

Past state of probed quantum systems: "spooky action" in the past? Olomouc, December, 2014.

Theory:

"Past quantum states", Phys. Rev. Lett. 111 (2013) Søren Gammelmark, Brian Julsgaard, Klaus Mølmer Examples:

Experiments from Bonn and ENS

Evolution of quantum systems

Measurements on a quantum system imply

- wave function collapse - back action - state reduction

This *conditional* time evolution is

non-unitary, non-linear, non-local,

unpredictable, counter-intuitive,

... indispensable to describe repeated/continuous measurements

Open quantum systems

Example:

A laser driven atom emits fluorescence photons.

Master equation → damped Rabi oscillations, steady state

If the emission is *detected*, we *learn* something about the atomic state: Projection postulate implies that the atom jumps into the ground state → Monte Carlo Wave Functions (J. Dalibard, Y. Castin, KM, 1991)

Single trajectory

Density matrix & <100 trajectories>

Probed quantum systems: two examples

Optical transmission *probing* (Bonn):

Atomic transmission *probing (*ENS):

Detection signal → infer quantum state
A "quantum trajectory"

Probed quantum systems: two examples

Repeated/continuous measurements

 $\psi_c(t \mid m1, m2 \dots mt)$, state conditioned on measurements until time t $\Omega_{mt} \dots \Omega_{m2} \Omega_{m1} \mid \psi >$

Stochastic Schrödinger Equation

The quantum state $\psi(t)$ or $\rho(t)$ depends on measurements until time t

"Can Quantum-Mechanical Description of Physical Reality be Considered Complete?"

A. Einstein, B Podolsky, N Rosen, Phys. Rev. **47**, 777-780 (1935)

" $|\psi\rangle \rightarrow \Omega_m |\psi\rangle$ implies spooky action at a distance"

"Can Quantum-Mechanical Description of Physical Reality be Considered Complete?"

N. Bohr, Phys. Rev. 48, 696-702 (1935)

"...not a mechanical influence ...
... an influence on the very conditions which
define the possible types of predictions
regarding the future behavior of the system."

An influence on ρ is an influence on

"... the very conditions which define the possible types of predictions regarding the future behavior of the system."

$$p(m) = \text{Tr}(\hat{\Omega}_m \rho(t) \hat{\Omega}_m^{\dagger}) / \text{Tr}(\rho(t))$$

Søren Kierkegaard 1813-1855

"Life can only be understood backwards; but it must be lived forwards."

Do I, at time *T*, know more about the *past state* at time *t*, than I already did at that time *t*?

Do measurements cause "spooky action in the past"?

By the (past) quantum state, I will refer to ...

"... the very conditions which define the possible types of predictions regarding the future behavior of the system."

"the state" = our description of the state = our "knowledge"

How are these "conditions" determined and represented?

How do we verify predictions about the past?

For what purposes may past knowledge be applied?

Classical example: "Where are my car keys?"

Having found the keys, at time *T*, I know precisely where they were at time *t*!

Non trivial prediction/verification: where did my wife see our car keys at time *t*?

Now, replace "keys" by "cat" → non-trivial dynamics!

Past quantum state - definition

Any - strong or weak - measurement of any observable, can be implemented by coupling to - and projective read-out of - a meter system.

Past quantum state - definition

Any - strong or weak - measurement of any observable, can be implemented by coupling to - and projective read-out of - a meter system.

Past quantum state – heuristic derivation

Past quantum state - consistent definition

$$\Xi(t) = (\rho(t), E(t))$$

ρ(t) solution to SME

E(t) solution to adjoint SME

$$p(m) = \text{Tr}(\hat{\Omega}_m \rho(t) \hat{\Omega}_m^{\dagger}) / \text{Tr}(\rho(t))$$

$$p_{\mathbf{p}}(m) = \frac{\operatorname{Tr}(\hat{\Omega}_{m}\rho(t)\hat{\Omega}_{m}^{\dagger}E(t))}{\sum_{m}\operatorname{Tr}(\hat{\Omega}_{m}\rho(t)\hat{\Omega}_{m}^{\dagger}E(t))}$$

III. Sidse Damgaard Hansen

 $p(m) = \text{Tr}(\hat{\Omega}_m \rho(t) \hat{\Omega}_m^{\dagger}) / \text{Tr}(\rho(t))$

$$p_{\mathbf{p}}(m) = \frac{\operatorname{Tr}(\hat{\Omega}_{m}\rho(t)\hat{\Omega}_{m}^{\dagger}E(t))}{\sum_{m}\operatorname{Tr}(\hat{\Omega}_{m}\rho(t)\hat{\Omega}_{m}^{\dagger}E(t))}$$

Analysis of Bonn experiments (Meschede)

Two effects: "improve signal-to-noise"

"do not overreact on spikes"

0.6

Analysis of a simulated ENS experiment

Simulated field dynamics and atom detection

Usual Bayes:

"If the photon number is odd, it is most likely 1."

"If the photon number is even, it is most likely 0."

In Hindsight:

"If the photon number is even for only a very short time, it is probably 2 rather than 0."

Analysis of a real ENS experiment (I. Dotsenko)

Summary

The state of a quantum system is conditioned on the outcome of probing measurements.

States in the past are (now) conditioned on measurements until the present – the past quantum state.

Natural quantum extension of classical Bayes/HMM theory.

Natural generalization and extension of Aharonov and Vaidmans ideas of "weak value measurements" with pre- and post selection.

Past states make more accurate predictions, e.g., for:

state assignment

guessing games

counterfactual paradoxes

parameter estimation and metrology

... and for publication !!!

I hope you will be looking backward to this talk ;-)

A trivial example

I can tell you both the value of S_x and S_y

if you measured S_x, you got m_x

if you measured S_y, you got m_y

Past states: classical case

An exercise in Bayesian reasoning,
hidden Markov models.

$$P(X_t = i | s_1, \dots s_N) = \frac{P(X_t = i, s_1, \dots s_N)}{P(s_1, \dots s_N)}$$

$$P(s_1, \dots s_t, X_t = i) P(s_{t+1}, \dots s_N | X_t = i)$$

 $P(X_t|s_1,\ldots s_t)$

"hindsight-factor"

Bayes

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, and S. A. Teukovsky, *Numerical recipes: the art of scientific computing*, 3rd ed. (Cambridge University Press, 2007) p. 1235.

Past quantum states and parameter re-estimation

