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Continuous Varlables

Quantum Harmonic
Oscillator

H —

S+ [@,p] = ik

CONTINUOUS
VARIABLES:

* Many photons: laser beam
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* Quadratures (x,p) are used:

* Annihilation and creation operators used
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* Phase space is commonly used.

.

Applications:
* Teleportation

* Dense coding

* Quantum Cryptography
* Quantum Computation
* Cloning

)

Van Loock and Braunstein, Reviews of Modern Physics 77, 513 (2005).
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Continuous Variables

_{ Coherent State J GAUSSIAN STATES: J_
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~ Examples of CV states: coherent
| Q/> — D |O> states, squeezed states, Cat

X (c) states, EPR states and thermal
S states.

~ R o \ : Simpler laser: coherent state.
D = exp(aa’ — a*a) - =

Offers advantages in e.g.
detection efficiency and
preparation of the states (QKD).

*\;w\\ E.g., of non-Gaussian :

* Universal Quantum
Computation
* Entanglement distillation
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Weedbrook, Pirandola, et al., Reviews of Modern Physics 84, 621 (2012).
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Quantum Cryptography

Better way to describe it: Quantum key distribution (QKD).
Security is due to the no-cloning theorem.
Eavesdropper's presence is known: disturbs the system.

First protocol was developed in 1984 by Charles Bennett and
Gilles Brassard.

From an initial idea by Stephen Wiesner: quantum money!
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| Quantum Cryptography

Il. A BEAUTIFUL IDEA

The idea of quantum cryptography was first proposed
in the 1970s by Stephen Wiesner? (1983) and by Charles
H. Bennett of IBM and Gilles Brassard of The Univer-
sity of Montréal (1984, 1985).> However, this idea is so
simple that any first-year student since the infancy of
quantum mechanics could actually have discovered it!

N.Gisin et al., Reviews of Modern Physics, 74, 145 (2002).



Alice Bit Value 1 0 | 1 1 0O 0 | 0O 1 1 0 0
Bob Basis X ‘"I" X X “[’ ‘"[_’ o X ‘_I_’ ‘[‘ X X X
Bob Bit Value ] (0] 1 O 1 O 0 | 0O 1 1 0 0]
Bit Retained - ] =— ] - — ] - 1 1 0O —

Bennett and Brassard, Proceedings of the IEEE International Conference on
Computers, Systems, and Signal Processing, Bangalore, p. 175 (1984).
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Q or P(Hom)
QQ and P (Het)
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/ Alice:

* Alice controls the source!
* Modulates a pure vacuum state or squeezed state

centred at zero
\* Sends a whole ensemble to Bob

* Chosen from a Gaussian distribution (x,p) with variance V

.




““How a CV-QKD Protocol Works

Q or P (Hom)
(Q and P (Het)

* Three possible types of attacks: individual, collective, coherent
* Replaces the quantum channel with her own channel.

* Uses a beam splitter to simulate attack.

* Gaussian attacks are optimal.

* Assume Eve is only constrained by laws of physics.

< .




/ HoWa CV-QKD Protocol Works

Q or P(Hom) |
QQ and P (Het)

/Bob: B

* Measures all incoming states sent by Alice.
* Uses either homodyne (switching) or heterodyne detection
(no-switching).

A
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ﬁding/Decoding Scheme
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Binary Encoding of states
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Direct
Reconciliation
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Two-Way
Communication

|

Reverse
Reconciliation

No-Switching
Protocol
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Information Rates J BENEFITS:

[ \
{!

First CV-QKD protocol using

R> — I(XA:Xp)—I(X4:E) cghe'rent.states with Gaussian
distribution.

No need for squeezed light.

Bob and Eve guessing Alice
encoding.

I(XA:XB) = H(XB)—H(XB|XA)

IMBER 5 PHYSICAL REVIEW LETTERS 4 FEE

Continuous Variable Quantum Cryptography Using Coherent States
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Disadvantage
* 3 dB loss limit
* Alice and Bob need more

Grosshans and Grangier, PRL, 88, 057902 (2002) information than Eve




irect Reconciliation

I(XAZXB) = H(XB)—H(XB|XA) |

H(Xg) = log, V(Xp)

H(Xp|X4) = $log, V(Xp|Xa)

!

Vi = Var(X[Y) = min{(¥ = g:X)?)

where g(r) = [(v + 1)%10&[(1/ + 1)/2] = [(v —
1)/2Jlog, [(v — 1)/2].




