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1. Intransitivity of indifference
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1. Intransitivity of indifference

The Sorites Paradox

Many versions of the Sorites Paradox:

The Bald Man Paradox: there is no particular
number of hairs whose loss marks the transition to
boldness

The Heap Paradox: no grain of wheat can be
identified as making the difference between a heap and
not being a heap

The Luce Paradox: sugar in coffee example
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1. Intransitivity of indifference

The Poincaré Paradox

Approximate equality of real numbers is not transitive, i.e. stating that
a ∈ R is similar to b ∈ R if

|a − b| ≤ ǫ

is not transitive

x

a− ǫ a a+ ǫ
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1. Intransitivity of indifference

Possible symmetric configurations (n = 3)

a

b c

a

b c

a

b c

a

b c
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1. Intransitivity of indifference

The Poincaré Paradox revisited

The fuzzy relation

Eǫ(a, b) = max

(

1 − |a − b|
ǫ

, 0

)

is TL-transitive, i.e. Eǫ(a, b) + Eǫ(b, c) − 1 ≤ Eǫ(a, c)

y

x

1

a− ǫ a a+ ǫ

The function dǫ = 1 − Eǫ is a metric: the triangle inequality holds

dǫ(a, b) + dǫ(b, c) ≥ dǫ(a, c)
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1. Intransitivity of indifference

T -Transitivity of fuzzy relations

Fuzzy relation: R : A2 → [0, 1], with a unipolar semantics

A fuzzy relation R on A is called T -transitive, with T a t-norm, if

T (R(a, b),R(b, c)) ≤ R(a, c)

for any a, b, c in A

a

b c

R(a,b)

R(b, c)

R(a, c)
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1. Intransitivity of indifference

Triangular norms

Basic continuous t-norms:

minimum TM min(x , y)
product TP xy

 Lukasiewicz t-norm TL max(x + y − 1, 0)
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1. Intransitivity of indifference

T -triplets

Consider three elements a1, a2 and a3:

A permutation (ai , aj , ak) is called a T -triplet if

T (R(ai , aj),R(aj , ak)) ≤ R(ai , ak)

There can be at most 6 T -triplets

T -transitivity expresses that there always are 6 T -triplets
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2. Intransitivity of preference

2. Intransitivity of preference
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2. Intransitivity of preference 2.1 Intransitivity of preference

Transitivity of preference

Transitivity of preference is a fundamental principle underlying most
major rational, prescriptive and descriptive contemporary models of
decision making

Rationality of individual and collective choice: a transitive person,
group or society that prefers choice option x to y and y to z must
prefer x to z

Intransitive relations are often perceived as something paradoxical
and are associated with irrational behaviour

Main argument: money pump
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2. Intransitivity of preference 2.1 Intransitivity of preference

Intransitivity of preference

Transitivity is expected to hold if preferences are based on a single
scale (fitness maximization)

Intransitive choices have been reported from both humans and other
animals, such as gray jays (Waite, 2001) collecting food for storage

Bounded rationality: intransitive choices are a suboptimal byproduct
of heuristics that usually perform well in real-world situations
(Kahneman and Tversky, 1969)

Intransitive choices can result from decision strategies that maximize
fitness (Houston, McNamara and Steer, 2007), as a kind of insurance
against a run of bad luck
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2. Intransitivity of preference 2.1 Intransitivity of preference

Intransitivity in life

Life provides many examples of intransitive relations, they often seem to
be necessary and play a positive role

sports: team A which defeated team B, which in turn won from C,
can be overcome by C

13 love triangles:
a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c

a

b c
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

The God-Einstein-Oppenheimer dice puzzle
(New York Times, 30-03-09)

Integers 1–18 distributed over 3 dice:

A 1 2 13 14 15 16

B 7 8 9 10 11 12

C 3 4 5 6 17 18

Winning probabilities:

A

B C

24/36

24/36

20/36
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Statistical preference

Statistical preference: X is preferred to Y if Prob{X > Y } > 1
2

May lead to cycles (Steinhaus and Trybu la, 1959):

A

B C

There exist 10.705 cyclic distributions of the numbers 1–18 and 15 of
them constitute a cycle of the highest equal probability 21/36 = 7/12
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

