated reasoning. 

Observe also that neither n nor N are 
fully compositional with respect to A, v , 
and 7. This is not surprising, since the only 
way to map a Boolean structure on [0,1] by 
a fully compositional mappingfis to have 
f(A) equal to 0 or to 1 for any A.’ Truth- 
functionality in Equations 1-3 is preserved 
only by having A and B elements of a 
weaker structure, namely, a De Morgan 
algebra. Thus, logics of uncertainty cannot 
be fully compositional with respect to un- 
certainty degrees. This point is also recog- 
nized by Elkan in the case of probability 
measures, and dates back at least to De 
Finetti in the 1930s! Partial compositional- 
ity is possible, however; probabilities are 
compositional with respect to negation, 
possibilities with respect to disjunction, 
necessities with respect to conjunction. 
Based on his article, however, it seems that 
Elkan has not heard about possibility the- 
ory, which is another side of fuzzy sets. 

Let us consider Elkan’s watermelon ex- 
ample: 

watermelon(x) = 
redinside(x) A greenoutside(x) 

It is supposed that “for some melon m,  evi- 
dence that m is red intemally has strength 
0.5, and m is green externally with strength 
of evidence 0.8.” It is not clear what Elkan 
means by “strength of evidence” in the light 
of the above comments. We shall assume 
they are indeed degrees of uncertainty, 
rather than degrees of red and degrees of 
green. But then the only way to anchor this 
discussion in the fuzzy logic debate is to 
interpret these degrees in possibility theory. 
Elkan’s watermelon sentence can be under- 
stood as N(redinside(m)) 2 0.5 and N(green- 
outside(m)) t 0.8, expressing that the avail- 
able information makes us certain to the 
degree of 0.5 that m is red inside, and to the 
degree 0.8 that it is green outside. A direct 
application of Equation I2 leads to 
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V(wutermelon(m)) 2 min(0.5,0.8) = 0.5, a 
result also obtained under an equality form 
,y Elkan by applying Equation 1 in an inap- 
propriate way. However, he would like to 
zonclude that “m is a watermelon with 
strength of evidence over 0.5.” This seems a 
strange requirement, and one that a proba- 
bilistic model would not satisfy either (since 
Prob(A A B )  5 min(Prob(A),Prob(B)). In- 
deed, we are not in a data fusion situation 
where two independent sources provide the 
same conclusion with various strengths,I4 
but in a situation where the logical con- 
junction of two conditions is required to 
Zonclude that m is a watermelon (namely 
the inside redness of m and its outside 
greenness). Note that in case we have both 
N(A) t U and N(A) t a‘ as obtained from 
distinct arguments, we shall conclude that 
N(A) t max(u,a’). 

Reasoning with possibility theory. In 
possibilistic logic, first-order logic formu- 
las are weighted by lower bounds of neces- 
sity or possibility measures, which reflect 
the uncertainty of the available informa- 
tion. Possibilistic has been devel- 
oped both at the syntactic level, where 
there is an inference machinery based on 
extended resolution and refutation (the 
lower bound of the resolvent clause neces- 
sity is the minimum of the lower bounds of 
parent clauses necessity measures), and at 
the semantic level, where a semantics in 
terms of a possibility distribution over a set 
of classical interpretations has been proved 
to be sound and complete with respect to 
the syntax. Due to the fact that a possibility 
distribution encodes a preferential ordering 
over a set of possible interpretations, possi- 
bilistic logic has been shown to capture an 
important class of nonmonotonic reasoning 
consequence relations and has capabili- 
ties for handling partial inconsistency in 
knowledge bases5 Moreover, possibilistic 
assumption-based truth maintenance sys- 
temd6 based on possibilistic logic have 
been defined for dealing with uncertain 
justifications and ranking environments in 
a label; they have been successfully ap- 
plied to a data-fusion appli~ation.’~ 

However, possibility theory offers more 
general applications to reasoning with un- 
certain, imprecise, or fuzzy pieces of infor- 
mation by manipulating possibility distrib- 
utions explicitly. An example of these 
reasoning capabilities is provided by the 
so-called generalized modus ponens,lx 
which from a fuzzy fact “Xis A”’ (repre- 
sented by a possibility distribution J I ~  = pA/) 
and a fuzzy rule “if X is A then Y is B’ (also 
represented by a possibility distribution 
J C ~ , ~ ) ,  enables us to infer the possibility 
distribution restricting the possible values 
of Y by combining xx and nylX and project- 
ing the result on the domain of the variable 
Y. According to the multiple-valued logic 
implication + used to compute xYlx from 
pA and pB, different kinds of fuzzy rules 
can be modeled. In particular, we can dis- 
tinguish, for example, between the purely 
gradual rules already mentioned (of the 
form “the more X is A,  the more Y is E’) 
and certainty rules of the form “the more X 
is A the more certain Y is B.” Thus, gradu- 
ality can also be encountered in the expres- 
sion of incomplete knowledge states per- 
taining to little-known relationships 
between variables (like the ones expressed 
by fuzzy rules).’ 

Expert systems with fuzzy rules have 
been designed that are not as simple as 
fuzzy controllers (where no chaining of 
rules is required, but only an interpolation 
between the conclusions of a parallel rules 
set). These expert systems, as expected by 
Elkan, do “knowledge-intensive tasks such 
as diagnosis, scheduling, or design,” and 
include Cadiag-2,” Taiger,*O RUM,2’ 
Milord?2 OPAL.*’ All these systems were 
or are used in applications in one of the 
above-mentioned fields. These systems use 
some form of fuzzy set or possibility-the- 
ory-based inference mechanisms that is 
much more sophisticated than the three 
formulas proposed by Zadeh in 1965 
(Equations 1-3) -and to which fuzzy set 
and possibility theory methods cannot be 
reduced. There are many other important 
works on fuzzy set and possibility theory- 
based inference systems in temporal, quali- 
tative, and abductive reasoning, that, for the 
sake of brevity, we do not mention here. 
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Fuzzy logic is not as simple as Elkan seems 
to believe. In this respect, the absence of 
any mention in Elkan’s discussion of 
Zadeh’s possibility theory and approximate 
reasoning approach4,18 is quite revealing. 

In the literature, the expression “fuzzy 
logic” usually refers either to multiple- 
valued logic (as in the first part of Elkan’s 
paper) or to fuzzy controllers. However, 
the two domains have very little in com- 
mon, due to the fact that control engineers 
usually do not know about logic, and logi- 
cians do not know about control. In that 
sense, the first part of Elkan’s article has 
very little relevance to his discussion on 
fuzzy control. 

cal, it is certainly not because of Elkan’s 
collapsing property. More importantly, 
Zadeh’s view of fuzzy logic seems to go far 
beyond multiple-valued logic, and is as 
much a framework for handling incomplete 
information as a methodology for captur- 
ing graduality in propositions. The concept 
of fuzzy truth values refers as much to the 
idea of a partially unknown truth value as 
to intermediate truth values. This is why 
we have emphasized the crucial distinction 
between the truth-functional handling of 
gradual properties and the possibilistic 
treatment of uncertainty (which is not fully 
compositional). 

It is certainly true that the huge quantity 
of fuzzy set literature - whose quality is 
unavoidably inconsistent - does not con- 
tribute much toward helping newcomers 
have a synthetic, well-informed, and bal- 
anced view of the domain. Fuzzy controllers 
have encountered great success by provid- 
ing an efficient way of implementing an 
interpolative mechanism, not only in small, 
but also in very large and complex prob- 
lems. However, this should not obscure 
other existing applications, and the great 
potential of fuzzy set and possibility theory 
for AI applications in general. 

If the success of fuzzy logic is paradoxi- 
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Fuzzy Logic 
&I Interface Between Logic and 
Human Reasoning 

I Christian Freka, University of Hamburg, Germany 1 
Charles Elkan addresses two distinct areas 
of fuzzy logic: formal expressiveness and 
practical usefulness. He describes as a 
paradox that although the theory of fuzzy 
logic is not generally accepted, it is suc- 
cessfully used in many real-world applica- 
tions. He also calls paradoxical the fact that 
these applications are predominantly found 
in the control domain. 

I will not discuss here the alleged equiva- 
lence between fuzzy and two-valued logic; 
by choosing criteria established for the more 
restricted two-valued formalism, Elkan does 
not have a suitable framework for a mean- 
ingful comparison. To point out prerequi- 
sites for the practical usefulness of knowl- 
edge representation formalisms, I will focus 
on the role of fuzzy logic in linking two 
formally incommensurable worlds: the nat- 
ural world of human perception and experi- 
ence that leads to subjective cognitive con- 
cepts, and the formal world of classical logic 
that yields universal truth conditions. 

Given the premise that there is no one- 
to-one mapping between human concep- 
tual structures and the framework of classi- 
cal logic, it is not important for the analysis 
of a formal representation structure if two 
logically equivalent expressions are evalu- 
ated identically; what we have to ensure is 
that derivations accepted in human reason- 
ing can also be derived in our formalism. 

Classical logic and human knowledge. In 
AI, propositions and various kinds of logic 
formalisms serve to represent and derive 
knowledge about formal or real domains. 
Traditionally, most effort has been put into 
the development of logically correct and 
consistent operations within the fomzal rep- 
resentation; however, little attention has 
been paid to the correspondence problem 

between the structure of these propositions 
and operations, on one hand, and the knowl- 
edge structure they are supposed to repre- 
sent, on the other. When we represent for- 
mal domains (for example, card games or 
mathematical theorems), establishing this 
correspondence may not cause major prob- 
lems. However, when we represent knowl- 
edge about a real domain, the correspon- 
dence between our formalism and the 
represented structure becomes a major issue. 

A representation system consists of 

a represented world, and the relations 
and operations in it; 
a representing world, and the relations 
and operations in it; and 
the correspondence between the two 
worlds.’ 

When representing knowledge about the 
real world, it is inherently impossible to 
prove something about the represented 
real-world knowledge; this part of the rep- 
resentation system is outside the formal- 
ism. We only can prove something within 
the representing formalism. Thus, the rep- 
resented real world and its representation 
are formally incommensurable. 

In expert systems, the knowledge engi- 
neer establishes the correspondence 
between the real and formal worlds, but he 
cannot prove its correctness; he depends on 
his perception and intuition to determine 
the equivalence between the two. Usually, a 
knowledge engineer relies upon assump- 
tions to determine the validity of operations 
on a representation. These assumptions 
stem from his knowledge about formal 
logic, rather than from knowledge about 
specific properties of human reasoning. 
Nevertheless - as Elkan’s article shows - 
this approach appears to be widely accepted 
for the treatment of human knowledge. 

20 

One of Lotfi Zadeh’s main motivations 
for introducing the notions of fuzzy sets and 
fuzzy logic was his observation that real- 
world knowledge generally has a different 
structure and requires different formaliza- 
tion than existing formal systems. Contrary 
to established practice, a one-to-one corre- 
spondence between natural-language 
propositions and predicate calculus propo- 
sitions can be shown to be inadequate. In 
particular, the instantaneous switch from 
truth to falsity can easily distinguish propo- 
sitions in classical logic from those in nat- 
ural language. In addition, numerous as- 
sumptions of the formally correct treatment 
of the propositions cannot be established in 
the corresponding source knowledge. 

The fuzzy logic interface. Zadeh recog- 
nized the power of a formal approach to 
knowledge processing as well as the ad- 
vantages of using soft knowledge in human 
reasoning. He thus took a first step in incre- 
mentally relaxing constraints imposed on 
existing formalisms to accommodate im- 
portant properties of natural inference. This 
step was to generalize the classical notion 
of a set to the notion of a fuzzy set that al- 
lowed gradual membership. The choice of 
numerical degrees of membership was 
largely made for formal reasons: it 
provided a transparent way of formally 
treating the new notion. Using the familiar 
language of mathematics, the theory can 
easily be implemented in computer sys- 
tems, while at the same time offering a 
better approximation to the associated 
human concepts. 

Because human notions and concepts 
I form the basis for reasoning in expert sys- 

tems, the success of these systems depends 
upon the correspondence relation between 
human concepts and their formalization. 
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Studying the formal properties of the repre- 
sentation is insufficient. 

Zadeh realized that it was much more 
important to have a good model of the se- 
mantics of human concepts and perform 
reasonable operations than to have a bad 
model and perform verifiably correct opera- 
tions. He never insisted that his initial pro- 
posal for a fuzzy logic should be viewed as 
the final solution for representing human 
knowledge about the world; rather, he of- 
fered a model based on established notions 
that could easily be grasped by engineers 
and researchers alike as a step toward for- 
malizing human reasoning. Because of this, 
Zadeh’s basic notion of a fuzzy set stimu- 
lated enormous research activity in soft 
knowledge processing. 

Zadeh’s work also helped establish a 
radically different view of the status of 
expert knowledge. No longer is it viewed 
as a collection of absolute truths piped into 
an inference engine to derive all sorts of 
unexpected results; rather, it is now consid- 
ered as a system of more or less soft con- 
straints that are applied to specific situa- 
tions to make reasonable decisions. 

Soft knowledge is processed differently 
than logic clauses -the reasoning power is 
typically due to processing breadth rather 
than depth. The ability to use shallow pro- 
cessing to merge knowledge from different 
sources produced useful decisions. (Elkan 
uses the terms “deep” and “shallow” in two 
different senses: to distinguish general 
knowledge from specific knowledge, and to 
distinguish extensive and restricted knowl- 
edge propagation. I use the terms here in the 
second sense, which is the usual sense.) 
Elkan appears to attribute the fact that fuzzy 
systems employ only a few rules to the do- 
main’s simplicity. However, this fact can 
also be attributed to the important capabil- 
ity of summarizing complex knowledge 
into a dense and transparent description. 

Success and limitations. The fuzzy set 
paradigm introduced a new concept of soft 
knowledge that helped characterize an im- 
portant aspect of knowledge about complex 
environments. It also provides a language to 
bridge the gap between soft and shallow 

knowledge, on the one hand, and systematic 
and formal methods for dealing with it, on 
the other. This contribution might have a 
much more significant impact on human 
thought and the role of classical logic in 
systems analysis than the fuzzy set notion 
will have on the success of expert systems. 

As the transition from crisp sets to fuzzy 
sets is a rather moderate step toward 
accounting for the nature of human concepts, 
we should not expect it to solve all our prob- 
lems. In particular, fuzzy sets and fuzzy logic 
do not answer the fact that human concepts 
develop and are modified in an open world, 
while formal concepts are fixed in closed 
worlds, for the most part. Therefore, it is not 
surprising that successful applications of 
fuzzy logic are so far found mainly in well- 
defined closed domains like control prob- 
lems which, to a large extent, share the prop- 
erties of synthetic, formal problems. The 
way gradual membership is represented in 
fuzzy sets quite naturally suits such applica- 
tion domains. 

The further we move from representing 
human knowledge about clearly delineated 
problems to representing concepts relating 
to open domains, the more we will have to 
overcome certain rigidities of the classical 
formal approaches. 

Classical logic has proved extremely useful 
for solving formal problems specified in 
two-valued terms. Fuzzy logic is proving 
particularly useful for quasi-formal prob- 
lems involving gradual transitions between 
various system states. For adequately for- 
malizing less rigid domains, like the open 
world of human fuzzy concepts, we must 
relax the constraints on the formalisms 
even more. Specifically, numerical gradua- 
tion of membership used in classical fuzzy 
logic is hardly justified for the representa- 
tion of cognitive concepts; instead, less 
constraining ordering relations like partial 
orderings may be appropriate. 

Considering the fact that it took 25 years 
to put fuzzy logic into wide use in the well- 
understood engineering domain of control, 
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we should not be surprised if some barriers 
must be removed before fuzzy logic will be 
widely applied to more delicate areas of 
fuzzy reasoning. 

For judging the quality of a representa- 
tion formalism, I have proposed taking a 
representation-theoretical viewpoint: The 
correspondence between the represented 
domain and the formalism is at least as 
important as the representation’s formal 
properties taken by themselves. This view- 
point permits a high-level characterization 
of the overall representation problem. I 
have also argued that real-world knowl- 
edge and formal knowledge are formally 
incommensurable. As long as the laws of 
human reasoning are not well understood, a 
good model of human reasoning should be 
expected to preserve some paradoxes; ex- 
perimentation with the model may deepen 
the understanding and help resolve them. 
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Known Concerns About Fuzzy Logic 
Oscar N. Garcia, George Washington University 

I thank Charles Elkan for bringing into the 
open questions about fuzzy inferences that 
seem to bother him and others. I hope the 
result of this discussion will be a clearer 
understanding of many-valued logics in 
general, and fuzzy logic in particular. My 
comments address three topics: questions 
about Theorem 1, the “watermelon” exam- 
ple, and the issue of fuzzy logic in control. 