—Reverse Reconciliation

/[ Information Rates j’\

R‘ = I(XA:XB) —I(XB . E)
I(XA:XB) = H(XB)—H(XB|XA)

[(Xp:E):=S(E)— S(E|Xp)

/

Grosshans et al., Nature 421, 238 (2003).

BENEFITS:

Still only using coherent states
with Gaussian distribution.

Beats the 3 dB loss limit.

Secure for any value of line
transmission - loss only.

Alice and Eve guessing Bob’s
measurement results.

letters to nature

Quantum key distribution using
gaussian-modulated coherent
states

Frederic Grosshans*, Gilles Van Asschet, Jerome Wenger*,
Rosa Brouri*, Nicolas J. Cerf+ & Philippe Grangier*

* Laboratoire Charles Fabry de UlInstitut d’Optique, CNRS UMR 8501, 91403
Orsay, France

T Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Bruxelles,
Belgium

Quantum continuous variables' are being explored®*'* as a
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—Entanglement-Based Picture of CV

Two-mode squeezed state, shared by Alice and Bob.

Alice does homodyne detection, Bob’s collapses to a
squeezed state.

Alice does heterodyne detection, Bob’s collapses to a
coherent state.
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~ Quantum Cryptography with =

Entanglement in the Middle

Typically in CVQKD Alice controls the source.

Here Eve creates and distributes the resource for QKD to
Alice and Bob from the middle.

M
Alice A A

Bob
XEl Xp2 °
A A A A
@ XA T}/ Rt () Ko NN | Xg @
Y EPR source Y

\ El Xﬁz /




_Previous Works: Discrete Variables
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Security Proofs:
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1998), p. 503.

 A.Ac’in, N. Brunner, N. Gisin, S. Massar, S. Pironio and

V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).

H. -K. Lo, M. Curty, B. Qi, arXiv:1109.1473 (2011).



~Previous Works: Discrete Variables

Practical QKD Entangled Sources:

» E.Waks, A. Zeevi, and Y. Yamamoto, Phys. Rev. A 65,
052310 (2002).

* X.Ma, C. -H. F. Fung, and H. -K. Lo, Phys. Rev. A 76,
012307 (2007).
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Tolerates higher amounts
of loss.

BENEFITS:

Can go longer distances.




Does Continuous Variables
Offer the Same Benefits?



~—Equivalences Between Error

Correction Protocols...

States sent

Coherent State
or
Squeeze State

T — —_— — — — — =

|
|
|
J

Type of Measurement

|

Bob Homodyne |
or |

4 Heterodyne |
J

A family of 8 protocols.

. —
| Alice

@

o =

Error Correction

| or
|

Y Direct Reconciliation 7
I
I
I

J Reverse Reconciliation

Bob

A

|
|
|
—J

- T ™
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quivalences Between Error

Correction Protocols...

HOM: Squeezed HOM: Squeezed
HET: Coherent HET: Coherent

Direct and reverse are equivalent!
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~—Equivalences Between Error
Correction Protocols

e Coherent states and homodyne with direct (reverse) is

the same as squeezed states and heterodyne with reverse
(direct).

e Direct and reverse reconciliation are equivalent for

squeezed states and homodyne and also for coherent
states and heterodyne.

We can reduce the number of protocols we need to analyze!



r Analysis!

Reverse Reconciliat Direct Reconciliatic

RY .= I(XA:XB')—I(XB:E)

[(Xp: E):=S(E) - S(E|Xp) I(X4: E):=S(E) - S(E|X4)

Weedbrook, Phys. Rev. A 87, 022308 (2013) .



Secret Key Rate R

10 | | | | | I I | I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Channel Losses dB

Weedbrook, Phys. Rev. A 87, 022308 (2013).



~—Results =

* By having the entanglement in the middle
we can beat the 3dB loss limit for direct
reconciliation.

» Using both coherent states and squeezed
states.

* However, due to the equivalences we
showed previously, this can alternatively be
thought of as reverse reconciliation
performing with excess channel noise.

* CVQKD: a secure key can still be generated
even when the eavesdropper has control over
the source.



/ s

/

Future Work

* Explore other CVQKD protocols such as
postselection and two-way quantum
communication to see how having entanglement
in the middle affects their performance.

* Device independent CV-QKD?

* Measurement device independent CV-QKD?



[ /
Conclusion — -

We considered what impact on the performance of

CVQKD having an entangled state originating
from Eve.

We showed equivalences between the various
protocols when entanglement is in the middle.

Can beat 3dB loss limit for direct reconciliation,
thereby tolerating higher loss.

However in our equivalences this can be thought
of as a poorly performing reverse reconciliation.

CVQKD is still secure if Eve controls the source!
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Thank youl!