A single die variant

Integers 1–18 distributed over 1 die: 3 numbers on each face

15 17 4 16 3 112 13 14 11 2 10

18 6 9 5 8 7

Winning probabilities:

R

G B

4/6

4/6

4/6

The single die can be seen as 3 coupled dice
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Rock-Paper-Scissors

Cyclic dice are a type of Rock-Paper-Scissors (RPS):
(ancient children’s game, jan-ken-pon, rochambeau)

rock defeats scissors

scissors defeat paper

rock loses to paper
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Rock-Paper-Scissors

The Rock-Paper-Scissors game:

is often used as a selection method in a way similar to coin flipping,
drawing straws, or throwing dice

unlike truly random selection methods, RPS can be played with a
degree of skill: recognize and exploit the non-random behaviour of
an opponent

World RPS Society:

“Serving the needs of decision makers since 1918”
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Rock-Paper-Scissors
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in voting

The voting paradox of Condorcet (Marquis de Condorcet, 1785)

voter 1: A > B > C

voter 2: B > C > A

voter 3: C > A > B

A

B C

2/3

2/3

2/3

Inspiration to Arrow’s impossibility theorem: there is no choice
procedure meeting the democratic assumptions
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in evolutionary biology: lizards

Common side-blotched lizard mating strategies (Sinervo and Lively,
Nature, 1996) depending on the colour of throats of males

Prof. dr. Bernard De Baets (KERMIT) Winning probability relations Olomouc (CZ), 30-04-13 22 / 83



2. Intransitivity of preference 2.2 Rock-Paper-Scissors

RPS in evolutionary biology:
Survival of the Weakest

Cyclic competitions in spatial ecosystems (Reichenbach et al., 2007;
Frey, 2009) (alternative to Lotka-Volterra equations, computer simulations
using cellular automata)

in large populations, the weakest species would - with very high
probability - come out as the victor

biodiversity in RPS games is negatively correlated with the rate of
migration: critical rate of migration ǫcrit above which biodiversity gets
lost

Prof. dr. Bernard De Baets (KERMIT) Winning probability relations Olomouc (CZ), 30-04-13 23 / 83



2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulating microbial competition

Simulation setting:

three subpopulations: A , B , C

initial population density: 25 % A , 25 % B , 25 % C , 25 %

cellular automaton on a square grid

environmental conditions discarded

A

B C
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulating microbial competition: mechanisms

Reproduction (µ):

Selection (σ):

Migration (ǫ):
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulation experiment 1

ǫ < ǫc
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2. Intransitivity of preference 2.2 Rock-Paper-Scissors

Simulation experiment 2

ǫ > ǫc
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3. Reciprocal relations

3. Reciprocal relations
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3. Reciprocal relations 3.1 Reciprocal relations

Reciprocal relations

Reciprocal relation: Q : A2 → [0, 1], with a bipolar semantics, satisfying

Q(a, b) + Q(b, a) = 1

Example 1: 3-valued representation of a complete relation R

Q(a, b) =







1 , if R(a, b) = 1 and R(b, a) = 0
1/2 , if R(a, b) = R(b, a) = 1

0 , if R(a, b) = 0 and R(b, a) = 1

Example 2: winning probabilities associated with a random vector
(X1,X2, . . . ,Xn)

Q(Xi ,Xj) = Prob{Xi > Xj} + 1
2
Prob{Xi = Xj}
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3. Reciprocal relations 3.1 Reciprocal relations

Possible complete asymmetric configurations (n = 3)

a

b c

a

b c
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3. Reciprocal relations 3.1 Reciprocal relations

Oppenheimer’s set of dice

A

B C

24/36

24/36

20/36

Reciprocal relation:

Q =













1/2 24/36 16/36

12/36 1/2 24/36

20/36 12/36 1/2












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3. Reciprocal relations 3.2 Transitivity

T -transitivity of reciprocal relations

Although not compatible with the bipolar semantics, T -transitivity can be
imposed formally

Theorem

Consider a reciprocal relation on three elements:

There are either 3, 5 or 6 TM-triplets

There are either 3, 4, 5 or 6 TP-triplets

There are either 3 or 6 TL-triplets
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3. Reciprocal relations 3.2 Transitivity

TL-transitivity of reciprocal relations

TL-transitivity of a reciprocal relation = “triangle inequality”:

Q(a, b) + Q(b, c) ≥ Q(a, c)

Theorem

The winning probability relation associated with a random vector
satisfies the triangle inequality
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3. Reciprocal relations 3.2 Transitivity

Stochastic transitivity of reciprocal relations

A reciprocal relation Q is called g-stochastic transitive if

(Q(a, b) ≥ 1/2 ∧ Q(b, c) ≥ 1/2) ⇒ g(Q(a, b),Q(b, c)) ≤ Q(a, c)

weak stochastic transitivity (g = 1/2): iff 1/2-cut of Q is transitive

moderate stochastic transitivity (g = min):
iff all α-cuts (with α ≥ 1/2) are transitive

strong stochastic transitivity (g = max)

A reciprocal relation Q is called partially stochastic transitive if

(Q(a, b) > 1/2 ∧ Q(b, c) > 1/2) ⇒ min(Q(a, b),Q(b, c)) ≤ Q(a, c) ;

iff all α-cuts (with α > 1/2) are transitive
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4. Dice games

4. Dice games: independent RV
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4. Dice games 4.1 Product-transitivity

A probabilistic viewpoint

Three random variables X1, X2 and X3:

Prob{X1 > X2 ∧ X2 > X3} ≤ Prob{X1 > X3}

Even if they are independent, then not necessarily

Prob{X1 > X2}Prob{X2 > X3} ≤ Prob{X1 > X3}

How close are winning probabilities to being TP-transitive

Q(a, b)Q(b, c) ≤ Q(a, c) ?
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4. Dice games 4.1 Product-transitivity

Oppenheimer’s set of dice

Reciprocal relation:

Q =













1/2 24/36 16/36

12/36 1/2 24/36

20/36 12/36 1/2













Four product-triplets, the only conditions not fulfilled are

Q(b, c)Q(c , a) ≤ Q(b, a) and Q(c , a)Q(a, b) ≤ Q(c , b)

since
20

36
× 24

36
=

12

36
+

1

27
>

12

36
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4. Dice games 4.1 Product-transitivity

Cycle-transitivity

Reciprocal relation Q:
αabc min{Q(a, b),Q(b, c),Q(c , a)}
βabc median{Q(a, b),Q(b, c),Q(c , a)}
γabc max{Q(a, b),Q(b, c),Q(c , a)}

a

b c

β

α

γ

TP-transitivity

A reciprocal relation Q is TP-transitive if and only if αβ ≤ 1 − γ

(both clockwise and counter-clockwise)
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4. Dice games 4.2 Weak product-transitivity

Pairwise independent random variables

Theorem (characterization for n = 3 and rational numbers)

The winning probability relation QP associated with pairwise
independent random variables is weakly TP-transitive (dice-transitive),
i.e.

βγ ≤ 1 − α

(both clockwise and counter-clockwise)

Interpretation

The winning probability relation QP is at least 4
6
× 100% TP-transitive
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4. Dice games 4.2 Weak product-transitivity

Some interesting numbers for 3 dice

4 faces 5 faces 6 faces 7 faces

4 TP-triplets 8.66% 1.67% 0.325% 0.060%
5 TP-triplets 14.01% 7.98% 4.2 % 2.31 %

6 TP-triplets 85.90% 92.00% 95.8% 97.68%

total number 5.78E+03 1.26E+05 2.86E+06 6.65+07
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4. Dice games 4.2 Weak product-transitivity

Avoiding cycles

The strict φ-cut of QP, with φ the golden section:

22

36
< φ =

√
5 − 1

2
<

23

36

contains no cycles of length 3

The 3/4-cut of QP is acyclic

A

B C

24/36

24/36

20/36
A

B C
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5. Poset ranking

5. Poset ranking: coupled RV

Prof. dr. Bernard De Baets (KERMIT) Winning probability relations Olomouc (CZ), 30-04-13 42 / 83



5. Poset ranking 5.1 The Hasse diagram technique

Partially ordered sets

Partially ordered sets (posets) are witnessing an increased interest:

multi-criteria analysis without a common scale

allow for incomparability

usually based on product ordering in a multi-dimensional setting

the Hasse diagram technique in environmetrics and
chemometrics
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5. Poset ranking 5.1 The Hasse diagram technique

Real-world example: pollution in
Baden-Württemberg
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5. Poset ranking 5.1 The Hasse diagram technique