Much of the confusion surrounding The- 
orem 1 stems from its rather unclear state- 
ment. I interpret the theorem to say the 
following: 

f2(A,B) = B OR (4 AND 4). Using Def- 
inition 1, ifone were to require the follow- 
ing four equivalences - 

“Letfl(A,B) = (A AND 4) and 

(1) fl(A,B) HP(A,B)AND 
( 2 )  f l ( 4 , B )  - f 2 ( 4 , B )  AND 

(4) f l ( 4 , l B )  W f 2 ( 4 ,  4 )  
(3) fl(A, 4 3 )  Hf2(A,  iB) AND 

-then such a logic system would also re- 
quire that t(A) = t(B) or that t(A) = 1 - t@)” 

I can prove this supposition or “theo- 
rem” following the valuation 1 of Defini- 
tion 1 for values of A and B in the interval 
[0,1]. Such valuation yields validity for the 
first of the four equivalences above except 
for 0 < t(A) < r(B) < 1 - t(A) when tf~‘“1) - 
t( f2) has the value t(B) - t(A) if t(B) < 1/2 
and the value 1 - t(A) - t(B) if t(B) > 1/2. 
The area where the equivalence is not satis- 
fied is an isosceles triangle in the square 
[ 1 ,O] x [ 1,0] not including the isosceles 
sides. Similarly, for the other three equiva- 
lences, the non-overlapping triangles 
where the equivalences are not satisfied 
would cover the whole unit square - ex- 
cept for the isosceles sides, which consti- 
tute the two diagonals of the square. Thus, 
either t(A) = t (B)  in one diagonal of the 
square, or t(A) = 1 - t(B) in the other. 

Where is the catch? First, the fourth line 
of Definition 1 in Elkan’s paper indicates 
that each side of a “logically equivalent” 
formula has the same evaluation. This is 
not a fair imposition, and Elkan need not 
choose such a formula to make his point. 
Just consider requiring the valuation of two 
“logically equivalent” formulas: 

( 5 )  t(A AND 4) H t(i(A OR 4)) 

which, of course, only occurs in the biva- 
lent case following Definition 1. Equiva- 
lences are tautologies, and while the argu- 
ments of t on each side of equivalence 5 are 
“logically equivalent” in classical logic, 
they are not so in fuzzy logic where the law 
of the excluded middle does not hold. 
Thus, it is not surprising that the attempt to 
evaluate these formulas using the classical 
bivalent logic interpretation of “logical 
equivalence” would not yield sound 
results. It can be easily shown that the ma- 
nipulation offl orfr in classical logic leads 
to a disjunction of a variable and its com- 
plement. We should not take a tautology 
that supports a rule base in one logic, use it 
in another logic that does not support that 
tautology, and expect it to work - and 
then go on to claim that a “collapse” of one 
logic to another has been proved. The re- 
quirement of “logical equivalence” in Defi- 
nition 1 is therefore suspect. Elkan raises 
the question of why it is that intuitionistic 
logic is capable of rejecting the law of the 
excluded middle while fuzzy logic is not. 
While this is not directly relevant to the 
claimed “collapse,” it is clear that intuition- 
istic logic is not used to the extent that 
fuzzy logic is used in controller design. 

Another issue that might be troubling 
Elkan - implicit in his choice of the func- 
tions called f 1 and f2 in my interpretation 

of his Theorem 1 - is what deductive tau- 
tologies (those involving implication, and 
particularly those known as the inferential 
implication tautology’) should be used in 
fuzzy logic if limited by Definition 1. This 
question is worthy of investigation, and has 
led to multiple alternatives to Zadeh’s orig- 
inal definition of implication; however, it is 
beyond my concern here. My acquaintance 
with expert systems applications indicates 
that, in practice, value sets are categorized 
as designated (truth-like), antidesignated 
(false-like), and neutral (those for which 
insufficient knowledge exists for the model 
to be useful). A typical example for the real 
interval [0,1] would be antidesignated A = 
[0,0.4), neutral N = [0.4,0.6], and desig- 
nated D = (0.6,1]. (The complement of a 
designated value is antidesignated and 
vice-versa, while neutral values are the 
complements of other neutral values.) The 
object of expert systems is to mimic, as 
closely as possible, the reasoning of expert 
humans in terms of the best causality rela- 
tions known to them, and to incorporate 
them in a knowledge-based model, often 
represented as a rule base. 

mal” logic (all of its truth-assuming tau- 
tologies are included in classical logic, 
though the converse is not true, as can be 
shown in the case of equivalence 5 )  the 
puzzlement shown by Elkan is not novel. 
Indeed, the tautology involving the law of 
the excluded middle from classical bivalent 
logic does not hold in fuzzy logic, nor in 
many other normal many-valued logics. 
For those systems in which operations in- 
volving the designated and anti-designated 
defined sets coincide with those of classi- 
cal logic, Shaw has enumerated the possi- 
ble homomorphisms of any ordered desig- 
nated system into one of 12 groups defined 
by the conjunction table of their designated 
(D), antidesignated (A), and neutral (N) 

Because fuzzy logic is known as a “nor- 
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subsets.* (A deeper and more thorough al- 
gebraic approach to the theory of many- 
valued logics, including fuzzy, intuitionis- 
tic, and probabilistic inferencing is given 
by B ~ l c . ~ )  For example, Shaw shows that 
the table for element conjunctions from 
these fuzzy logic subsets is 

6 A N D  
A A A A  
N A N N  
D A N D  

This table is also valid for Lukasiewicz’s 
n-valued logic, which, as one would ex- 
pect, shares many analogies with fuzzy 
logic. The Lukasiewicz’s logics are first 
defined in terms of negation and implica- 
tion, and other operations are defined in 
terms of these two. The table of conjunc- 
tions above is also valid for Kleene’s 
(strong) three-valued logic based on nega- 
tion, conjunction, and disjunction opera- 
tors. Kleene’s logic has no true-assuming 
tautologies (formulas that always assume 
the highest truth value if more than one 
designated value is available). If only the 
operators of Definition 1 are used, and dif- 
ferent independent operators are defined as 
part of fuzzy logic, then Elkan’s point that 
only DeMorgan-like tautologies are possi- 
ble in fuzzy logic is well taken, but of no 
great consequence as long as viable deduc- 
tive laws are available. (A discussion of 
what those deductive laws could be and 
their relation to implication is treated 
nicely by Trillas, who characterizes a 
generic “modus ponens generating func- 
tion.”’) As these references point out, there 
is not only practical but theoretical credi- 
bility to the inferences proposed for fuzzy 
logic well beyond the limitation to DeMor- 
gan equivalences suggested by Elkan. 
Elkan’s acceptance of the so-called col- 
lapse as an established fact in his conclu- 
sions could be considered disingenuous by 
the finality with which he considers the 
hypotheses of Theorem 1 to be “apparently 
reasonable conditions.” 

The watermelon problem. Elkan’s ver- 
sion of this example is a revision of the 
1993 AAA1 conference publication, where 
the watermelon model was in error because 

it was incomplete. The problem I find here 
is not directly related to the logic, but 
rather to the use and interpretation of the 
model. Elkan has not expressed what he 
calls “implicit” background knowledge in 
terms of rules. While he uses the equiva- 
lence operator to define watermelon(x), a 
knowledge engineer trying to identify wa- 
termelons might have given two rules (with 
different logical meaning) from (inside- 
red(x) + watermelon(x)) AND (outside- 
green(x) -+ warermelon(x)) to indicate that 
the two predicates contribute separately to 
the implication of watermelon(x). 

Alternatively, the engineer might have 
given the one rule with the conjoined an- 
tecedents. In the former case, in many ex- 
pert systems shells the connotation that the 
conditions insidered(x) and outsidegreen(x) 
give “separate” results to argue the conse- 
quent from two different viewpoints would 
yield a heuristic function of the two valua- 
tions - somewhere between the values of 
insidered(m) and of outsidegreen(m). If the 
knowledge engineer had selected the 
model (insidered(x) AND outsidegreen(x)) 
4 watermeZon(x) for this example, it 
would connote the necessity to satisfy “si- 
multaneously” both related conditions, and 
it can be argued that the conservative an- 
swer would be the “weakest link” answer 
(the minimum of the two valuations). 

Fuzzy logic in control. It seems reason- 
able that the longer a chain of implications 
with uncertain predicates is - whatever 
the definition of the approximate deductive 
law - the more uncertain the result at the 
end of the chain will be (as in computing 
the range of values in worst-case designs). 
So it seems that it would be a good thing, in 
general, to have short inference chains and 
a small number of rules whenever possible. 
Furthermore, the fuzzifying and defuzzify- 
ing that takes place at times reminds me of 
the reshaping done in the analog transmis- 
sions of digital pulses to avoid signal dete- 
rioration through consecutive repeaters to 
distort information. 

The fact that so many applications have 

been possible with short inference chains 
raises more interesting questions yet: 
Under what circumstances are long chains 
indispensable? How could long chains of 
inferences be avoided? However - make 
no mistake - even a set of one-layer rules 
requires some form of inference, and rule 
sets will increase their sequential complex- 
ity when hysterisis is taken into account. 

Elkan repeats conventional wisdom 
when stating, “The basic problem is that 
the ways in which items of uncertain 
knowledge are combined must be carefully 
controlled to avoid incorrect inferences. 
Fixed, domain independent operators . . . 
do not work” to which I add: regardless of 
the logic system. We should not expect to 
find an exact function f such that t(A*B) = 
f(t(A),  t (B))  for a logical operator * unless 
we know either the functional relations of 
occurrence between A and or, equiva- 
lently, know that they are independent (and 
if that were the case, an exact analytical 
model could be built!) It is then not surpris- 
ing that knowledge engineering and incre- 
mental learning methods are used in con- 
junction with parameter determination to 
compensate for this lack of generic knowl- 
edge, not the weakness of a logic system. 
So, what is new? The dogma of generality 
versus efficiency strikes again, and knowl- 
edge engineering and machine leaming are 
not exempted. 

Elkan’s ability to generate interest in 
both the topic of nonclassical logics for AI 
and the need for more general understand- 
ing of many-valued logics and basic re- 
search on how it is applied, are important 
contributions that should be acknowledged. 
It is a good thing that the relatively smooth 
imprecisions of natural-language semantics 
- when contrasted with crisp symbolic 
approaches -are available without exces- 
sive complexity when simpler, closed- 
form, and linear designs are not forthcom- 
ing. This occurs frequently around those 
transitional regions of system operation 
where decision changes interface, and 
points to the value of vagueness in process- 
ing natural language - usually considered 
in the negative - as a useful, approximate, 
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real-world engineering design tool, a fact 
iot popularly noticed by researchers in 
iatural-language processing. We can use 
fuzzy reasoning, as we do in everyday dis- 
zourse, when more exact approaches are 
too complex, time-consuming, costly, or 
u e  just not available. 
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Elkan Goes Wrong - Again 
George J. Klir and Bo Yuan, State University of New York, Binghamton 

Elkan’s article has three basic parts: a 
mathematical part consisting of one defini- 
tion and one theorem; a discussion of the 
roles played by fuzzy logic in expert sys- 
tems and control systems (based upon the 
mathematical part); and his appraisal of the 
roles of fuzzy logic and its likely signifi- 
cance in the future. Here we discuss the 
major fallacies we found in the first two; 
due to space limitations, we will not ad- 
dress the third, though we disagree with 
almost all of the author’s opinions. 

As is well known, Elkan’s article is a 
revised version of his original paper, pub- 
lished last year. These two versions are not 
fully compatible, especially in the mathe- 
matical part. Here, we point out discrepan- 
cies between the two versions and address 
both alternatives. 

In Definition I ,  Elkan introduces a par- 
ticular system of fuzzy logic by choosing 
the standard fuzzy operators for conjunc- 
tion, disjunction, and negation, and by re- 
quiring that “t(A)=t(B) if A and B are logi- 
cally equivalent,” where t(A) and t(B) are, 
respectively, the degrees of truth of arbi- 
trary propositions A and B. Clearly, t(A) 
and t(B) are values in [0,1]. In the original 
paper, the term “logically equivalent” is 
defined as “equivalent according to the 
rules of classical two-valued propositional 
calculus.” This is, of course, nonsense, 
since one logic system (in our case, a par- 
ticular system of fuzzy logic) cannot be 
defined in terms of logical equivalence of 
another system (the more restrictive classi- 
cal two-valued logic). 

In the revised version, the meaning of the 
term in Definition 1 is not explicated. It is 
only remarked that “depending on how the 
phrase ‘logically equivalent’ is understood, 
Definition 1 yields different formal sys- 
tems.” Since the role of Definition 1 is to 
characterize a system of fuzzy logic, logical 
equivalence in this definition must be ex- 
pressed in terms of all possible truth values 
of fuzzy propositions, that is, in terms of all 
real numbers in [O,l]. Specifically, two ex- 
pressions in fuzzy logic based on the opera- 
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ors of Definition 1 are logically equivalent 
f and only if their truth values are equal for 
dl possible assignments of truth values in 
0,1 J to logic variables involved. 

The principal result (and the only mathe- 
natical result) of Elkan’s papers, which pur- 
~ o r t  to demonstrate “technical limitations of 
Fuzzy logic,” is Theorem 1. What is this re- 
sult? The answer depends on which version 
3f the paper you use. In the original version: 

For any two assertions A and B, either 
r(B)=t(A) or t(B)=l - t(A). 

The theorem is supposed to apply to the 
system of fuzzy logic introduced by Defini- 
tion 1. However, as explained above, the 
definition is based on the logical equiva- 
Lence of two-valued logic and hence it is not 
a definition of a fuzzy logic system. The 
proof of the theorem is based on the fact 
that the sentences -(A A 4 3 )  and B v 
(4 A 4 3 )  (and seven other pairs of sen- 
tences obtained by exchanging and comple- 
menting A and B )  are logically equivalent in 
classical two-valued logic. However, these 
sentences are not equivalent in a fuzzy logic 
that employs the logic operators of Defini- 
tion 1. Hence the theorem has no relevance 
to this fuzzy logic. Let us tum now to the 
revised version of the theorem: 

Given the formal system of Definition 1 ,  
if -,( A A 4 3 )  and B v (4 A 4) are 
logically equivalent, then for any two 
assertions A and B, either t(B)=t(A) or 
t(B)=l -t(A). 

The fundamental difference between the 
original and revised version of the theorem 
reflects the difference in the two versions 
of Definition. 1. In the revised version, the 
logical equivalence of -,(A A 4 3 )  and B v 
(4 A 4) is employed as a condition in 
stating the theorem rather than a fact in 
proving it. If the notion of logical equiva- 
lence in the revised Definition 1 is under- 
stood as applying to all truth values in 
[0,1], in spite of its confusing characteriza- 
tion by the author (as discussed above), then 
the revised version of Theorem 1 is relevant 

to the fuzzy logic involved. However, the 
theorem is still stated incorrectly or, altema- 
tively, its proof is incorrect. The proof de- 
pends on eight logical equivalencies, only 
me of which is included in the statement. 
The last paragraph of the proof is thus math- 
ematically incorrect. It would be correct if 
logical equivalencies representing the seven 
implications listed in the paragraph were 
included as conditions in the statement of 
the theorem. Without these seven logical 
equivalencies as conditions, the theorem 
must be reformulated as follows: 

Given the formal system of Definition I ,  
for any two assertions A and B, if 
7 ( A  A 4 3 )  and B v (4 A 4) are logi- 
cally equivalent, then the truth values 
t(A) and t(B) are constrained by the in- 
equalities t(A)+t(B)>I or r(B)lr(A). 

In this case, the last paragraph of Elkan’s 
proof is incorrect and must be excluded. 

Assume that the statement of Theorem 1 
and its proof are made compatible in one of 
the two ways we suggest. What then is the 
meaning of the resulting theorems - one 
with the single logical equivalence as a 
condition, and one with the eight logical 
equivalencies as conditions? These theo- 
rems basically show that the truth values of 
propositions within the system of fuzzy 
logic introduced by Definition 1 become 
appropriately constrained when additional 
extraneous conditions are imposed. With 
the eight conditions, the constraint is obvi- 
ously more severe than with only one of 
them. If, for example, we required our sys- 
tem to satisfy A v 4 = 1 then the truth 
values would become constrained to the set 
{ 0,1], and the system would collapse to the 
classical two-valued logic. 

All this is well known, and Elkan’s theo- 
rem (when properly fixed) does not offer 
anything new. It is absurd, however, to con- 
strain a system by extraneous requirements 
and then claim that the original system has 
“technical limitations.” This is what Elkan 
attempts to do in his papers. The fact that 
every system of fuzzy logic must violate, 
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under the assumption of truth functionality, 
some properties of Boolean algebra (and, 
hence, the classical two-valued logic) is a 
simple consequence of the decision to for- 
mulate logics that can deal with propositions 
that are not required to be either true or false, 
but may be true or false to various degrees.’ 

Elkan’s remarks about the connection 
between fuzzy logic and intuitionistic logic 
also contain some errors. For example, it is 
not sufficient to characterize fuzzy logic by 
the rejection of the law of excluded middle. 
The system of fuzzy logic determines which 
properties of Boolean algebra are rejected. 
The system introduced by Definition 1,  for 
example, rejects not only the law of excluded 
middle, but the law of contradiction as well? 
This differs from intuitionistic logic, which 
rejects the law of excluded middle and the 
implication -, 4 4 A, but does not reject 
the law of contradiction and the opposite 
implication A + 4 .3,4 Other systems 
of fuzzy logic do not reject any of the men- 
tioned laws; instead, they reject distributivity 
and idempotence.* Furthermore, de Mor- 
gan’s laws are valid only in some systems of 
fuzzy logic. Another error is to consider the 
logical equivalence in Definition 1 as intu- 
itionistic equivalence. A distinctive feature of 
intuitionistic logic is the operator of negation 
upon which it is based. For any proposition 
A, where t(A) E [0,1], the intuitionistic nega- 
tion, 4, is defined by 

1 when t ( A )  = 0 
0 otherwise 

This negation is not involutive, nor is it con- 
tinuous - it acts as a defuzzifier. Clearly, 
there is no compatibility between intuition- 
istic logic and the fuzzy logic introduced in 
Definition 1 .  

Fuzzy logic applications. Elkan’s discus- 
sion of fuzzy logic in expert systems reveals 
his confusion between degrees of truth in 
fuzzy logic and degrees of evidence 
expressed in terms of some fuzzy measures 
(probabilities, belief measures, and so on).5 
While the former are a matter of compatibil- 
ities of given objects with relevant fuzzy 
predicates, the latter result from information 
deficiency regarding the classification of a 
given (incompletely characterized) object in 

relevant crisp sets. While these two areas 
have distinct application domains, they can 
be combined, resulting in statistics with 
imprecise probabilities6 or in fuzzified evi- 
dence theory; for example. 

In his discussion of fuzzy controllers, 
Elkan’s lack of understanding is again re- 
vealed. He fails to understand that most of 
the simple fuzzy controllers on the market 
(we may call them the first generation of 
fuzzy controllers) are not explicitly based on 
fuzzy logic, but rather on the approximation 
of relevant control functions by fuzzy num- 
bers that represent chosen linguistic states of 
the variables involved. This is similar to 
classical control, which is also not explicitly 
based on classical two-valued logic. It is 
well established that fuzzy controllers of this 
kind are universal appro xi mat or^.^.^ 

While most existing fuzzy controllers 
are rule based, research on combining rule- 
and model-based approaches in designing 
fuzzy controllers is ongoing. Models em- 
ployed in these controllers are expressed, 
in general, in terms of relations among rel- 
evant fuzzy variables. Hence, the use of 
fuzzy set theory (not necessarily fuzzy 
logic in the narrow sense) involves both 
parts of the controller -the rule-based 
part as well as the model-based part. 

Elkan’s papers do not contribute to knowl- 
edge. The mathematical part is fallacious; 
and, while some critical errors in the origi- 
nal version are corrected in the revised 
version, new errors are introduced and 
some statements become less specific. 
Even if we fix all the mathematical errors 
to help Elkan obtain his intended result, we 
find only that the result is trivial and well 
known: If one takes an axiomatic system 
and adds to it additional requirements, the 
system becomes more constrained. Given a 
free choice of requirements, one can con- 
strain the system as he or she wishes. This 
is precisely what Elkan attempts, in an am- 
ateurish way. He tries to find requirements 
that would constrain a given system of 
fuzzy logic so severely that only two truth 
values are allowed. He then argues that this 
shows technical limitations of fuzzy logic. 
This sort of argumentation is absurd. 
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A Misconcention of Theorv and 
Applicatio6 
E H .  Mamdani, Queen M a y  & Wesgield College, London 

The argument in Charles Elkan’s article has 
three steps. First, he provides a theorem 
that “proves” that fuzzy logic is deficient 
because it collapses to a two-valued logic. 
He then shows what makes the current ap- 
plications of fuzzy logic successful, 
although this success may seem paradoxi- 
cal. His final step shows how such a suc- 
cess cannot be guaranteed as applications 
scale up in the future -thus resolving the 
paradox. I expect other commentaries will 
deal with the misconceptions regarding the 
theorem. I focus attention here on the re- 
mainder of Elkan’s argument. 

The source of Elkan’s paradox is the link 
between the first two steps formed by his 
statement that “One way to defend a calcu- 
lus is to show that it succeeds in interesting 
applications.” But first a couple of very 
different but relevant pointers. 

it replaces the classical PID controller. 
When tuned, the parameters of a PID con- 
troller affect the shape of the entire control 
surface. Because fuzzy logic control is a 
rule-based controller, the shape of the con- 
trol surface can be individually manipu- 
lated for the different regions of the state 
space, thus limiting possible effects to 
neighboring regions only. Furthermore, the 
use of fuzzy mathematics provides interpo- 
lation between the adjoining regions, re- 
sulting in an overall smooth control surface 
- an important requirement in the control 
of continuous systems. This also suggests 
that fuzzy sets are an efficient way of rep- 
resenting continuous variables in rule- 
based systems. 

Secondly, I have always felt that fuzzy 
logic has similarities with Boole’s logic. 
That logic, originating over 150 years ago, 
was the first system of reasoning in the 

Fuzzy logic control is successful because 
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form of a calculus. However, after reading 
Boole’s “Laws of Thought” it is difficult to 
discern whether Boole is concerned with a 
descriptive explanation of how people ac- 
tually think, or with a prescriptive model of 
how they ought to think. AI research work- 
ers have seldom addressed this key distinc- 
tion properly. 

Within AI there are three distinct areas 
of research: the descriptive, the prescrip- 
tive, and what I call the applicative con- 
cerns. In the first area, researchers deal 
with descriptive theories about cognitive 
processes. These theories are very hard to 
prove experimentally (or more specifically 
to disprove experimentally - if one ap- 
plies the Popperian view) because the level 
of control in experimental studies on 
human cognition is far below that in the 
natural sciences. The second group of re- 
searchers are concemed with prescriptive 
models: different reasoning systems and a 
variety of logics. Here, the issue is one of 
correctness of these models, variously de- 
fined. Again, it is not possible to use nat- 
ural-science methods to devise controlled 
experiments that demonstrate the correct- 
ness of these models; correctness can only 
be dealt with by means of philosophical 
arguments (more on this later). 

I belong to the third group of AI 
researchers, whose main concern is to 
build industrially successful artifacts. Such 
artifacts are successful in their own right, 
and do not owe their success to the under- 
lying theory or a mathematical model. It is 
sad how many AI workers have lost the 
ability to distinguish between applications 
and well-designed controlled experiments 
set up to disprove a particular theory. Ap- 
plications address the scientific needs of a 
specific domain, and cannot replace experi- 
ments conducted to test a theory. Many 

features of the domain knowledge intro- 
duced in an application also contribute to 
its success. There is a common misconcep- 
tion that models are created and then ap- 
plied, and that success then legitimizes a 
model. This view is superficial, because an 
application’s requirements seldom match 
the underlying axioms of the model 
exactly. The fixes that are added (defuzzifi- 
cation in fuzzy logic control) are instru- 
mental in the industrial success -but 
often sit uncomfortably in the original the- 
ory. This is true of all applications inspired 
by prescriptive models. 

The links between these three groups 
(descriptive, prescriptive and applicative) 
must be properly understood if one is to 
avoid the methodological trap Elkan has 
fallen into. In AI, the work of each group 
inspires the direction of the others -but 
that is all they do. The results of one group 
can never be used to legitimize the approach 
of another. Weak though these links are, 
they still play a significant role in scientific 
advances. My point is not to belittle the 
interplay between the three areas, but to 
point out that a misunderstanding of their 
relationship is clearly the source of Elkan’s 
perception of the paradox. 

What then is the relationship between 
fuzzy logic control applications and fuzzy 
logic itself? Precisely the same as that be- 
tween Boole’s laws of thought (a descrip- 
tive theory?), Boolean logic (a prescriptive 
model?), and logic circuits (an application) 
-namely, an effective tool presented itself 
that met many, though surely not all, of the 
application needs. However, the widespread 
success of logic circuits cannot be used to 
legitimize Boole’s logic any more than the 
industrial success of fuzzy logic control 
legitimizes the philosophical correctness of 
fuzzy logic. Therefore, the question of a 
paradox - a central idea in Elkan’s paper 

27 

I 



edited by Frances Brazier 
and Dag Johansen 

The 11 papers that follow 
the introduction discuss ex- 
perience with actual sys- 
tems and  applications 
The5e papers report on in- 
terprocess communication, 
the Chorus dpprodch to d 
inicrokernel-based IJNIX 
system, and  Plan 9 from 
AT&T, the 0 5 F  framework 
for applications and security 
issues, the evolution of an 
authentication service, the 
Isis system, and tools for 
monitoring and controlling 

192 pages 1993 

Catalog # 4292-03 
$40.00 Members $32.00 

ISBN 0-8 186-4292-0 

IEEE COMPUTER 
SOCIETY PRESS 

Call 1-800-CS-BOOKS 

-does not arise. Similarly, his argument 
on the philosophical deficiencies of fuzzy 
logic focuses on a theorem without fully 
discussing the assumptions and axioms it is 
based upon; this does nothing to argue 
against the adoption of fuzzy logic control. 
The terms “logic” in logic circuits and 
“fuzzy logic” in fuzzy logic control are 
purely incidental, and a matter of historical 
evolution. 

The AI approach puts a much higher 
value on prescriptive mathematical models 
than they actually deserve. These models 
cannot be legitimized by controlled experi- 
ments or by application, nor can they be 
justified by some underlying descriptive 
theory (in spite of Boole). Prescriptive 
models can only be argued over at a philo- 
sophical level - an ability few AI 
researchers possess. Philosophical disputa- 
tions about prescriptive models within in- 
formed groups such as Uncertainty in AI, 
have, nevertheless, helped to enlighten 
many difficult points. In the end, however, 
such disputations can never completely 
settle the matter. 

Because AI researchers are mostly 
trained in mathematical skills, another fre- 
quently applied but false way of legitimiz- 
ing prescriptive models is on the grounds 
of mathematical symmetries or some in- 
trinsic sophistication of potential function. 
On rare occasions when models are 
abstracted from applications, the concern is 
no longer what led to the success of the 
application. Rather, the academic game of 
looking for the symmetries and the sophis- 
tication of the form or the soundness of the 
calculus begins. 

Having rightly or wrongly detected a para- 
dox, one then has to resolve it; in doing so, 
Elkan commits further errors. He has a lot 
to say about the small number of rules, the 
shallowness of fuzzy rule bases, and so on 
- implying that some beauty of the form 
often plays a significant role in assessing 
the worth of a model (and the intellectual 
enterprise of a researcher) rather than the 
content or industrial usefulness. To argue 

that fuzzy logic control is not worthy of 
industrial consideration because of its lack 
of complex form and structural sophistica- 
tion, as Elkan effectively does in the final 
part of his paper, is to subscribe to an anti- 
inventions culture. Accentuating form with- 
out attention to the content is like praising 
beauty and ignoring the brain. To use the 
colloquial term, the scientific mythology 
within AI has created a “bimbo science.” 

The scenario worth keeping in mind is 
that since its inception, fuzzy logic has had 
its detractors and antagonists not least be- 
cause the tag “fuzzy” is seen as debasing to 
the somber image of science. So incensed 
are some that they will clutch at any straw 
to rid us of fuzzy sets research, even 
through a paper based on mistaken inter- 
pretations and modish posturing. This sce- 
nario leaves me saddened, for reasons ex- 
plained above. 

It is the word “paradox” I find most baf- 
fling in Elkan’s article. Science at its best is 
often counterintuitive; but paradoxical? Our 
accepted understanding of the scientific 
method is based on natural science and de- 
scriptive theories. But applying descriptive 
theories to computer science - which is 
dominated by prescriptive theories - can- 
not, in my opinion, work. New prescriptive 
theories often alienate many researchers, but 
they also inspire others to build novel appli- 
cations. It may be that some of these appli- 
cations are a runaway success. Rather than 
talking of “paradoxes,” what is required at 
this point is a rigorous attempt to discover 
the secret of that success. Because this in- 
vestigation is descriptive in nature, the tradi- 
tional scientific method is likely to yield 
dividends. In the case of fuzzy control, this 
process is now underway. 
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Fuzzy ~~ Logic 
A Misplaced Appeal 
Francis. J e f y  Pelletiel; University of Alberta 

I have long found puzzling the acceptance 
and apparent success of fuzzy logic. We 
philosophically oriented logicians have 
pretty much sneered at fuzzy logic ever 
since it was introduced with that name.* 
Yet what can I say when I own an excellent 
fuzzy logic camera? I am grateful to Elkan 
for his explanation of this point of tension. 

Basically, Elkan explains that the notion 
of “fuzzy logic” as it is used in control sys- 
tems has nothing to do with the term as it is 
used in logic. That is, it has nothing to do 
with fuzzy logic as a formal system with 
rules of formation, evaluation, and infer- 
ence. Fuzzy controllers are so-called be- 
cause of a certain analogy with fuzzy logic, 
but in fact they do not embody, implement, 
or instantiate fuzzy logic. 

For Elkan, the relationship between 
fuzzy controllers and fuzzy logic is rather 
like that between on-off light switches and 
predicate logic: Yes, there is a certain anal- 
ogy between on-off and true-false, but it’s 
only an analogy, a way of looking at light 
switches. There is nothing in the light 
switch corresponding to the connectives of 
sentence logic nor to predicates, names, 
and quantifiers of predicate logic. To iden- 
tify the two, or to say that light switches 
implement or instantiate predicate logic, 
would be to ignore most of predicate logic 
and mistakenly fixate on just one insignifi- 
cant aspect. According to Elkan, we should 
not be surprised that critiques of fuzzy 
logic have no impact on fuzzy control the- 
ory; the areas of fuzzy logic that get criti- 
cized are simply not employed in the con- 
trol arena (whether practical or theoretical). 

Elkan’s theorem shows one of the diffi- 
culties surrounding fuzzy logic as a formal 

~~ ~~ 

* It was studied by J Lukasiewicz and A 
Tarski in 1930 under the name “infinitely many- 
valued logic$,”’ and received intensive qtudy by 
Feveral mathematical logicians in the 1950s and 
early 1960s * 

system. Supporters of fuzzy logic are with- 
out doubt tempted to respond to this by 
focusing on the assumption that logical 
equivalence in classical (or intuitionistic) 
logic is a warrant for formulas having the 
same truth value in fuzzy logic. I do not 
wish to enter this debate; instead, I will 
take this opportunity to point to some other 
features of a logical nature that have been 
used to criticize fuzzy logic and its claims 
of usefulness in various tasks. 

Presentations of fuzzy logics have gen- 
erally been semantic in nature, while the 
syntax - axioms and rules of inference - 
has generally been ignored. The basic se- 
mantic notion is that propositions can take 
any real value in [O.. . l ]  intuitively corre- 
sponding to “degrees of truth” of the 
proposition. Many advocates of fuzzy 
logic, especially those who want to replace 
classical logic as the medium of represen- 
tation for ordinary reasoning and the de- 
scription of natural-language phenomena, 
would like to “use” the semantics of fuzzy 
logic. That is, they are not interested 
merely in asserting theorems, nor in the 
uninterpreted formulas of fuzzy logic, but 
rather would like to be able to claim that a 
proposition is true to a certain degree, that 
it can be compared to another proposition 
which is true to some different degree, and 
that certain conclusions can be drawn from 
this comparison. 

For example, it might be that “Sally is 
wealthy” is true to degree 0.7 while “Mike 
is wealthy” is true to degree 0.4. Now, we 
might wish to draw certain conclusions 
from this information, such as that Sally is 
wealthier than Mike, or wealthier to a cer- 
tain degree than Mike. To do this, we need 
some way to “use the semantics.” Techni- 
cally speaking, we wish to have a kind of 

“autodescriptivity” in the logic: a way of 
mirroring the semantics within the syntax. 
This autodescriptivity is regarded by some 
authors as necessary for the adequacy of 
any many-valued logic,* for without it, the 
apparent many-valuedness is only illusory 
because we cannot say anything in a many- 
valued way. There are a number of ways of 
accomplishing this, depending on what 
sorts of operators are available within the 
language. The direct way is to have so- 
called parametric operators in the language: 
For each k, where 0 5 k 5 1 ,  there is a unary 
sentence operator Jk.  The truth of such sen- 
tences is evaluated thus: 

t ( J k [ @ ] )  = 1, if t(@) = k 
= 0, otherwise. 

That is, a Jk operator says that the formula it 
operates on takes exactly the value k. Al- 
though there are other approaches, I will 
adopt this direct approach - that the lan- 
guage being used to “express the semantics” 
contains the parametric operators directly. 

(There are many other ways to get their 
effect. Some writers allow constants - 
symbols that denote the truth values - 
others have “threshold operators,” and so 
on. With suitable such other operators, we 
can indirectly define the parametric opera- 
tors. Since there are innumerable truth val- 
ues in the real range [O.. . I], the methods of 
autodescriptivity mentioned here cannot 
really be applied. Instead, we must con- 
sider the fuzzy logic generated by the TU- 

tionals in the [O.. .1] interval. Attempts by 
fuzzy logicians to incorporate ever more 
inclusive - some would say obscure - 
operators indicates to me a lack of appreci- 
ation of what a logic is. For, if it can be 
shown that there is no algorithmic, deter- 
ministic procedure to determine the truth 
value of an arbitrary expression, then it is 
very unclear that there can be any use of 
the formalism.) 
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Observation 1: Fuzzy propositional logic 
is not argument-complete. The first short- 
coming of fuzzy logics concerns proposi- 
tional logic (and hence any fuzzy logic, 
because they all contain propositional logic 
as a part). There is no theory of argumenta- 
tion for fuzzy propositional logic such that 
whenever all premises of the argument are 
designated, then so is the conclusion. (Intu- 
itively, some of the truth values are consid- 
ered “good’ or designated, while the others 
are undesignated. Exactly which ones are 
designated might vary from application to 
application. The point is that an argumenta- 
tion theory is designed to take us from 
“good” premises to “good” conclusions, 
and never mislead us by deriving a “bad” 
conclusion from “good” premises. The 
present observation says that this cannot be 
done, ever; and this holds for any decision 
on what is designated, so long as at least 
one number is designated and at least one 
is undesignated.) 