Toy example: a poset and its linear extensions

Linear extension: an order-preserving permutation of the elements

e

c

a

d

b

e

d

c

b

a

d

e

c

b

a

e

c

d

b

a

e

d

b

c

a

d

e

b

c

a

d

b

e

c

a

e

c

d

a

b

e

d

c

a

b

d

e

c

a

b

5

4

3

2

1
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5. Poset ranking 5.1 The Hasse diagram technique

Toy example: average rank

Discrete random variable Xa describing the position of a in a random linear
extension

e

d

c

b

a

d

e

c

b

a

e

c

d

b

a

e

d

b

c

a

d

e

b

c

a

d

b

e

c

a

e

c

d

a

b

e

d

c

a

b

d

e

c

a

b

5

4

3

2

1
1 2 3 4 5

0

5

10
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5. Poset ranking 5.1 The Hasse diagram technique

Toy example: poset ranking

Ranking the elements according to their average rank (weak order)

e

d

c

b

a
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5. Poset ranking 5.2 Mutual rank probabilities

Toy example: mutual rank probabilities

Fraction of linear extensions in which a is ranked above b:

Prob{Xa > Xb} = 3
9

e

d

c

b

a

d

e

c

b

a

e

c

d

b

a

e

d

b

c

a

d

e

b

c

a

d

b

e

c

a

e

c

d

a

b

e

d

c

a

b

d

e

c

a

b

5

4

3

2

1
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5. Poset ranking 5.2 Mutual rank probabilities

Mutual rank probability relation

Mutual rank probability relation: reciprocal relation expressing the
probability that xi is ranked above xj

Q(xi , xj ) = Prob{Xi > Xj}

Toy example:

Q =























1/2 3/9 0 0 0

6/9 1/2 3/9 0 1/9

1 6/9 1/2 2/9 0

1 1 7/9 1/2 4/9

1 8/9 1 5/9 1/2























Prof. dr. Bernard De Baets (KERMIT) Winning probability relations Olomouc (CZ), 30-04-13 49 / 83



5. Poset ranking 5.2 Mutual rank probabilities

Linear extension majority cycles

Linear Extension Majority: xi is ranked above xj if Prob{Xi > Xj} > 1
2

May lead to cycles (n ≥ 9): only 5 out of 183 231 posets of size 9
contain LEM 3-cycles, none of them contains longer LEM cycles

g h i

d e f

a b c

Q(g , h) = Q(h, i) = Q(i , g) = 720
1431

Q(d , e) = Q(e, f ) = Q(f , d) = 720
1431

Q(a, b) = Q(b, c) = Q(c , a) = 720
1431

Yu (1998): α-cuts of QP are transitive for

α >
1

2

(

1 + (
√

2 − 1)

√

2
√

2 − 1

)

≈ 0.78
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5. Poset ranking 5.3 Moderate product-transitivity

Transitivity

Theorem

The mutual rank probability relation is moderately TP-transitive, i.e.

αγ ≤ 1 − β

(both clockwise and counter-clockwise)

Interpretation

The mutual rank probability relation is at least 5
6
× 100% TP-transitive

Avoiding 3-cycles

The strict φ-cut of QP , with φ the golden section, contains no cycles of
length 3
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5. Poset ranking 5.3 Moderate product-transitivity

Product-triplets and min-triplets

There are 1 104 891 746 non-isomorphic posets of 12 elements
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6. Graded stochastic dominance

6. Graded stochastic dominance:

artificially coupled RV
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6. Graded stochastic dominance 6.1 Stochastic dominance

Stochastic dominance

Aim:

to define a partial order relation on a set of real-valued RV

semantics: RV taking higher values are preferred

Application areas:

economics and finance

social statistics

decision making under uncertainty

machine learning and multi-criteria decision making
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6. Graded stochastic dominance 6.1 Stochastic dominance

Stochastic dominance

General principle:

pairwise comparison of RV

pointwise comparison of performance functions

The cumulative distribution function (CDF) FX :

FX (x) = Prob{X ≤ x}

fX

x0 1 x

1 1

1/2

0
0x

1

0 1

FX

00
1

GX
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6. Graded stochastic dominance 6.1 Stochastic dominance

First order stochastic dominance (FSD)