This result does not depend on there 
being (or lacking) any particular syntactic 
machinery around (other than the paramet- 
ric operators); rather, there simply can be 
no such theory of argumentation. The proof 
of this is via the fact that fuzzy logics are 
not semantically compact. That is, it is not 
true for fuzzy logic that a set of formulas is 
satisfiable just in case every finite subset of 
it is satisfiable. For example the infinite set 

r = { l J k [ p i i o 5 k < ~  1 
is not satisfiable, since the sentence letter p 
must take on one of the values 0 5 k 5 1,  
whereas the membership condition in r 
says it doesn’t. Yet any finite subset of r is 
satisfiable. Similar sets can be described 
using quantified sentences, such as 

I-’= { J,[Fa113 Jl/z[Fazl, J,,dF%I, ... > 

7Jo[VxFx] ] 

Having noted this fact, it is an easy step to 
the conclusion that fuzzy logic, even fuzzy 
propositional logic, is not argument-sound, 
since all proofs are finite. Thus, there can 
be no adequate scheme for making infer- 
ences in general within fuzzy logic. 

Observation 2: There is no normal form 
for fuzzy monadic predicate logic in 
which quantifiers have widest scope. The 
second shortcoming of fuzzy logic is found 
in the attempt to add quantifiers, even a 
simple monadic predicate logic. Fuzzy 
logic dictates that a universally quantified 
formula, such as VxFx, takes the least 
value of all the substitution instances for x 
in the formula Fx, or the greatest lower 
bound if there is no such least value. An 
existentially quantified formula takes the 
greatest value of all the substitution 
instances, or the least upper bound if there 
is no such greatest value. 

A sentence like Jk[VxFx] says that the 
greatest lower bound of the Fx’s values is 
exactly k.  There is no formula that has any 
quantifier outside the scope of Jk that has 
the same truth value. For example, b”ml,[Fx] 
says that every individual instance of Fx 
has a greatest lower bound of exactly k, 
which is clearly wrong. 3xJk[Fx] says that 
there is some particular individual that is F 
to exactly degree k, which is also wrong 
because there might not exist an object that 
has the greatest lower bound value. But the 
lack of a normal form makes it unlikely that 
there can be any method to detect theorem- 
hood in fuzzy monadic predicate logic. Cer- 
tainly resolution will not work. 

clusion is validly derived in fuzzy logic 
(Observation l), but we cannot even tell 
when a formula (even of monadic predicate 
logic) is a theorem. Surely together these 
two observations should give fuzzy control 
theorists pause; they show that fuzzy logic 
as an abstract theory reduces to stating in- 
tuitive principles without any way to gen- 
eralize or use them. And, since fuzzy con- 
trol theory is surely committed to using 
something - it follows that what it is com- 
mitted to using is not fuzzy logic, just as 
Elkan said. 

So, not only can we not tell when a con- 

Observation 3: Full fuzzy predicate logii 
is not recursively axiomatizable. The rea 
underlying reason that fuzzy logic fails to 
be of any logical interest does not have to 
do with the elementary fragments of propo 
sitional fuzzy logic and monadic fuzzy 
predicate logic, even though it is cute to 
note that even these elementary parts of 
fuzzy logic are not usable in the desired 
form. Instead, it is that full predicate logic 
is not really a logic. 

This result was proved by Scarpellini3 foi 
infinite-valued Lukasiewicz logics, and the 
proof carries over to all the well-known 
modifications (such as adding parametric 
operators or various arithmetic operators) o 
this logic, which includes any of the fuzzy 
predicate logics ever described in the litera- 
ture. The thrust of the proof is that the set of 
unprovable formulas of ordinary two-value’ 
predicate logic can be mapped one-to-one 
into the set of valid (designated) formulas o 
fuzzy logic, for any closed or open range of 
values ( k . .  . l )  that we designate. But the set 
of unprovable formulas of ordinary predi- 
cate logic is not recursively axiomatizable, 
and therefore neither is the set of valid for- 
mulas of fuzzy logic. Hence, they cannot 
even be adequately characterized or talked 
about coherently, except by example. Fur- 
thermore, fuzzy control theorists do not 
merely wish to appeal to examples of valid 
formulas of fuzzy Iogic, but to be able to 
characterize them in some way or other. 

Lest my message be thought entirely critica 
of fuzzy control theory, let me point out tha 
I believe that everything its proponents wis 
to do can be adequately carried out. (My 
camera works!) However, their appeal to 
fuzzy logic is misplaced. Every fuzzy logic 
application has an analogue in finitely 
many-valued logic, and each one of these is 
logically well-behaved. There are correct 
theories of argumentation for them, there are 
resolution-like theories of theorem-detec- 
tion for them, and they are axiomatizable. 

The only apparent advantage to fuzzy 
logic is that it seems to be a grand general- 
ization of all those finitely many-valued log- 
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ics - after all, we never know in advance 
which particular finite value might be 
needed for a specific application. However, 
it is an illusion to think that fuzzy logic is the 
correct generalization. It cannot be used and 
it has no reasonable logical foundation. But a 
“variable precision” finitely many-valued 
logic can do the sort of things desired. In 
such logics we have a superstructure of (say) 
three values. Having determined that some 
sentence takes one of these top-level values, 
we can then expand it to determine which of 
those three values it has at a lower level. For 
example, we grade essays as “good,” “so- 
so,” and “bad,” but then given that an essay 
has been categorized as “so-so” we can look 
more closely at whether it is a good, so-so, or 
bad example of being so-so. And this process 
can continue for some finite number of 

times. Such a logic does not have any of the 
shortcomings that fuzzy logic does, and 
would seem to be the sort of thing that could 
form a logically adequate background theory 
for fuzzy control systems. 
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On the Purportedly Paradoxical 
Nature of Fuzzy Logic 
Enrique H. Ruspini, SRI International 

Elkan’s original paper purportedly showed 
that fuzzy logic was paradoxical in nature 
due to its reliance on formal bases that pre- 
clude truth values other than 0 and 1. Elkan 
has now modified some of his claims and 
arguments slightly, although he still de- 
pends on that result as his major source of 
insight into the technology. 

We are now told, for example, that 
fuzzy logic is paradoxical because it is 
successful in many applications while its 
foundations remain under attack. Perplex- 
ing as this situation might be from a socio- 
logical viewpoint, it is hardly a logical 
self-contradiction, and describing it as a 
paradox is totally inappropriate. 

Nor is a paradox implied by the claim 
that most theoretical fuzzy logic papers 
seem to deal with representation and rea- 
soning methods, while most fuzzy logic 
applications have resulted in embedded 
controllers. The embedded controllers have 
been developed, of course, upon founda- 
tions provided by the representation and 
inferential methods of fuzzy logic. Elkan is 
not only unaware of this fact, but his over- 
all analysis of the technology is colored by 
the strange notion that the depth and qual- 
ity of deductive procedures in a controller 
are inferior to those in “sophisticated” rea- 
soning systems. 

For reasons of space, I will not discuss 
here Elkan’s statements about application 
of fuzzy logic to control and other intelli- 
gent reasoning systems, but will confine 
my comments to the formal result (Theo- 
rem 1 )  that remains the major basis of his 
claims about the purported paradoxical 
nature of fuzzy logic. Other assertions 
about the methodology -arising in some 
cases from superficial analyses of relevant 

literature and issues, but mostly out of ig- 
norance or plain confusion - are appropri- 
ateIy addressed by other respondents. 

Starting from an axiomatic characteriza- 
tion of fuzzy logic proposed by Gaines, and 
assuming that logical equivalence in fuzzy 
logic means equivalence in the sense of 
classical logic (thus implying that all clas- 
sical logic theorems are also fuzzy logic 
theorems), Elkan shows that Gaines’ ax- 
ioms imply that the only possible truth val- 
ues are 0 and 1 : fuzzy logic collapses into 
conventional logic. 

Anybody acquainted with fuzzy logic, 
however, would not have much difficulty 
questioning Elkan’s notion of logical equiv- 
alence; it is well known that many theorems 
of propositional logic are not valid in fuzzy 
logic. Assuming otherwise immediately 
leads to the result that Elkan finds so para- 
doxical. Applying, for example, the axioms 
of fuzzy logic to the law of the excluded 
middle av la, which is not a theorem of 
fuzzy logic, leads to the equation 

max(t(a), 1- t (a))= 1, 

which only has the solutions t(a) = 0 and 
t(a) = 1. 

Many theorems of classical propositional 
logic may also be used to derive this result. 
Elkan’s unnecessarily lengthy proof - 
based on the conventional propositional 
logic equivalence of the formulas 7(u A ,b) 
and b v (lu A ,b) - actually assumes the 
validity of the law of the excluded middle 
(to see this, simply expand the latter and 
note the conjunct b v lb). 

Elkan’s “shocking” discovery has been 
long known, and is discussed in elementary 
textbooks on fuzzy and multivalued logics.’ 

For example, if (C,U,1) are negation, dis- 
junction, and conjunction operators, respec- 
tively, that is - 

t(-P) = C(t(p)) 3 

t(P v 4)  = W@)? t(4)) ‘ 
t07 A 9)  = I M P ) ,  t (4))  

that satisfy the laws of excluded middle 
and contradiction, then the corresponding 
logics can be neither idempotent nor dis- 
tributive. If Elkan had probed further, he 
could have proved that all continuous 
truth-functional multivalued logics “col- 
lapse’’ as well. 

The definition of equivalence that Elkan 
describes as “apparently reasonable” is, 
therefore, patently unreasonable. The sup- 
posedly shocking result is just a well- 
known fact of little relevance to the prac- 
tice of fuzzy logic. Simply stated, Elkan 
has found that fuzzy logic and the classical 
propositional calculus are different logical 
systems. 

Not much is gained either by looking 
into seemingly more congenial quarters for 
alternative definitions. Elkan turns, for 
example, to intuitionistic propositional 
calculus (IPC) as another place to borrow 
notions of equivalence, feeling that his 
result is strengthened by the fact that the 
law of the excluded middle - a previous 
source of trouble - fails for both IPC and 
fuzzy logic. IPC is, however, based on a 
negation operator with different semantics 
than that of fuzzy logic (one is involutive 
while the other is not). Once again, one 
does not need a proof as extensive as 
Elkan’s. The Godel translation l(la A 

la) of the law of the excluded middle is 
a theorem in IPC but not in fuzzy logic. 
Assuming that it is leads once again to the 
same incorrect conclusion: Fuzzy logic 
collapses. Elkan’s theorem is, therefore, 
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just as true for IPC equivalence as it was 
for classical equivalence, but it is also just 
as meaningless as before: All that has been 
proven is that fuzzy logic is neither classi- 
cal nor intuitionistic logic. 

This explanation, however, still does not 
answer a basic question: What is the mean- 
ing of the word equivalent in Gaines’ 
Axiom 4: 

[(a) = t(b) if a and b are logically 
equivalent? 

In classical logic, logical equivalence be- 
tween two formulas a and p may be de- 
fined either as the validity of the formula 
a ts p, or as the equality of the truth values 
of the formulas a and p for all possible 
assignments of truth values to their con- 
stituent propositional symbols. A quick 
inspection of the truth table of the H con- 
nective shows that these definitions are 
equivalent. 

seems to be amiss here. How can we con- 
sider Axiom 4 before we even define logi- 
cal equivalence? If equivalence means that 
the truth value of a is always equal to that 
of p, why do we need an axiom to state that 
this should be the case? 

In multivalued logics, equivalence in the 
sense of the validity of a tf p is not the 
same as equivalence in the sense of equality 
of the truth values of ~1 and p. For example, 
these notions yield the same relation in the 
Lukasiewicz L3 logic, but not in the 3- 
valued logic of Bochvar (where, if a and p 
have the third value 1/2, then a ts p also 
has the third value 1/2). In these logics it is 
possible to consider several characteriza- 
tions of the notion of logical equivalence, 
each having different formal properties.* 

In multivalued logics in general, and 
fuzzy logic in particular, equivalence is 
usually defined in terms of the semantics of 
the + connective. Several such definitions 
have been proposed, notably by Zadeh, and 
by Trillas and Valverde.’ Seeking a wide 
characterization of fuzzy logics, Gaines 
chose not to specify a particular semantics 
for the implication operator, instead requir- 
ing only the use of a reasonable notion of 
equivalence compatible with equality of 
truth values. 

While this is very reasonable, something 

Those who have read Elkan’s original 
paper wondered at the time why he had to 
seek definitions in other logics rather than 
proceeding along the lines I have sketched 
here. In the present article, Elkan at last 
considers a definition based on the seman- 
tics of the negation, disjunction, and con- 
junction operators, but not on that of the 
implication connective (see his last para- 
graph in the section on paradox). He con- 
cludes, however, that this leads to an ex- 
tremely weak system where the only 
equivalences are the De Morgan axioms. 

This statement, unlike previous claims, 
is not only irrelevant but false and mislead- 
ing. Simple application of fuzzy logic oper- 
ators for disjunction, conjunction, and 
negation immediately shows that the fol- 
lowing laws of propositional logic also 
hold in fuzzy logic: commutativity of dis- 
junction and conjunction; associativity of 
disjunction and conjunction; distributivity 
of disjunction (conjunction) with respect to 
conjunction (disjunction): idempotence of 
disjunction and conjunction; identity with 
respect to T and 1; absorption with re- 
spect to disjunction and conjunction; ab- 
sorption by T and I; involution; and, 
surely enough, the De Morgan laws. 

All these properties give fuzzy logic 
considerable strength as a reasoning for- 
malism, but their consideration alone - in 
the absence of definitions for the implica- 
tion connective + and for the deductive 
rules of fuzzy logic (such as the general- 
ized modus ponens) - cannot be the bases 
of any substantive argument, either pro or 
con, regarding the adequacy and correct- 
ness of fuzzy logic as a deductive method- 
ology. Curiously, Elkan does not seem to 
feel that there is any need to discuss these 
matters, interpreting the independence of 
his theorem from any notion of implication 
as a sign of its universality and strength 
rather than as yet another indicator of its 
lack of relevance. 

Elkan’s arguments, arising from a meaning- 
less result and a superficial and confused 
evaluation of the state of the art in fuzzy 
logic, do not provide any substantial insights 
into the methodology, its advantages, or its 
shortcomings. Given the weakness of his 
arguments, one can only be astonished at his 
conclusion that proponents of fuzzy logic 
are guilty of fallacious non-sequitur think- 
ing (post hoc, ergo propter hoc). Those who 
propound the technology found their claims 
on solid theoretical results and on thousands 
of examples of its successful application. All 
that Elkan produces, on the other hand, is an 
irrelevant theorem and a rather shallow and 
mistaken discussion of a minor segment of 
the literature. 
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Semantic Uncertainty of the 
FuzzXied Laws of Logic 
Burhan Tiirken, University of Toronto 

The confusion surrounding Charles Elkan’s 
article is generated by a lack of clear under- 
standing of the four levels of knowledge 
representation: linguistic, metalinguistic, 
propositional, and computational. When we 
attempt to convert knowledge expressed in 
natural language into computable knowl- 
edge, at least three significant transforma- 
tions occur between these four levels. 

Linguistic expressions. Linguistic expres- 
sions are natural language expressions, 
such as 

“inventory is low and demand is high,” 
“inventory is low or demand is high,” or 
“inventory is not low,” 

where “inventory” and “demand” are 
nouns, and “low” and “high” are adjectives. 
In the terminology of fuzzy set theory, I the 
nouns are linguistic variables, the adjec- 
tives are linguistic values, and “and,” “or,” 
and “not” are linguistic connectives that 
generate interval-valued fuzzy 

A metalinguistic expression is a map- 
ping from natural language to a symbolic 
language. For example, the metalinguistic 
forms of the linguistic expressions above 
are: “XI is A AND Xz is B,” “Xi is A OR Xz 
is B,” and “XI is NOT A,” where XI and X ,  
are the metalinguistic representations of 
the linguistic variables, A and B are the 
metalinguistic representations of the lin- 
guistic values, and AND, OR, and NOT are 
the metalinguistic representations of the 
linguistic connectives. In short form, these 
metalinguistic expressions are represented 
as “A AND B,” “A OR B,” and “NOT A.” 

Propositional expressions. In the classical 
two-valued logic, there are at least two ap- 
proaches that generate propositional ex- 

pressions (normal forms) for every meta- 
linguistic expression. The first is to assign 
the symbols f l  , U, and to the basic meta- 
linguistic connectives AND, OR, and NOT, 
respectively. Next, we form the canonical 
expressions of the basic metalinguistic ex- 
pressions asAnB,AUB, andA‘. Then we 
derive all other propositional expressions 
with an application of A n B ,  A UB, or AC, 
subject to the particular interpretations. 

interpretation to a metalinguistic expres- 
sion and define its meaning with a truth 
table. We then determine its normal forms 
from the truth table by the application of 
the “canonical form” generation algorithm. 
In this approach, two distinct but equiva- 
lent canonical forms are generated: the 
disjunctive normal form (DNF) and the 
conjunctive normal form (CNF). For exam- 
ple, DNF and CNF for “A AND B’  are 

In the second approach, we first give an 

DNF(A AND B )  = A n B  = 

CNF(A AND B )  = 
(AUB) n (AUBC) n (AWB) 

Fuzzy normal forms. It has been shown that 
fuzzy normal forms can be generated from 
the fuzzy truth table directly.2 Depending 
on the set of axioms we impose, we get at 
least three different classes of.fuzzy logics 
with their corresponding normal forms: 

(1) If we assume (n,U;) is a De Morgan 
logic such that only boundary and monoto- 
nicity conditions together with the involu- 
tive complementation are imposed, then we 
have the following FDNF and FCNF ex- 
pressions for the first-level fuzzy logics: 

FDNF(’) (A AND B )  = ( B n A )  U (AnB) 

FCNF(’) (A AND B )  = 
(BUA) n (BWA) n (BUR) n 
(AUB) n (ACUB) n (AUBC) 

(2) If we assume (n , U :) is a De Mor 
logic such that boundary, monotonicity, 
associativity, and commutativity conditi 
together with the involutive complemen 
tion are imposed, then we have FDNF ai 
FCNF for the second-level fuzzy logics: 

FDNF(2) (A AND B) =(A f l B )  U (A n 
FCNF@) (A AND B) = 

(AUB) n (AUBC) n (ACUB) n 
(AUB) n (AUBC) n (ACUB) 

(3) If we assume (n,U,c) is a De Mol 
logic such that boundary, monotonicity, 
associativity, commutativity, and idemp 
tency conditions together with the invol 
tive complementation are imposed, ther 
have FDNF and FCNF which are equiv 
lent to the fuzzified extensions of the cl 
sical normal forms:’ 

FDNF(’) (A AND B )  = A n B  = 
DNF(A AND B )  

FCNF(’) (A AND B )  = 
(AUB) n (AUBC) n (ACUB) = 
CNF(A AND B )  

In particular, it has been shown’ that 

FDNF(’) (A AND B )  
FCNF(3) (A AND B )  

In a similar manner, we can obtain FDNF 
and FCNF for the three classes of fuzzy 
logics and for all other metalinguistic 
expressions. 

Computational expressions. At this level, 
symbolic elements of sets are assigned 
numeric values, and conjunction, disjunc- 
tion, and complement operators are chosen. 
In Aristotle’s logic, the assignments are 

pA : Xi + [ 0,1}, and ,ug : Xz + { 0,1} 
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In Zadeh’s fuzzy set theory and its logic, 
the assignments are 

pA :XI + [0,1], and pB : X, + [0,1] 

Furthermore, for Zadeh’s logic, the compu- 
tational expression of the metalinguistic 
expression “A AND B’  at the third level are 

pFDNF(A AND E )  (a, b, = aAb 

FFCNFIA AND B )  (a, b, = 
(avb) A (avN(b))  A (N(a)vb)  

where a E A, b E B are elements of fuzzy 
sets A,B - that is, a = F~(x , )  and b = pB(x2) 
- and A = min, v = max, and N(.) is the 
standard complement. 

Interpretations 
We can now reinvestigate and reinterpret 

the law of excluded middle for both the 
idempotent and nonidempotent operators 
as examples of our classification discussed 
above. For the idempotent class, an exam- 
ple is the min-max-standard complement 
triple. For the excluded middle expression, 
FDNF(3) and FCNF(3) are computed to be 

( U  A N(a)) V (U A U )  V (N(a)  A N(a))  5 
a v N(a)  

which results in 

0.5 5 a v N ( a )  5 1.0 for a E [0,1] 

This is a type-I1 semantic uncertainty, that 
is, p(pA(x)) = a v N(a). However, it reduces 
to singletons as opposed to intervals. It is 
clear that in Zadeh’s fuzzy logic we ought 
not to state that the excluded middle expres- 
sion holds or does not hold. We ought to 
instead state that it is satisfied to the degree 
specified by a v N(a) for a E [O,l]. 

For the nonidempotent class, consider 
the bold intersection-union-standard com- 
plement De Morgan logic where TB(a, b)  = 
max(0, a+b-1), SB(a,b) = min(1, a+b), and 
N(a)  = 1-a. For this case we obtain 

o.o pFDNF‘2’[A OR NOTA) 
pFCNF‘2’(A OR NOT A) = .o 

and have an interval of graded values 
where the excluded middle expression is 
satisfied to a continuum of degrees in a 

subinterval of [0,1 J that is bound by its 
lower bound PFDNF@)(A OR NOTA) E [0,11, 
and its Upper bound pFcNF(Z)(A OR NOTA) = 1. 

Conclusions 
I have demonstrated that there are three 

basic transformations between four levels 
of knowledge representation. Each metalin- 
guistic expression is transformed to at least 
two propositional expressions known as the 
fuzzy disjunctive and conjunctive norms 
forms: FDNF and FCNF, respectively. 

A consequence of this FDNF(.), FCNF(.) 
bounds is that classical expressions such as 
“excluded middle,” “contradiction,” and 
“equivalence,” and any combination of two 
or more vague evidences, must be reinter- 
preted. The type-I fuzzy representation of 
linguistic expressions provides only a my- 
opic interpretation of these expressions. 
These interpretations need to be restated: 
The fuzzified versions of the laws of classi- 
cal logic hold to the degree specified by a 
type-11, second-order, semantic uncertainty 
computed by the membership of the mem- 
bership grades, that is, p(~A(x)) = p2A(x). 
Thus, we cannot state, for example, that the 
law of excluded middle is satisfied or not. 
We can, however, state that the excluded 
middle expression is satisfied to a degree 
contained in the interval specified by: 

[IIFDNF(A OR NOTA) (a3 N a ) ) ,  

Reinterpretations for contradiction, 
equivalence, and so on can be stated in a 
similar manner. In fact, this is the source of 
controversy surrounding Elkan’s paper. 

The essence of fuzzy set theory is that all 
vague statements should at least be inter- 
preted first with type-I semantic uncertainty 
at the primary, elemental level. But when 
two or more vague concepts are combined 
with a linguistic connective, then we are 
confronted with a type-11, second-order, 
semantic uncertainty. This generates an in- 
terval where the location of a specific de- 
gree of membership is nonspecific in that 
interval. 

pFCNF[A OR NOTA) (a, N(a))l 
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The Promising Future of Fuzzy Logic 
Nader Vadiee and Mohammad.Jamshidi, University of N m  Mexico 

As Charles Elkan points out in his article, 
the foundation of fuzzy logic is the notion 
of partial truth and degrees of truth in any 
proposition stating facts about real-world 
objects, whether these objects are entities, 
events, relations, algorithms, systems, or 
machines. Facts and propositions are un- 
certain, ambiguous, and incomplete - and 
more importantly, they are goal-oriented, 
intentional, and subjective to the observer’s 
perceptual capabilities, mental constructs, 
and meaning systems. In this philosophical 
view, the universe is seen as holistic, dy- 
namic, and chaotic. 

Fuzzy logic is basically a theory of 
human perception and cognition. It is con- 
cerned with the marvelous paradigm and 
methodology discovered by evolution and 
realized in our brains to cope with com- 
plexity, holism, dynamism, and chaos in 
the world around us. 

The goal of a fuzzy expert system is to 
take in subjective, partially true facts that 
are randomly distributed over a sample 
space, and build a knowledge-based expert 
system that will apply certain reasoning 
and aggregation strategies to make useful 
decisions. These decisions are again ap- 
proximate, and have partial degrees of truth 
and likelihood; the decisions and derived 
facts are reliable to the best of our available 
knowledge. 

The important fact about these systems 
is that decisions made by them can be itera- 
tively and adaptively improved, and as 
more such randodfuzzy facts accumulate, 
the results will converge to real precise 
facts. In this view of reality, no proposition 
is always 100% true for 100% of the ob- 
servers and experts. Absolute certainty, 
absolute truth, and absolute objectivity are 
impossible because they require infinite 
pieces of information, infinite number of 
samples, and infinitely many observers. 

Fuzzy logic-based models are actually ef- 
forts in building our perceptual models and 
maps of reality, and not the reality itself. 

Fuzzy logical equivalence. Like any other 
notion in fuzzy logic, the notion of logical 
equivalence is based on degrees of truth. The 
fourth postulate in Elkan’s Definition 1 is not 
necessary, and can be replaced by classical 
implication relations. For example, 

t(A = B )  = t( (A+@ AND (B+A)}= 
min(r(A+B), t (B+A)} .  

This expression can be used as the defini- 
tion for degree of equivalence in fuzzy 
logic. For the special case where A and B 
have truth values of 1 or 0, the degree of 
logical equivalence is equal to 1 for the 
case of t(A) = t(B). Consider the following 
special case. Using the classical implica- 
tion relation that was generalized by Zadeh 
for fuzzy logic,’,’ we have 

t(A+B) = max(min[ t(A), t (B)] ,  I-t(A)] 
@+A) = max{min[ t(B), r(A)], I-@)) 

for t(A) = 0, t(A = B )  = 1 - t(B). For t (B)  
being a number between 0 and 1, the de- 
gree of equivalence will be in a range from 
0 to 1. 

As seen in the above equations, for the 
case where t(A) = t(B), t(A = B )  is always 
greater than 0.5 in fuzzy logic, which 
means a strong logical equivalence. Two 
propositions could be logically equivalent 
in a fuzzy sense without [(A) = t(B). 

We agree with Elkan’s point that the last 
postulate of Definition 1 is the most con- 
troversial piece. He has in fact provided his 
own answer for preserving the continuum 
of degrees of truth. 

Fuzzy expert systems. The types of uncer- 
tainty captured by fuzzy logic are vague- 
ness, incompleteness, and ignorance. An 
example of this is the fuzzy expert systems 

developed for Japan’s Stock Exchange 
Market in Tokyo. The Nikkei average has 
been reportedly gone consistently higher 
using fuzzy logic.’ However, real applica- 
tions of fuzzy expert systems have, for the 
most part, been kept out of the public eye 
because much of the work is proprietary. 

As far as the domain independence of 
fuzzy operators is concerned, it is well 
known that max-min operations are default 
operations, and there are many different 
definitions suggested by the fuzzy logic 
research community for “and,” “or,” and 
implication operation. Of course, aggre- 
gation operators are important and context 
dependent, but they can be a part of the 
knowledge to be learned and gathered from 
the expert. 

Consider Elkan’s watermelon example 
about the context dependency of the “and’ 
aggregators: If being red inside and green 
outside are believed to be mutually rein- 
forcing pieces of evidence toward being a 
watermelon, then the logical proposition 
could read: 

If X is red inside and X is green outside, 
then X is a watermelon is very true. 

In this example, Elkan is using the fourth 
postulate to reach an intuitively incorrect 
conclusion. Based on the definition of the 
fuzzy logical “and” operation, t(red inside 
and green outside) is simply the degree to 
which an object is “red inside” and “green 
outside” and does not have anything to do 
with being a watermelon. The degree of 
being a watermelon depends on the other 
circumstantial information as well as the 
degree of being red inside and green out- 
side. This “other piece of information” is 
the degree of logical equivalence that must 
be provided by the expert. 

Fuzzy expert systems have been used in 
many applications. For example, Parkinson 
& Duerre have used both expert systems 
and fuzzy expert systems to choose the 
most suitable new “technology” for oil 
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recovery. In the case of classical expert 
systems, the sharpness of the boundaries of 
crisp variables involved in this application 
led to wrong conclusions based on the $- 
then rules. The fuzzy expert system took 
care of all the limiting (worst-case) prob- 
lems and made natural conclusions. Al- 
though these worst-case problems are not 
the most common for this application (in 
which the recovery technologies are some- 
what outdated), their occurrence will be- 
come the rule rather than the exception in 
future years. As it is now, major oil reserves 
in the US cannot be recovered by the old 
techn~logies.~ 

Fuzzy control. Most of the current applica- 
tions of fuzzy logic are fuzzy expert control 
systems. Fuzzy controllers are expert con- 
trol systems that smoothly interpolate be- 
tween otherwise crisp (or predicate logic- 
based) rules. Rules fire to continuous 
degrees and the multiple resultant actions 
are combined into an interpolated result. 
The basis of fuzzy control is provided by 
processing uncertain information and sav- 
ing energy through the use of commonsense 
rules and natural-language statements. 

The use of sensor data in practical con- 
trol systems involves several tasks that are 
usually done by a person, such as an astro- 
naut adjusting the position of a satellite or 
putting it in the proper orbit, or a driver 
adjusting a car’s air conditioning unit, and 
so on. All such tasks must be performed 
based on an evaluation of the data accord- 
ing to a set of rules that the person has 
learned from experience or has been trained 
in. Often, if not most of the time, these rules 
are not crisp (based on binary logic), that is, 
they involve common sense and human 
judgment in the decision making process. 
Such problems can be addressed by a set of 
fuzzy variables and rules that, if calculated 
and executed properly, can make expert 
decisions. 

Fuzzy logic has given a new definition 
to the causality in dynamic systems. Fuzzy 
relational equations‘,* are indications of the 
notion of degree of causality between input 
and output variables in a dynamical sys- 

tem. Like any other notion, causality is not 
a matter of black or white, or yes or no; 
instead, the cause-and-effect relation itself 
is a matter of degree. As Elkan correctly 
observes, the advent of the fuzzy chip, 
which came on the market in 1987, is a 
major force behind the spread of industrial 
applications of fuzzy logic control. 

In reference to the use of words such as 
“image stabilization” for fuzzy logic cam- 
corder image stabilizing systems, or “grade 
logic “ for fuzzy logic, Elkan brings out the 
common difficulties that English-speaking 
Western communities have with this new 
technology, and with the innocent word 
“fuzzy.” It is not surprising in light of this 
bias that manufacturers chose alternative 
words in their advertisements in the US, 
and to a lesser extent, in other English- 
speaking countries. 

As far as the standard architectures of 
fuzzy control are concemed, a small num- 
ber of rules are an advantage for fuzzy con- 
trol systems. This is evidently a result of 
interpolative reasoning and the ability to 
aggregate the overlapping pieces of fuzzy 
information. Elkan brings up the point indi- 
cated by Sugeno and his colleagues -that 
the knowledge recorded in a fuzzy con- 
troller typically reflects immediate rela- 
tions between the inputs and outputs of the 
system to be controlled, as opposed to a 
deep causal model of the system? Although 
this point of view is accurate, it is also true 
that this is the exact manner in which 
human experts summarized their expertise 
- by capturing the causal links between 
the inputs and outputs of the systems and 
putting them in the form of a set of linguis- 
tic rules. The expert might have deep 
knowledge of the system’s causal relation- 
ships, but it is hard to access that type of 
knowledge in the form of linguistic proto- 
cols. For example, the knowledge of an 
operator with 20 years of experience at an 
electric power substation cannot be tapped 
in a few simple linguistic rules to offer a 
deep knowledge about the transience and 
stability of a power system. 

Short development times have been a big 

advantage of fuzzy logic in control systems. 
To achieve quick design periods, simple 
rules have been used thus far to put the 
designer in the ball park, and although ap- 
proximate and crude, through tuning and 
adaptation the rules are fine tuned for better 
performance of the overall system. It is true 
that most current applications of fuzzy logic 
could use other rule-based formalisms, but 
these come with costs in terms of memory, 
efficiency, development times, and longer 
compilation of vague linguistic types of 
knowledge. For example, consider the fol- 
lowing type of proposition: 

Most experts believe if X is A, then Y is 
B is very true and fairly likely. 

There are techniques that can handle this 
type of vague logical proposition that have 
elements of both probability and possibil- 
ity.’,* Elkan brings up the brittleness of 
rule-based systems caused by a missing 
piece of information. This is not the case 
for fuzzy rule-based expert systems. As 
mentioned earlier, this is due to the inter- 
polative capabilities of fuzzy logic’s con- 
tinuous aggregation of the rules and elastic 
semantics assigned to the symbols, as de- 
fined by the membership functions. 

Fuzzy control, as we mentioned earlier, 
constitutes a major application area of 
fuzzy logic. With most control systems, 
based on some real data from certain sen- 
sors, some decision must be made through 
a decision process. Fuzzy controllers are 
nonlinear controllers that provide rather 
reasonable robustness and adaptiveness 
with the changing environment - be it 
unmodelled dynamics in the system, exter- 
nal disturbance, or simply a lack of precise 
knowledge about the plant that is being 
controlled. 

The subjectivity in fuzzy modeling is a 
blessing rather than a curse. The subjectiv- 
ity in the definition of the terms is compen- 
sated for by the subjectivity of the condi- 
tional rules used by an expert. Because the 
set of variables and their meanings, as rep- 
resented by corresponding membership 
functions, are compatible and consistent 
with the set of conditional rules used, the 
overall outcome tums out to be objective, 
meaningful, and reliable. Fuzzy mathemat- 
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ical tools and the calculus of fuzzy if-then 
rules opened the way for the automation 
and use of a huge body of human expertise 
that has gone untapped for years in indus- 
try. Fuzzy logic has provided a mechanism 
to share, communicate, and transfer a 
wealth of human technical expertise into 
computers. This has reversed the trend of 
machine tyranny: We are now forcing com- 
puters to think like people, rather than the 
other way around. This is the beginning of 
a new era in the applications of AI, neural 
networks, fuzzy logic, genetic algorithms, 
and probabilistic reasoning within a bigger 
picture called soft computing.6 The funda- 
mental issues of AI can only be solved with 
an orchestrated application of fuzzy logic, 
neural networks, genetic algorithms, and 
probabilistic reasoning. 

Elkan is distinguished from most critics of 
fuzzy logic because he seems to have sin- 
cerely studied the subject from both a theo- 
retical and applied point of view. It seems 
to us, however, that Elkan’s primary con- 
tact with fuzzy logic has been through open 
literature rather than industrial applications 
and the tremendous activity across the in- 
dustrial world. 