First order stochastic dominance relation (FSD):

X �FSD Y
def⇔ FX ≤ FY

or, equivalently,

E[u(X )] ≥ E[u(Y )]

for any increasing function u

FSD implies weak statistical preference: QP(X ,Y ) ≥ 1/2

Shortcomings

no tolerance for small deviations, no grading

usually sparse graphs
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6. Graded stochastic dominance 6.2 Co-monotone comparison

Dice games versus co-monotone comparison

X Y
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QP(X ,Y ) = 7/16 QM(X ,Y ) = 3/8
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6. Graded stochastic dominance 6.2 Co-monotone comparison

Proportional expected difference

Reciprocal relation: QM(X ,Y ) =
1

n

n
∑

k=1

δM
k

with

δM
k =







1 , if xk > yk

1/2 , if xk = yk

0 , if xk < yk

Proportional expected difference relation:

QPED(X ,Y ) =

1

n

n
∑

k=1

(xk − yk)+

1

n

n
∑

k=1

|xk − yk |
=

E[(X − Y )+]

E[|X − Y |]

with QPED(X ,Y ) = 1 if and only if X ≻FSD Y
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6. Graded stochastic dominance 6.2 Co-monotone comparison

Proportional expected difference

The case of continuous RV:

QPED(X ,Y ) =

∫

(FY (x) − FX (x))+ dx
∫

|FY (x) − FX (x)|dx

{

{

} t1

t2

t3

F( )x
FX

FY

FX

FY

0 x
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6. Graded stochastic dominance 6.2 Co-monotone comparison

Transitivity

Theorem

The proportional expected difference relation QPED is partially
stochastic transitive

Use

The strict 1/2-cut of QPED yields the strict order relation
characterized by

QPED(X ,Y ) >
1

2
⇔ E[X ] > E[Y ]

Any α-cut (with α > 1/2) yields a strict order relation:
with increasing α the graph (Hasse diagram) becomes
more and more sparse (Hasse tree)
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6. Graded stochastic dominance 6.2 Co-monotone comparison

Example

Integers 1–9 distributed over 5 dice:

A 1 4 9

B 3 4 8

C 3 6 7

D 2 7 8

E 5 6 7

QPED =























1/2 1/3 1/3 1/5 1/4

2/3 1/2 1/3 1/4 1/5

2/3 2/3 1/2 1/3 0

4/5 3/4 2/3 1/2 2/5

3/4 4/5 1 3/5 1/2























Prof. dr. Bernard De Baets (KERMIT) Winning probability relations Olomouc (CZ), 30-04-13 61 / 83



6. Graded stochastic dominance 6.2 Co-monotone comparison

Example
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7. More dice games: beyond transitivity

7. More dice games: beyond transitivity
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7. More dice games: beyond transitivity 7.1 Rock-Paper-Scissors-Lizard

Rock-Paper-Scissors-Lizard

Integers 1–12 distributed over 4 dice:

A 1 6 12

B 4 5 10

C 3 8 9

D 2 7 11

Statistical preference: 4-cycle ABCD and two 3-cycles ABC and BCD

A

B C

D

5/9

5/9

5/9

5/9

5/9 5/9

A

B C

D
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7. More dice games: beyond transitivity 7.1 Rock-Paper-Scissors-Lizard

Possible complete asymmetric configurations (n = 4)

A

B C

D A

B C

D

A

B C

D A

B C

D
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7. More dice games: beyond transitivity 7.1 Rock-Paper-Scissors-Lizard

Product-triplets (n = 4)

Interpretation

The winning probability relation QP is at least 4
6
× 100% TP-transitive

Some figures: number of product-triplets for 4 dice

4 faces 5 faces 6 faces

16 triplets - - -
17 triplets - - 0.000001 %
18 triplets 0.001% 0.00004% 0.000003 %
19 triplets 0.010% 0.0013% 0.0001%
20 triplets 0.26% 0.080% 0.018 %
21 triplets 3.37% 1.51% 0.54 %
22 triplets 17.45% 9.48% 4.91 %
23 triplets 10.63% 8.23% 5.35 %
24 triplets 68.28% 80.69% 89.18%

total number 2.63E+06 4.89E+08 9.30E+10
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7. More dice games: beyond transitivity 7.1 Rock-Paper-Scissors-Lizard

At least 16 product-triplets it is!