Some of the shortcomings that Elkan 
attributes to applied fuzzy logic are due to 
the gap that exists between theory and ap- 
plication, despite the revolution in the in- 
dustrial use of fuzzy logic. We believe, 
however, that it is too soon to scrutinize 
this gap. For example, at the University of 
New Mexico’s CAD Laboratory for Intelli- 
gent and Robotic Systems, fuzzy logic 
technology is being put on a chip to be em- 
bedded in a new generation of controllers 
with large industrial and technology trans- 
fer implications.’ w e  are trying to intro- 
duce the next generation of fuzzy expert 
systems capable of handling truth quali- 
fiers, quantifiers, rule interaction, chaining, 
and hierarchical rule structures. 

By starting to think in terms of a holistic, 
relativistic, probabilistic, and possibilistic 
knowledge structures, we believe scientific 
thinking is entering its new major stage of 
maturity. Crisp, binary, deterministic, first- 

principle-based approaches in modeling 
the real world belong to the childhood 
years of science. The scientific thought that 
began with Aristotelian logic and was fol- 
lowed by Laplacian determinism has 
reached its limitations -particularly when 
it comes to understanding human systems. 
In the last hundred years, we have witnessed 
the development of quantum mechanics, 
and with it, probabilistic notions of micro- 
cosm, relativistic mechanics for macro- 
cosm, and more recently, fuzzy logic and 
chaos theories. The emergence of these 
theories have a philosophical implication 
that points toward a probabilistic and pos- 
sibilistic picture of reality. 

Fuzzy logic -with the help of probabil- 
ity theory -will provide yet another pow- 
erful tool in an engineer’s or scientist’s 
toolbox for coping with complexity and 
nonlinearity in real-world systems. It will 
also furnish answers that are never 100% 
accurate and certain, but are acceptable 
within the constant constraints of real time, 
energy, memory, and resources. 
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Toward a Framework for Fuzzy 
Dynamic Systems 
Pei-Zhuang Wang, Sie-Keng Tan, and Shaohua Tan, National Uniuenity ofsingapore 

Fuzzy logic, according to Lotfi Zadeh, can 
be broadly considered as the union of 
fuzzified crisp logics. Its primary aim is to 
provide a formal, computationally oriented 
system of concepts and techniques for 
dealing with modes of reasoning that are 
approximate rather than exact. Charles 
Elkan’s claims are derived mainly from 
entangled interpretations of fuzzy logic 
stemming from his mathematical approach 
to the formal system and intuitionistic ap- 
proach to the practical system. Here we 
examine the mathematical structures of 
classical and fuzzy logic, and then point 
out that Elkan’s view of the standard ver- 
sion of fuzzy logic is not valid. We then 
attempt to envisage fuzzy logic, in its prac- 
tical aspect, as a dynamic system that will 
enhance control and expert systems. 

Mathematical aspect of fuzzy logic. It is 
well known that the fundamental rules of 
classical logic are governed by the structure 
of a Boolean algebra, defined as follows: 

Definition 1. A Boolean algebra (B. v. 
A, c, 0, i) is a system consisting of a non- 
empty set B together with two binary oper- 
ations v and A, a unary operation ‘, and two 
nullary operations o and i on B, that satis- 
fies the following axioms for any elements 
a ,  b ,  c E B: 

(1) Commutative laws: 
a v b = b v a  
u ~ b = b ~ a  

(2) Associative laws: 
(a v b ) v  c = a v ( b  v c)  
(a  ~ b )  A c = a A ( b  A c) 

(a  v b )  A b =  b 
(a  Ab)  v b = b 

(3) Absorption laws: 

(4) Idempotent laws: 
a v a = a  
U A U = U  

( 5 )  Distributive laws: 
(a  v b) A c = (a A c) v ( b  A c) 
(a A b )  v c = (a  v c )  A ( b  v c) 

(6) Involution law: 
(aC)C=a 

(7) De Morgan’s laws: 
(a  v b)’ = a‘ A b‘ 
(a  A b)‘ = ac v b‘ 

a v a C = i  
(8) Laws of Excluded Middle: 

U A U C = O  

Here, the nullary operations o and i are 
commonly known as the least element and 
the greatest element of the Boolean algebra. 

Due to the pointwise definition of the 
operations used in the theory of two-valued 
logic, we can consider classical logic as a 
theory that is based upon the particular 
Boolean algebra ( {  0,1], v ,  A, 1, 0, 1) 
where 1 and 0 represent respectively the 
true and false of a certain statement or an 
assertion, and the operations v ,  A, and 
are defined according to the usual rules of 
the logical connectives or; and, and not, 
respectively. Zadeh’s innovation of fuzzy 
logic, on the other hand, is an attempt to 
generalize the classical two-valued logic. 
Instead of the two values true and false 
represented by the set { 0, 1 }, he considered 
the interval [0,1] to be the range of the truth 
value of any assertion, and replaced the 
binary operations v and A on { 0,1] by the 
binary operations max and min on [0,1]. 
The unary operation is also replaced by c 
where c(a) is defined to be 1-a for any 
a E [0,1]. Under these operations, the sys- 
tem ([0,1], max, min, c, 0, 1) satisfies all 
the axioms of a Boolean algebra except the 
laws of excluded middle. Such a system is 
known as a soft algebra defined as follows: 

Definition 2.Asofalgebra (S, v ,  A, ‘, 0, i) 
is a system consisting of a nonempty set S 
together with two binary operations v and A, 

a unary operation ‘, and the nullary opera- 
tions o and i on S, that satisfies the axioms 
1 to 7 stated in Definition I .  

Thus, fuzzy logic theory can be seen as a 
theory based on the structure of a soft alge- 
bra. It is clear that every Boolean algebra is 
a soft algebra, but not vice versa. Hence, 
soft algebra is a more general system than 
Boolean algebra. Consequently, proposi- 
tions that are valid in classical logic may 
not be valid in fuzzy logic. For example, if 
we view each assertion A as a set in a uni- 
verse U and identify the truth value t(A) of 
the assertion A by its characteristic function 
pA : U + [ 0,1 }, then the two compound 
statements (A A B‘)’ and B v (A‘ A B‘) are 
logically equivalent according to the rules 
of classical two-valued propositional calcu- 
lus; however, in the context of fuzzy logic, 
these two statements with truth value in 
[0,1] are not equivalent. (For example, take 
t(A) = 0.3 and t(B) = 0.6, then t ( (A A E)’) = 
0.7, whereas t(B v (Ac A BC)) = 0.6. 

In his article, Elkan views a standard 
version of fuzzy logic as a system that sat- 
isfies the four postulates given in the fol- 
lowing definition: 

Definition 3. Let A and B be arbitrary 
assertions. Then 

t(A A B )  = min { t(A), f ( B ) }  (1) 
r(A v B )  = max t(A), t (B)]  (2) 
t ( i A )  = 1 - t(A) (3) 

equivalent, (4) 
t(A) = t (B)  if A and B are logically 

where “logically equivalent” means equiv- 
alent according to the rules of classical 
two-valued propositional calculus. 

Certainly, under these postulates, one can 
prove that for any assertions A and B, either 
t (A)  = t(B) or t(A) = 1 - t(B). However, the 
main issue here is that postulate 4 is gener- 
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ally not valid in the realm of fuzzy logic, as 
shown in the above example. Thus, as a 
rigorous mathematical system, postulate 4 
should not be included as a postulate in the 
formal system of fuzzy logic. Although 
Elkan has stated that in fuzzy logic applica- 
tions it is unclear whether or not postulate 4 
is assumed, and that in theoretical work it is 
often used explicitly, he still imposes this 
postulate in the formal system of fuzzy 
logic and then claims that the standard ver- 
sion of fuzzy logic collapses mathemati- 
cally to two-valued logic. This type of con- 
demnation, in our view, is an impediment to 
the growth of our knowledge. 

Practical aspect of fuzzy logic. At the 
present stage, fuzzy mathematics is viewed 
in two ways. First, it is a theory that con- 
forms with the precise and rigorous princi- 
ples of mathematics to deal with fuzzy 
objects. In other words, it is a strictly math- 
ematical theory to study the objects in a 
fuzzy environment. Second, fuzzy mathe- 
matics is a metamathematical theory that 
involves fuzzy proof techniques and fuzzy 
theorems with their applications. This latter 
status has yet to be fully developed. We 
have already seen many successful applica- 
tions of fuzzy logic that the use of conven- 
tional mathematics could not achieve. We 
envisage that as fuzzy mathematics devel- 
ops further, applications will be even more 
convincing and prominent. 

Elkan and other researching technolo- 
gists perhaps view fuzzy logic as fuzzy 
mathematics in its second status, and this 
might explain why Elkan has been unable 
to find a real-world expert system that uses 
fuzzy logic as its primary formalism for 
reasoning under uncertainty. 

mainly with fuzzy quantization, its mean- 
ing and means. In this respect, Elkan re- 
gards those operators in fuzzy logic as 
fixed and domain-independent. In fact, fuzzy 
quantization i s  introduced precisely for the 
purpose of generating domain-specific 
quantities. The numerous forms of fuzzy 
operations suggested in the literature were 
created to cater to the domain-specific 

Fuzzy logic, in the practical aspect, deals 

needs. Other semantically dependent 
formulations of fuzzy operations and infer- 
ence relations have also been p r o p o ~ e d . ~ ? ~  

Elkan’s paper does bring up some valid 
points in the discussion of the status quo of 
fuzzy control. Indeed, the present fuzzy 
controllers are mostly structurally shallow, 
and in most cases, the controllers simply 
deal with no more than a simple static 
fuzzy mapping of the sensory and actuation 
signals. However, this is not the whole pic- 
ture of fuzzy control. In fact, the success of 
Aptronix’s simulation of the two-stage 
inverted pendulum using a fuzzy controller 
is a fuzzy logic application that is not struc- 
turally shallow. When fuzzy logic is used 
as a way of quantization, it can serve as our 
quantity basis for modeling dynamic sys- 
tems in the real world. This leads to the 
notion of fuzzy dynamic systems. Obvi- 
ously, fuzzy dynamic systems are more 
complex, as they describe dynamic evolu- 
tion of certain fuzzy quantities, not simple 
points or numbers. Undoubtedly, in the 
light of such a theory, many important is- 
sues such as stability, controllability, and 
observability can properly be addressed, 
and it may also serve to bring the seem- 
ingly diverging model-based or rule-based 
methodologies into a unifying framework. 

An appropriate theory for fuzzy systems 
has not yet been developed in fuzzy con- 
trol. The main task is to establish a frame- 
work in which fuzzy controllers of deeper 
structures can be described properly and 
handled with ease. Elkan has predicted a 
tough time ahead for fuzzy logic in general, 
and for fuzzy control in particular. We, too, 
predict a tough time ahead in working out a 
meaningful and acceptable framework for 
fuzzy-based dynamic system theory. How- 
ever, we remain optimistic. We believe that 
such a framework will emerge. 
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Misretwesentations and Challenges 
A Responlse to Elkan 
Ronald R. Yagel; Iona College 

The comments made by Charles Elkan can 
be classified into three categories. The first 
are those that are technically incorrect and 
should not have been allowed to pass an 
unbiased review process. The second are 
those that are truly challenging, and in point 
of fact help show the great representative 
power of fuzzy subsets. The third category 
are those pertaining to the practical applica- 
tion of fuzzy control. Some of these latter 
comments are quite reasonable -though 
not as damning as Elkan tries to make them. 
I shall address these issues in turn. 

The first category - those that are com- 
pletely incorrect - is dominated by Theo- 
rem 1 .  Rather than wasting considerable 
space on addressing this “theorem” when I 
am certain that other respondents will ef- 
fectively show its complete absurdity, I 
shall make only a few comments. The key 
issue here is of course the last premise, 

t(A) = t(B) if A and B are logically 
equivalent. 

In most texts on logic,’ the definition of 
logical equivalence is specified the other 
way. Usually, one says that A and B are 
logically equivalent if propositions A and B 
attain the same truth value for all models of 
the constituent atoms. However, in this 
case, rather than defining the undefined 
concept of logical equivalence in terms of a 
well-defined idea of attaining the same 
truth value, Elkan tries to define the idea of 
attaining the same truth value from the 
undefined concept of logical equivalence. 
Once having made this error, the author 
then compounds it by imposing a require- 
ment that is completely antithetical to the 
idea of fuzzy logic: 

t ( i ( A  A i B ) )  = t(B V (4 AiB)) 

First we note that 

t ( i ( A  A 4)) = t ( 4  V B), 

and hence 

t(A v (i 4 v Y B ) )  
t ( ( 4  V B )  A (B  V iB))  

= m i n [ t ( 4  v B),  t(B v 4 1 .  
Thus we have the requirement 

t ( 4  v B )  = m i n [ t ( 4  v B),  t(B v - 4 1 .  
For this condition to hold for every B re- 
quires that 

t(B v 1B) = I 

for all B. However, this condition is the law 
of the excluded middle and is exactly what 
fuzzy logic was constructed not to support. 
In fact, I have suggested a measure of 
fuzziness based upon the lack of satisfac- 
tion of this condition.2 Furthermore, the 
condition t(B v 4) = 1 implies that 

max[t(B), 1 - t(B)] = 1. 

Hence, either 

t ( B ) = l o r t ( B ) = O ( l - @ ) = I )  

Thus, Elkan has essentially assumed that 
the logic is a binary logic. 

As to the second category, Elkan raises 
the issue of defining the concept of water- 
melon in terms of the constituent concepts 
of redness on the inside and greenness on 
the outside. His basic contention is that the 
definition of watermelon in terms of these 
constituents should exhibit a characteristic 
of reinforcement. Essentially, he correctly 
requires that multiple confirmations to the 
constituents’ criteria should reinforce each 
other, while disconfirmations of the con- 
stituents’ criteria should also reinforce each 
other in the other way. The issue raised here 
is an interesting and challenging question. 
However, rather than showing the limita- 
tions of fuzzy logic, this problem illustrates 
the power of fuzzy logic to model sophisti- 
cated aggregation requirements. 

It is fundamental to a comprehensive 
understanding of the agenda of fuzzy logic 

to appreciate the pervasive nature of its 
ability to model continuity and graduality in 
all concepts. In using fuzzy logic, we are 
not confined to only using the idea of fuzzi- 
ness (graduality) in the definition of the 
predicates (rednesdgreenness), but we can 
also apply the concept of fuzziness to the 
operators used to connect the predicates. In 
addressing this important issue, we must 
call upon fuzzy logic’s ability to provide 
connectives lying between the logical and 
and logical or. Consider the definition of 
watermelon suggested by Elkan, 

waterme/on(x) = redinside(x) i 
greenoutsid@). 

Elkan correctly shows that if we interpret 
i as a pure logical and, defined as the 
min(A) we end up with a result that doesn’t 
provide the appropriate property of rein- 
forcement. Similarly, using a pure logical 
or, defined as the max(v) also leads to un- 
satisfactory results. The key point is that in 
fuzzy logic we are not restricted to these 
two extremes as we are in binary logic. 

a new class of fuzzy connectives, called 
uninorms? that provide the exact type of 
aggregation postulated as being required by 
Elkan. Consider the situation that for some 
object m we have t(redinside(m)) = a, and 
t(greenoutside(m)) = b. Our problem is to 
provide an aggregation operator I to imple- 
ment the connection between these values. 
Formally, letting d = t(waterme/on(m)) we 
require some aggregation R such that 

Recently my colleagues and I introduced 

d = R(a, b). 

The question is, what form should R take to 
capture the type of reinforcement desired 
by Elkan? As I will show, uninorms pro- 
vide the appropriate aggregation. These 
uninorms, which generalize the idea oft-  
norms (and operators) and t-conorms (or  
operators) and lie between these extremes, 
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do exactly what Elkan requires. 
A uninorm is a mapping3 

R: [0, 11 X [0, 13 4 [0, 11 

having the properties: 

( 1 )  Commutativity: R(a, b) = R(b, a) 
(2) Monotonicity: R(a, b) 2 R(c, d) if a ~ c 

a n d b > d  
(3) Associativity: R(R(a, b), c )  = 

R(a, R(b, c)) 
(4) There exists an identity element 6 E 

[0, 11 such that for all a, R(a, 6) =a.  

If 6 = 1 ,  this reduces to the t-norms that 
are essentially pure and aggregations that 
include the min operator, while if 6 = 0, it 
reduces to the t-conorms which are essen- 
tially pure or aggregations and include the 
max operator. Thus, the logical and and or 
are extremes of this class. 

Of particular interest is a property of 
these uninorms called the upward reinforce- 
ment characteristic. For the uninorm, the 
upward reinforcement characteristic is cap- 
tured in the following: 

R(a, b) 2 a 
R(a, b) 5 a 

We select a value 6 to be our neutral 
point; values above 6 are considered as 
confirming and those below 6 as discon- 
firming. (Actually, 6 can be a range; how- 
ever, for the present purpose we’ll consider 
6 as a point.) Now, assume that both a and 
b are above 6. In this case we have 

if b > 6 
if b < 6 

a 5 R(a, b) 
b I R(b, a )  = R(a, b)  

and thus 

R(a, b) 2 max[a, b]. 

Hence there is a reinforcement in the posi- 
tive direction when both criteria are “con- 
firmed.” 

6. In this case we have that 
Now assume that both a and b are below 

a 2 R(a, b) 
b 2 R(b, a )  = R(a, b) 

and thus 

R(a, b) I min(a, b). 

Hence there is negative reinforcement if 

both are below the neutral value. 
Finally, consider the case where one is 

below and one above, a I 6  and b 2 6. In 
this situation we see 

U I R(a, b) 
b 2 R(b, a) = R(a, b )  

and hence we get 
a I R(a, b) I b 

and thus there is no reinforcement. 

gregation operators, we can capture the 
type of aggregation Elkan desires. 

Finally, Elkan’s comments on the use of 
fuzzy logic in heuristic control - while in 
some points are quite valid - manifest a 
type of “fuzzy bashing” that is all too com- 
mon in the AI community. For example, 
Honda’s choice of the term “grade logic” 
has much less to do with their concern for 
any scientific resistance to fuzzy logic 
methodology than to the simple marketing 
expedient that “fuzzy” is not the type of 
word that sells cars. 

In a recent book on fuzzy modeling and 
control: we look carefully at the process of 
building fuzzy logic controllers. The rea- 
sons we found for the success of these con- 
trollers are not in complete agreement with 
those Elkan suggests. 

First of all, the fact that most fuzzy con- 
trollers are built with a small number of rules 
should be seen as one of the powers of this 
technology. An essential feature of the fuzzy 
approach is the ability to generalize - in a 
way, to reduce the necessity for detail. 

Elkan fails to mention a feature I think is 
essential to the success of the fuzzy model- 
ing approach: the partitioning of the input 
variable space into regions that allow a 
simplification of the modeling process. 
Closely related to this is the idea of partial 
matching, which lets us smoothly combine 
solutions from different regions as we get 
near the boundary. 

Elkan correctly observes that most fuzzy 
controllers are shallow (requiring no chain- 
ing between the rules) and usually directly 
connect the input to the output. I think it is 
here that these systems might have trouble 
in the future. However, the reason for these 
potential problems is not found in the para- 
digm of fuzzy modeling, but in the choice 

With the aid of these uninorm fuzzy ag- 

of the implication operative. 

To me, Elkan’s reference to the 1980 com- 
ment by Mamdani and Sembi5 is most dis- 
turbing. Rather than seeing these remarks as 
I believe Mamdani meant them- as a state- 
ment of the power of the symbiotic relation- 
ship between the paradigms of AI (in this 
case rule-based systems) and the knowl- 
edge-representation capability of fuzzy 
logic - Elkan has chosen to interpret this 
as a sign of the weakness of fuzzy logic. 
However, if we discard the obvious misrep- 
resentations, Elkan’s paper can serve as a 
challenge to fuzzy researchers to continue 
improving the valuable tool of fuzzy logic. 
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Why the Success of Fuzzy Logic is 
not Paradoxical 
Lo@ A .  Zadeh, Univelsity of California, Berkeley 

Elkan’s paper consists of two almost unre- 
lated parts. In the first section, Elkan arrives 
at the conclusion that an apparently reason- 
able version of fuzzy logic collapses mathe- 
matically to two-valued logic. In the second 
section, he questions the value of fuzzy logic 
in control applications and concludes that 
fuzzy logic does not provide an effective tool 
for dealing with the problem of uncertainty 
in knowledge-based systems. As I see it, the 
first conclusion is based on faulty reasoning, 
while the second reflects a misconception of 
what fuzzy logic is and a misunderstanding 
of the role it plays in control and knowledge- 
based systems applications. 

It is easy to show why Elkan’s mathe- 
matical analysis is faulty. What he really 
shows is that fuzzy logic is not consistent 
with the law of the excluded middle. This, 
of course, applies in general to multivalued 
logical systems. 

The law of the excluded middle asserts 
that the truth value of any logical expres- 
sion of the form B v 4 is T (true). The 
law of contradiction asserts that the truth 
value of any logical expression of the form 
B A 4 is F (false). 

Immediate consequences of these laws 
in two-valued propositional calculus are as 
follows: 

If p is logically equivalent to q then p is 
also logically equivalent to q A (B  v 4). 

If p is logically equivalent to q then p is 
also logically equivalent to q v ( B  A 4 3 ) .  

I f p  is logically equivalent to q then 
p A ( B  v 4 )  is logically equivalent to 

V (BA i B ) .  

Now let us consider Elkan’s Theorem 1. 
Starting with the valid equivalence 

y(A A 4 3 )  = A  V B  

which is an expression of De Morgan’s 
law, we can replace the right-hand member 

with (4 v B )  A ( B  v 4), which is in tum 
equivalent to 

B v (4 A 4 3 ) .  

Consequently, we can assert the logical 
equivalence 

l(A A 4 )  E B  v (4 A Y B ) ,  (1) 

which is the example used in Elkan’s proof. 
What we see, then, is that Elkan’s exam- 

ple uses a disguised form of the law of the 
excluded middle. As should be expected, 
Equation 1 is not a logical equivalence in 
multivalued logic because the law of the 
excluded middle does not hold, in general, 
in multivalued logic. In sum, what Elkan 
shows in a roundabout way is that the law 
of the excluded middle does not hold in 
multivalued logic. There is no justification 
whatsoever for jumping from this obvious 
fact to the conclusion that fuzzy logic col- 
lapses to two-valued logic. 

Turning to his analysis of fuzzy logic 
applications, Elkan’s conclusion reflects a 
misunderstanding of what fuzzy logic is, 
and a faulty analysis of the reasons for its 
success. First, it must be clarified that the 
term “fuzzy logic” is used in two different 
senses. In its narrow sense, fuzzy logic is a 
logical system that is an extension of multi- 
valued logic and serves as a foundation for 
approximate reasoning. What is important 
to note is that even in its narrow sense, the 
agenda of fuzzy logic is quite different from 
that of traditional multivalued systems. 

In its wider sense - the sense in which 
it is predominantly used today - fuzzy 
logic is a much broader theory that is 
fuzzily synonymous with “fuzzy set the- 
ory,” that is, the theory of classes with un- 
sharp boundaries. In this perspective, fuzzy 
logic in the narrow sense is one of the 
many branches of fuzzy logic, among 
which are fuzzy arithmetic, fuzzy probabil- 
ity theory, possibility theory, fuzzy rela- 
tions, and so on. It should be noted that 

fuzzy logic in the narrow sense plays a 
very minor role in fuzzy control, just as 
zlassical logic plays a very minor role in 
classical control theory. 

In his article, Elkan fails to differentiate 
between fuzzy logic in the narrow sense and 
fuzzy logic. In the first part, he interprets 
fuzzy logic in its narrow sense. But in the 
second part, he interprets fuzzy logic in its 
wide sense, since most applications of fuzzy 
logic - especially in the realm of control - 
do not involve fuzzy logic in the narrow 
sense. However, narrow fuzzy logic plays an 
essential role in the management of uncer- 
tainty in expert systems.] In what follows, 
fuzzy logic will be used in its wide sense. 

What are the reasons for the rapid 
growth in the number, variety, and visibil- 
ity of fuzzy logic applications? The reasons 
are not those given in Elkan’s article. What 
fuzzy logic offers, above all, is a methodol- 
ogy for representing and analyzing depen- 
dencies that are approximate rather than 
exact. In this methodology, the key con- 
cepts are: 

a linguistic variable, whose values are 
words rather than numbers; 
a canonical form, which expresses the 
meaning of a proposition as an elastic 
constraint on a variable; 
a fuzzy if-then rule and rule qualifica- 
tion, in particular probability qualifica- 
tion and possibility qualification; 
interpolative reasoning; and 
a fuzzy graph. 

Through the use of techniques based on 
these concepts, fuzzy logic makes it possi- 
ble to exploit the tolerance for imprecision 
and uncertainty. In so doing, fuzzy logic 
has proved to be successful where tradi- 
tional approaches have failed or yielded 
inferior results. 

Most fuzzy logic applications involve 
the use of what might be called the calcu- 
lus offuzzy  rule^.^.^ The use of fuzzy rules 
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in conjunction with interpolative reasoning 
greatly reduces the number of rules that are 
needed to describe imprecise dependen- 
cies, and makes it much easier for humans 
to articulate them. Consider, for example, 
the rules that people use (consciously or 
subconsciously) in parking a car, filling a 
tub with hot water, crossing a traffic inter- 
section, or riding a bicycle. How would 
Elkan describe the rules that govern human 
behavior in these and similar instances? 

What is actually used in most control 
applications is a subset of the calculus of 
fuzzy rules, which can be called the calcu- 
lus offuzzy  graph^.^.^ In this calculus, a 
functionf: U + Vis approximated to by a 
fuzzy graphfY, which is a disjunction of 
Cartesian products of the form 

f* = & A ,  X Bi 

where A; and Bi , i=l, ..., n, are values of 
linguistic variables, and C, represents the 
disjunction (union) of Cartesian products 
A; X Bj . For example, a fuzzy graph of a 
function may be expressed in a coarse way as 

f* = small X small + medium X large + 
large X small 

which is equivalent to the set of rules 

If X is small then Y is small. 
If X is medium then Y is large. 
If X is large then Y is small. 

The use of fuzzy graphs results in data 
compression, which is one of the key - 
though perhaps not widely recognized - 
advantages of using fuzzy rules. Elkan’s 
analysis makes no reference to this point, 
and fails to identify the use of the fuzzy 
graph concept as one of the principal tools 
in the application of fuzzy logic to control. 

Today, fuzzy logic applications in con- 
trol and consumer products are far more 
visible than fuzzy logic applications in 
knowledge-based systems. Does this mean, 
as Elkan surmises, that fuzzy logic is lim- 
ited in its applicability to simple systems? 
Not at all. What it means is that fuzzy logic 
can be applied easily and effectively to the 
conception and design of “high machine 
IQ” control systems and consumer prod- 
ucts - applications that in most cases in- 
volve replacing a trained operator or an 

experienced user with a fuzzy rule-based 
system. In the case of knowledge-based 
systems, what has to be replaced is an ex- 
pert rather than an operator. This is an in- 
herently more complex problem, no matter 
what approach is used. 

Basically, what differentiates control ap- 
plications from knowledge-based systems 
applications is that in control the main prob- 
lem that has to be addressed is that of impre- 
cision. By contrast, in the case of knowl- 
edge-based systems, one has to come to 
grips with both imprecision and uncertainty. 

In applying fuzzy logic to control sys- 
tems, it is generally sufficient to employ 
categorical rules - rules that involve no 
quantifiers, probabilities, or possibilities. 
In the realm of control, the calculi of fuzzy 
rules and fuzzy graphs provide the neces- 
sary tools for exploiting the tolerance for 
imprecision and lead to systems that are 
simpler, more robust and have higher ma- 
chine IQ than systems designed by conven- 
tional methods. Recently published books6-’ 
provide easily understandable accounts of 
the methodology of fuzzy logic control and 
explain why the applications of fuzzy con- 
trol are growing rapidly in visibility, vari- 
ety, and number. It is very likely that it will 
not be long before familiarity with fuzzy 
control will be an essential qualification for 
control engineers and system designers. 

In the case of knowledge-based systems, 
two sources of difficulty are that the rules 
are frequently probability-qualified, and 
that the qualifying probabilities are not 
compositional. More specifically, assume 
that we have two rules of the form 

I fp ,  then q (PI) 
I f p 2 t h e n q 2  (P2) 

wherepl, ql,  p 2 ,  and q2 are propositions, 
and P I  and P2 are qualifying probabilities. 
Assume that we wish to compute the quali- 
fying probability, P ,  in the combined rule 

If @, andpZ) then (ql and q2). (PI 

The problem is that P cannot be computed 
as a function of P I  and P, without making 
some assumptions about conditional inde- 
pendence or, equivalently, invoking the 
maximum entropy principle. Such assump- 
tions tend to be ad hoc and hard to justify. 

What this implies is that the problem of 
inference from probability-qualified propo- 
sitions may not have a satisfactory solution 
within the framework of classical probabil- 
ity theory. 

In this connection, it should be noted 
that Elkan gives the impression that there 
are many expert systems that do not em- 
ploy fuzzy logic and that provide effective 
ways of dealing with uncertainty and im- 
precision. This is not the case. As a test, 
which of the systems that he as in mind 
could provide an answer to the following 
question: 

If X is small then it is very likely that Z is 
large. 

If X is large then it is not likely that Z is 
large. 

What is the probability that 2 is large if 
Xis medium? 

What this example points to is that the 
conventional approaches to the manage- 
ment of uncertainty in expert systems fail 
in four important respects: 

(1) They do not provide the means for 
dealing with the fuzziness of 
antecedents and consequents. 

(2) They assume that probabilities can be 
estimated as crisp numbers. 

(3) They do not offer a mechanism for 
inference from rules in which the 
qualifying probabilities are fuzzy. 

(4) The rules for composition of probabil- 
ities depend on unsupported assump- 
tions about conditional independence. 

Fuzzy logic addresses some - but not all 
- of these problems.’ More specifically, 
fuzzy logic allows the antecedents and/or 
consequents and/or qualifying probabilities 
to be fuzzy. Furthermore, fuzzy logic makes 
it possible to estimate probabilities as fuzzy 
rather than crisp numbers. There remain, 
however, two problems. First, the composi- 
tion of qualifying probabilities can lead to 
fuzzy probabilities that are insufficiently 
specific or, equivalently, insufficiently in- 
formative. Second, inference in fuzzy logic 
reduces, in general, to the solution of a non- 
linear program. Standard techniques for the 
solution of such programs may be computa- 
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tionally expensive. What we do not have as 
yet are approximate, inexpensive techniques 
for inference from fuzzy-probabili ty-quali- 
fied fuzzy if-then rules. However, we do 
have an effective method of inference from 
possibility-qualified rules within a branch 
of fuzzy logic known as possibilistic logic? 

There are many statements in Elkan’s 
articles that relate to ill-posed questions or 
reflect a misunderstanding of what fuzzy 
logic is, as well as an inadequate familiar- 
ity with its literature. I will comment here 
on just a few of these statements. 

In the section on fuzzy logic in expert 
systems, Elkan states, “there is still debate 
as to what types of uncertainty are captured 
by fuzzy logic.” Obviously if the bound- 
aries of what constitutes fuzzy logic are not 
defined, this is not a well-posed issue. In 
this context, what is important to realize is 
that any theory X can be fuzzified by gen- 
eralizing the concept of a crisp set in X to a 
fuzzy set, leading to a theory that can be 
called fuzzy X .  For example, classical 
probability theory can be generalized to 
fuzzy-probability theory; topology to fuzzy 
topology; neural network theory to fuzzy 
neural network theory; control to fuzzy 
control; arithmetic to fuzzy arithmetic; 
modal logic to fuzzy modal logic; resolu- 
tion to fuzzy resolution; temporal logic to 
temporal fuzzy logic; Mycin to fuzzy 
Mycin; chaos to fuzzy chaos, and so on. 
Many such generalizations have already 
been described in the literature and many 
more will be made in the future. What is 
gained from fuzzification is greater gener- 
ality and better approximation to reality. 

Given that any theory can be fuzzified, 
the question of what types of uncertainty are 
captured by fuzzy logic loses much of its 
meaning. For example, when probability 
theory is fuzzified, it becomes a part of 
fuzzy logic. In this broad perspective, then, 
fuzzy probabilistic uncertainties fall within 
the scope of fuzzy logic. The same applies 
to any type of uncertainty that I can think of. 

In the same section, Elkan reports that 
his search of the literature revealed no pub- 
lished reports of an expert system that uses 
fuzzy logic as its primary formalism. This 
is somewhat surprising, since there are, in 
fact, many such examples. Among them is 

Cadiag-2, the well-known large-scale med- 
ical diagnostic system.IO-” Another well- 
known and commercially available system 
is FRIL,I4 which is Prolog-based and has a 
highly sophisticated system for the man- 
agement of uncertainty. Still another exam- 
ple is the Yamaichi Securities Fund, and 
there are many more (see Table 1 on page 

Elkan also seems to suggest that expert 
systems that combine grades of member- 
ship using operators other than max and 
min are not valid examples of the use of 
fuzzy logic. This position is hard to under- 
stand since the use of t-norms, t-conorms, 
and other connectives is now a standard 
part of fuzzy logic.18 

The issue of the management of uncer- 
tainty in expert systems presents many 
complex and difficult problems. There is 
no system at present that is free of serious 
shortcomings, and it would be unrealistic 
to expect that such systems will be devel- 
oped in the foreseeable future. But Elkan’s 
statement that “experience shows that 
fuzzy logic is rarely suitable in practice for 
reasoning about uncertainty” reflects inex- 
perience in the use of fuzzy logic. I advise 
Elkan to study with care the extensive liter- 
ature on the management of uncertainty in 
expert systems based on the use of fuzzy 
logic. A good starting point would be the 
treatises by Dubois-Prade on possibility 
theory and approximate reasoning, and the 
books on fuzzy expert  system^.'^.'^ There 
is little doubt that, in coming years, the 
growth in familiarity with fuzzy logic will 
lead to its wide acceptance as a key compo- 
nent of information systems and knowl- 
edge engineering methodologies. 

46). 1.5-1 7 

I compliment Elkan on writing a provoca- 
tive article that is likely to contribute to 
further discussion of the strengths and limi- 
tations of fuzzy logic. Fuzzy logic has been 
and still is somewhat controversial. With 
the passage of time, however, the contro- 
versies will abate and fuzzy logic is likely 
to become a standard tool for the concep- 
tion and design of intelligent systems. In- 
deed, it would not be surprising if, in retro- 

spect, the skeptics will find it hard to un- 
derstand why they failed to realize that 
fuzzy logic is a phase in a natural evolution 
of science - an evolution brought about 
by the need to find an accommodation with 
the pervasive imprecision of the real world. 
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Table 1. Fuzzy logic tools and products. 
(Source: Sammy Wong and Nelson Wong, Computer Science Dept., Chinese University of Hong Kong.) 