Integers 1–36 distributed over 4 dice:

A 4 5 6 7 8 9 10 34 35

B 11 12 13 14 15 16 17 18 36

C 1 19 20 21 22 23 24 25 26

D 2 3 27 28 29 30 31 32 33
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7. More dice games: beyond transitivity 7.2 Product-Ferrers property

Semi-transitivity and the Ferrers property

Semi-transitivity:
if aRb and bRc , then aRd or dRc

c

b

a

d

The Ferrers property:
if aRb and cRd , then aRd or cRb

db

ca

Key property of methods for ranking
fuzzy intervals (numbers), rather
than transitivity!
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7. More dice games: beyond transitivity 7.2 Product-Ferrers property

T -semi-transitivity

A fuzzy relation R on A is called T -semi-transitive, with T a t-norm and
T ∗ its dual t-conorm, if

T (R(a, b),R(b, c)) ≤ T ∗(R(a, d),R(d , c))

for any a, b, c , d in A

c

b

a

d
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7. More dice games: beyond transitivity 7.2 Product-Ferrers property

T -Ferrers property

A fuzzy relation R on A is called T -Ferrers, with T a t-norm and T ∗ its
dual t-conorm, if

T (R(a, b),R(c , d)) ≤ T ∗(R(a, d),R(c , b))

for any a, b, c , d in A

db

ca
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7. More dice games: beyond transitivity 7.2 Product-Ferrers property

Reciprocal relations

Complete relations: transitivity implies semi-transitivity and the
Ferrers property

Reciprocal relations: if T is 1-Lipschitz continuous, then

T -transitivity implies T -semi-transitivity

T -transitivity implies the T -Ferrers property

TL-Ferrers

The winning probability relation associated with a random vector is
TL-Ferrers
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7. More dice games: beyond transitivity 7.2 Product-Ferrers property

The Ferrers property

Four independent random variables X1, X2, X3 and X4:

Prob{X1 > X2}Prob{X3 > X4}
≤ Prob{X1 > X4} + Prob{X3 > X2} − Prob{X1 > X4}Prob{X3 > X2}

Theorem

The winning probability relation QP associated with pairwise
independent random variables is TP-Ferrers
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7. More dice games: beyond transitivity 7.2 Product-Ferrers property

A stronger version of the TP-Ferrers property

Weak TP-transitivity and the TP-Ferrers property revisited

A reciprocal relation Q is weakly TP-transitive (dice-transitive) if and
only if for any 3 consecutive weights (t1, t2, t3) it holds that

t1 + t2 + t3 − 1 ≥ min(t1t2, t2t3, t3t1)

A reciprocal relation Q is TP-Ferrers if and only if for any 4
consecutive weights (t1, t2, t3, t4) it holds that

t1 + t2 + t3 + t4 − 1 ≥ t1t3 + t2t4

4-cycle condition

The winning probability relation QP associated with pairwise independent
random variables satisfies for any for any 4 consecutive weights
(t1, t2, t3, t4)

t1 + t2 + t3 + t4 − 1 ≥ t1t3 + t2t4 + min(t1, t3) min(t2, t4)
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7. More dice games: beyond transitivity 7.3 What if God does throw dice?

What if God does throw dice?

Integers 1–20 distributed over 5 dice:

A 1 5 12 20

B 2 6 15 18

C 3 9 14 17

D 4 8 11 19

E 7 10 13 16

Whatever X , Y selected by Oppenheimer and Einstein, God can select Z

such that

Prob{Z > max(X ,Y )} > Prob{X > max(Y ,Z )}

Prob{Z > max(X ,Y )} > Prob{Y > max(X ,Z )}
This cannot be realized with 3 or 4 dice
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Conclusion

Conclusion
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Conclusion

Conclusion

Cyclic phenomena are not necessarily incompatible with transitivity,
but arise due to the granularity considered

Cycle-transitivity yields a general framework for studying the
transitivity of reciprocal relations

Frequentist interpretation of the transitivity of winning
probabilities in terms of product-transitivity

Alternative theories of stochastic dominance

In silico species competition and coexistence

In machine learning, the AUC (area under the ROC curve) in a
1-versus-1 multi-class classification scheme form a reciprocal relation
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Conclusion
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