COMPANY PRODUCT DESCRIPTION 

American 
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ADS230 fuzzy microcontroller PC-compatible system uses NLX 230 with analog and 
development system digital I/O. 
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19. C. Negoita, Expert Systems and Fuzzy Sys- 
tems, Benjamin Cummings, 1985. 

17. S.D. Wee, R.E. Larew, and F.C. Hadipriono, 

patterns 
Performs pattern matching on serial data streams NLX 11 2 fuzzy data correlator 

Aptronix Fide (Fuzzy Interference 
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development, fuzzy simulation, debug tracing, and 3D 
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code. 
Runs under MS Windows 3.1 on 386/486 PCs. Edits 
rules in a matrix display. Lets users view fuzzy sets 
graphically. 
Runs under MS Windows 3.1 on 386/486 PCs. Color 
graphics display of rules and fuzzy sets. Lets users view 
designs in 3-D map and slice formats. 
Microcontrollers 
Software for developing fuzzy-logic applications. Runs 
under MS-Windows with 286 or higher processor. 
Simulates fuzzy and nonfuzzy systems. 
A superset of Cubicalc. Provides runtime compiler 
support and libraries for linking. Compatible with 
Microsoft C and Borland C. 
Generates C source code for use in compiling to a 
specific processor. 
Includes Cubicalc-RTC and PC-based hardware for 
analog and digital 110. 
Introductory fuzzy-logic system. Software runs under 
MS Windows. Accepts two inputs, one output, five fuzzy 
membership sets per variable, and 125 rules. Includes 
tutorial. 
Full fuzzy development system for MCS-96 
microcontrollers. Generates optimized assembly code. 
Lets users debug and modify fuzzy-logic systems while 
they are running. Generates C source code. 
Simulation and code generation of fuzzy logic for real- 
time systems. 
Fuzzy-logic development and simulation system, Runs 
under MS DOS. Provides high-level modeling and Iow- 
level development for embedded applications. 
PC-based fuzzy-logic shell. Generates source code for C 
and Fortran. 
Fuzzy processing kernels for 68HC05 and 68HCll 
microcontrollers. Includes fuzzy knowledge-base 
generator to create code for kernel. 
Interactive training tool provides good introduction for 
understanding and using fuzzy logic. Runs under MS 
Windows. Includes demonstration version of Fide (from 
Aptronix). 
Complete fuzzy development system generates C code 
and includes debug, fuzzy-simulation, and graphical- 
analysis tools. Tutorial included. 
Fuzzy development systems for Hitachi H8/300, H8/500, 
and HMCS400; Intel 8051; and Mitsubishi 37450. 
Unlimited production license 

Bvte Craft FUZZY-C 

Manifold editor Fuzzy Systems 
Engineering 

Manifold graphics editor 

Hitachi American 
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Elkan’s Reply 
The Paradoxical Controversy over 
Fuzzy Logic 
The responses to my article provide an 
exceptionally wide range of perspectives 
on the current state of research on fuzzy 
logic and its applications. Overall, I find 
that with most commentators I agree more 
than I disagree. I shall try here to steer a 
middle course between simply repeating 
points of agreement and narrowly counter- 
ing points of disagreement. 

The foundations of fuzzy logic. Some 
commentators take a more extreme posi- 
tion than I do concerning the coherence of 
fuzzy logic. I do not agree with Attikiouzel 
that “if one wishes to write a program or 
build a machine that will perform inference 
in the same way as human beings, then one 
must build the basic equations of probabil- 
ity theory into it, or face the inevitable out- 
come that it will not perform as required’ 
Neither humans nor machines always re- 
quire formal rigor to act successfully in the 
world, nor is success always guaranteed by 
rigor. Successful controllers and expert 
systems can use heuristic, shallow knowl- 
edge and therefore they can use arbitrary 
reasoning formalisms such as certainty 
factors or fuzzy logic. I also do not agree 
that “Proponents of fuzzy logic appear to 
be unaware of Cox’s work and that of 
Jaynes and Tribus”; for evidence see the 
debate in a recent issue of IEEE Transac- 
tions on Fuzzy Systems.‘ 

However, I am uncomfortable with the 
dogmatism evinced by many of the advo- 
cates of fuzzy logic or some of its many 
variants. For example, Dubois, Prade, and 
Smets say that I fail “to understand the 
important distinction between ... properties 
whose satisfaction is a matter of degree” 
and uncertainty “induced by incomplete 
states of knowledge.” Later they write that 
the AI community has forgotten this dis- 
tinction. It appears to me that the AI com- 
munity has not forgotten this very binary 
distinction, but rather has implicitly 
rejected the claim that it is a uniquely im- 
portant distinction. A particular concem 

AUGUST 1994 

that I have is whether the distinction is re- 
ally well defined. On the one hand, there 
may be multiple types of imprecision and 
vagueness. Is the domain-independent im- 
precision involved in “around 1.80m” the 
same as the human-specific imprecision 
involved in “tall”? On the other hand, it 
may be possible to model some types of 
imprecision probabilistically. For example, 
the degree of truth of the assertion “1.80m 
is tall” might be modeled as the probability 
that an individual with height 1.80m would 
be labeled as tall given incomplete knowl- 
edge, that is, given no other information on 
the individual. 

Overall, I am wary of the enterprise of 
even making an attempt to classify the 
types of uncertainty. A complete and con- 
sistent analysis of all the many varieties of 
uncertainty involved in human thinking 
and revealed in human language is a philo- 
sophical goal that we should not expect to 
achieve soon. Moreover, this aspiration is a 
variant of the quest for formal rigor criti- 
cized above as neither necessary nor suffi- 
cient for engineering success. As Freksa 
points out, it is always the case that “the 
represented real world and its representa- 
tion are formally incommensurable.” 
Therefore, however ideal the logics that 
one has at hand, knowledge engineering is 
always a tentative activity that can never 
succeed completely. 

More varieties of uncertainty may well 
exist in the case of shallow knowledge than 
in the case of deep knowledge, because shal- 
low knowledge is intrinsically domain- 
specific and of restricted generality. As 
Garcia points out, the reasoning in my 
watermelon example relies on important 
background knowledge that is not expressed 
in terms of rules. But it is not a fair reply to 
the example to call for this implicit back- 
ground knowledge to be made explicit. The 
deep knowledge that underlies a given frag- 
ment of shallow knowledge may often be 
impossible or too expensive to make 
explicit. It is precisely then that the deep 

knowledge becomes implicit background 
knowledge that must be used tacitly in tun- 
ing the allowed interactions between the 
items of explicit shallow knowledge. To 
quote Garcia, “The dogma of generality 
versus efficiency strikes again, and knowl- 
edge engineering and machine learning are 
not exempted.” 

Fuzzy logic in expert systems. Only three 
of the responses give references in an at- 
tempt to dispute the claim that there are 
very few deployed expert systems that ac- 
tually use fuzzy logic as their principal 
formalism for reasoning about uncertainty. 
Moreover, most of the references given 
actually support this claim. 

Before I discuss these references one by 
one, it is worth emphasizing that I use the 
term “expert system” to designate a reason- 
ing system that applies a large base of ex- 
plicit knowledge to perform a task requiring 
complex inference, such as diagnosis, 
scheduling, or design. A fuzzy controller is a 
knowledge-based system of a different na- 
ture. If a fuzzy controller is called an expert 
system, this blurs some important distinc- 
tions. As Zadeh writes, “what differentiates 
applications to control from applications to 
[general] knowledge-based systems is that 
in control the main problem which has to be 
addressed is that of imprecision. By con- 
trast, in the case of knowledge-based sys- 
tems, one has to come to grips with both 
imprecision and uncertainty.” 

As I discussed in my paper, another im- 
portant difference is that most controllers do 
not have to remember and reason about the 
history of the portion of the outside world 
that they deal with. Most fuzzy controllers 
have no internal state, while expert systems 
retain considerable state information. 

ences, the latest of which is five years old. 
The Cadiag work of Adlassnig and his col- 
leagues is indeed impressive.2 However, it 
is especially difficult to deploy medical 
expert systems in the real world, in compar- 

Dubois, Prade, and Smets give five refer- 
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ison, say, to applications in manufacturing. 
Both the cited paper and more recent papers 
on Cadiag-23,4 state only that Cadiag-2 sys- 
tems are undergoing clinical trials. 

Similarly, the paper on Taige6 does not 
claim that the system has been deployed, 
and I could not find any further papers on 
this system. The cited paper on RUM6 
states it is a “development environment,” 
and the only published application built 
using it is described as a “prototype.”’Fi- 
nally, OPAL’ is described in the cited paper 
as “under development,” and Milord9 is 
said to be a “shell.” More recent versions 
of Milord use finite multiple-valued logics 
rather than fuzzy logic.’o 

Nikkei average has reportedly gone consis- 
tently higher using fuzzy logic.” This state- 
ment is difficult to understand, let alone to 
believe; the only citation is to the authors’ 
own unpublished course notes. The other 
application they mention is a system for 
choosing oil recovery methods. According 
to the journal paper on this system it uses 
the Clips shell, which is not founded on 
fuzzy logic.’ 

Zadeh gives three examples of expert 
systems using fuzzy logic as their primary 
formalism for reasoning about uncertainty: 
Cadiag-2 again, FRIL,I2 and a system for 
securities trading with no citation. Recent 
papers indicate that FRIL is a “program- 
ming language”” and that the trading sys- 
tem has only been “ t e~ ted . ” ’~  Zadeh also 
cites papers on systems for acupuncture 
diagnosis and pavement maintenance from 
the 1993 International Fuzzy Systems As- 
sociation World Congress, but I do not 
have access to these papers. 

Vadiee and Jamshidi say that “The 

The theorem. Except for Klir and Yuan, no 
commentators dispute the mathematical 
validity of the theorem given in my paper, 
but several commentators disagree with the 
assumptions made in its statement. Dubois, 
Prade, and Smets say it relies “at best on a 
logical equivalence the rationale of which 
is far from natural in the scope of fuzzy 
logic.” In my opinion, the opposite is true. 
The equivalence between l(A A 4 )  and 
B v (4 A 4) is a natural one to use (per- 
haps inadvertently) in compiling a knowl- 

edge base of fuzzy logic sentences, and com- 
pilation into single-level rules “to simplify 
and speed computation” is mentioned by 
several commentators, Berenji in particular. 

As Garcia and other commentators point 
out, the theorem can also be proved by con- 
sidering much simpler equivalences such as 
A ~4 =l(A v 4 )  orA AA = B A  lB. 
The reason the proof given uses a more 
complicated equivalence is that, as just men- 
tioned, it is more natural in some intuitive 
sense. Intuitively speaking, in A A 4 = 
B A 4 3  the two sides are irrelevant to each 
other, andA A 4 = l(A v 4) is obviously 
similar to the law of excluded middle. 

The phrase “obviously similar” in the 
statement above is vague. One interpretation 
of the theorem is that if we reject the law of 
excluded middle, then we must also reject 
many other equivalences that are not obvi- 
ously similar to this law, but that are never- 
theless interchangeable with the law using 
only the first three postulates of Definition 
1 .  When Yager gives a derivation of the law 
of excluded middle from t(-(A A 4)) = 
t(B v (4 A +)), this is an alternative state- 
ment of the theorem, not a demonstration 
that the theorem is absurd. 

Overall, I am saddened by the hostility 
visible in the comments by Yager and by 
Klir and Yuan. I will refrain from respond- 
ing line by line to their remarks on the dif- 
ferent versions of my theorem and its proof. 
It is quite usual in the history of mathemat- 
ics for a theorem that attracts interest to be 
restated and reinterpreted over time, and for 
similarities with previous results to be no- 
ticed later. For a similar but friendly exege- 
sis of the development of the statement and 
proof of a far deeper and more important 
theorem the reader can consult Proofs and 
Refutations by Imre Lakatos.I5 

The theorem is technically correct as 
stated and proved both here and in my 
AAA1 ’93 paper. Klir and Yuan say that 
either the statement or the proof of the the- 
orem is incorrect, because the “proof de- 
pends on eight logical equivalencies, only 
one of which is included in the statement.” 
This claim is based on a misreading of the 
statement of the theorem, where the condi- 
tion “if l(A A 4 3 )  and B v (4 A 4 3 )  are 
logically equivalent” must be understood 

as asking for a schema of logical equiva- 
lences, in which A and B may be replaced 
by any assertions, including assertions of 
the form lC. 

The success of fuzzy control. Perhaps the 
most important contention of my paper is 
that the success of fuzzy controllers has 
little to do with the theory of fuzzy logic or 
fuzzy sets. Several commentators confirm 
this. For example, Klir and Yuan say that 
“most of the simple fuzzy controllers on 
the market ... are not explicitly based on 
fuzzy logic.” Dubois, Prade, and Smets 
write that “Takagi and Sugeno have pro- 
posed an interpolation mechanism ... this 
kind of ‘inference’ (which is widely used in 
fuzzy control) has nothing to do with un- 
certainty handling,” and Pelletier writes 
that “those areas of fuzzy logic that get 
criticized are simply not employed in the 
control arena.” 

It is a general property of systems that 
use only shallow knowledge that numerical 
uncertainty values can be tuned, if neces- 
sary, to overcome arbitrariness in the opera- 
tors used for combining uncertainty values. 
Alternatively, within reason, the operators 
can be adjusted to match given numerical 
values. As Chandrasekaran reminds us con- 
cerning Mycin, a system based on shallow 
medical knowledge: “The fine structure of 
uncertainty didn’t really matter.” Several 
commentators support my specific 
contention that this property is one reason 
for the success of heuristic controllers using 
fuzzy logic. For example, Wang, Tan, and 
Tan write that “...numerous forms of fuzzy 
operations ... were created to cater to the 
domain-specific needs.” 

I do not agree with Ruspini that the term 
“paradox” should only be used to mean 
“logical self-contradiction,” so I believe that 
it is fair to call the lack of connection in 
fuzzy systems between theory and practice 
an apparent paradox. All paradoxes have the 
property that once resolved, they no longer 
appear paradoxical. To paraphrase a state- 
ment by Tiirksen, there are no paradoxes, 
only limited or partial understanding. The 
paradox that fuzzy controllers have had real 
industrial success, while fuzzy logic itself is 
still under attack mathematically, is resolved 
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by understanding the distinction between a 
scientific experiment designed to confirm or 
disconfirm a theory and an engineering ap- 
plication of the theory. Fuzzy controllers are 
applications, not experiments that could 
validate theoretical claims about fuzzy 
logic. On this point I agree with Mamdani: 
“There is a common misconception that 
models are created and then applied and the 
success then legitimizes a model.” 

Overall, the response by Mamdani is 
particularly trenchant and thought-provok- 
ing. Where we disagree, I think the cause is 
a misunderstanding. I do not argue that 
fuzzy control “is not worthy of industrial 
consideration because of its lack of com- 
plex form and structural sophistication.” 
Rather, I argue that this simplicity is vital 
to the industrial success of the current gen- 
eration of fuzzy controllers, but that fuzzy 
controllers for more complex applications 
will run into the same problems of com- 
plexity that other knowledge-based sys- 
tems do today. It is the case that the “philo- 
sophical deficiencies of fuzzy logic” do 
something “to argue against the adoption of 
fuzzy logic control”: These deficiencies are 
what makes scaling-up difficult. 

Many research teams are actively working 
on scaling-up fuzzy controllers. A common 
feature of the research prototypes developed 
by these teams is the use of ideas for organiz- 
ing large intelligent systems first proposed 
by mainstream AI researchers. For example, 
the SRI autonomous robot mentioned by 
Berenji uses “several deliberation levels to 
determine the relevance level of each control 
rule ...; to identify current goals and their 
state of achievement; to activate control rules 
according to the current context; and to 
blend their control recommendations.” The 
main novelty here compared to classical 
robot architectures is the idea of interpolat- 
ing smoothly between different suggested 
actions -but this idea is also found in other 
AI work, such as that of Brooks.16 

The ability to interpolate between the 
conclusions of several rules is an important 
advantage of fuzzy control methodologies. 
As Yager writes, “the fact that most fuzzy 
controllers are built with a small number of 
rules should be seen as one of the powers 
of this technology,” and as Berenji writes, 

“Fuzzy sets provide for a general yet com- 
pact characterization of system state that 
requires fewer rules.” However, interpola- 
tion is a purely local operation, where the 
:onclusions of a few rules describing re- 
sponses to nearby input parameter configu- 
rations are blended. It is therefore difficult 
to see how interpolation could reduce the 
amount of knowledge needed to capture a 
complex, multidimensional inputloutput 
mapping by more than one order of magni- 
tude compared to other approaches. 

Klir and Yuan write that “. . . fuzzy con- 
trollers of this kind [that do interpolation] 
are universal approximators.” This fact is 
true, but less significant than it may appear 
at first sight. Given suitable smoothness 
constraints, many mathematical formalisms 
can be used as universal approximators of 
multidimensional inputloutput mappings. 
For example, any continuous function can 
be approximated to any desired degree of 
accuracy by a polynomial of sufficiently 
high order. Neural networks with hidden 
layers are also universal approximators.” 
The important question is how complex an 
approximation must be allowed to be to 
achieve a given level of precision. As rec 
ognized by Kosko and Isaka,lX the number 
of rules required by a fuzzy controller - 
which is the number of patches used to ap- 
proximate its control surface - grows ex- 
ponentially with the dimensionality of the 
controller and the level of precision 
demanded. From a formal point of view, 
fuzzy controllers thus do not enjoy a clear 
advantage over other formalisms for ap- 
proximating smooth functions. Of course 
they are still pragmatically very useful. 
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