State-of-the-art on winning probability relations

Prof. dr. Bernard De Baets

Ghent University Belgium

Prepared for the International Centre for Uncertainty and Information

Olomouc (CZ), 30-04-13

INVESTMENTS IN EDUCATION DEVELOPMENT

Contents

- Intransitivity of indifference
- 2 Intransitivity of preference
- Reciprocal relations
- Oice games
- Poset ranking
- Graded stochastic dominance
- More dice games: beyond transitivity

1. Intransitivity of indifference

The Sorites Paradox

Many versions of the Sorites Paradox:

- The Bald Man Paradox: there is no particular number of hairs whose loss marks the transition to boldness
- The Heap Paradox: no grain of wheat can be identified as making the difference between a heap and not being a heap
- The Luce Paradox: sugar in coffee example

The Poincaré Paradox

Approximate equality of real numbers is not transitive, i.e. stating that $a \in \mathbb{R}$ is similar to $b \in \mathbb{R}$ if

$$|a-b| \le \epsilon$$

is not transitive

Possible symmetric configurations (n = 3)

The Poincaré Paradox revisited

The fuzzy relation

$$E_{\epsilon}(a,b) = \max\left(1 - rac{|a-b|}{\epsilon},0
ight)$$

is T_L -transitive, i.e. $E_{\epsilon}(a,b) + E_{\epsilon}(b,c) - 1 \le E_{\epsilon}(a,c)$

The function $d_{\epsilon} = 1 - E_{\epsilon}$ is a metric: the **triangle inequality** holds

$$d_{\epsilon}(a,b) + d_{\epsilon}(b,c) \geq d_{\epsilon}(a,c)$$

T-Transitivity of fuzzy relations

Fuzzy relation: $R: A^2 \rightarrow [0,1]$, with a **unipolar** semantics

ullet A fuzzy relation R on A is called T-transitive, with T a t-norm, if

$$T(R(a,b),R(b,c)) \leq R(a,c)$$

for any a, b, c in A

Triangular norms

Basic continuous t-norms:

minimum	T_{M}	min(x, y)
product	T_{P}	xy
Łukasiewicz t-norm	T_{L}	$\max(x+y-1,0)$

T-triplets

Consider three elements a_1 , a_2 and a_3 :

• A permutation (a_i, a_j, a_k) is called a T-triplet if

$$T(R(a_i, a_j), R(a_j, a_k)) \leq R(a_i, a_k)$$

- There can be at most 6 T-triplets
- T-transitivity expresses that there always are 6 T-triplets

2. Intransitivity of preference

Transitivity of preference

Transitivity of preference is a fundamental principle underlying most major rational, prescriptive and descriptive contemporary models of decision making

- Rationality of individual and collective choice: a transitive person, group or society that prefers choice option x to y and y to z must prefer x to z
- Intransitive relations are often perceived as something paradoxical and are associated with irrational behaviour
- Main argument: money pump

Intransitivity of preference

- Transitivity is expected to hold if preferences are based on a single scale (fitness maximization)
- Intransitive choices have been reported from both humans and other animals, such as gray jays (Waite, 2001) collecting food for storage

- Bounded rationality: intransitive choices are a suboptimal byproduct of heuristics that usually perform well in real-world situations (Kahneman and Tversky, 1969)
- Intransitive choices can result from decision strategies that maximize fitness (Houston, McNamara and Steer, 2007), as a kind of insurance against a run of bad luck

Intransitivity in life

Life provides many examples of intransitive relations, they often seem to be necessary and play a positive role

- sports: team A which defeated team B, which in turn won from C, can be overcome by C
- 13 love triangles:

The God-Einstein-Oppenheimer dice puzzle

(New York Times, 30-03-09)

Integers 1–18 distributed over **3 dice**:

Α	1	2	13	14	15	16
В	7	8	9	10	11	12
С	3	4	5	6	17	18

Winning probabilities:

Statistical preference

Statistical preference: *X* is preferred to *Y* if $\frac{\text{Prob}\{X > Y\}}{2}$

May lead to cycles (Steinhaus and Trybuła, 1959):

• There exist 10.705 cyclic distributions of the numbers 1–18 and 15 of them constitute a cycle of the highest equal probability 21/36 = 7/12

A single die variant

Integers 1–18 distributed over 1 die: 3 numbers on each face

Winning probabilities:

The single die can be seen as 3 coupled dice

Rock-Paper-Scissors

Cyclic dice are a type of **Rock-Paper-Scissors** (RPS): (ancient children's game, *jan-ken-pon*, *rochambeau*)

- rock defeats scissors
- scissors defeat paper
- rock loses to paper

Rock-Paper-Scissors

The Rock-Paper-Scissors game:

- is often used as a selection method in a way similar to coin flipping, drawing straws, or throwing dice
- unlike truly random selection methods, RPS can be played with a degree of skill: recognize and exploit the non-random behaviour of an opponent
- World RPS Society:

"Serving the needs of decision makers since 1918"

Rock-Paper-Scissors

RPS in voting

The voting paradox of Condorcet (Marquis de Condorcet, 1785)

voter 1:
$$A > B > C$$

voter 2: $B > C > A$
voter 3: $C > A > B$

Inspiration to **Arrow's impossibility theorem**: there is no choice procedure meeting the democratic assumptions

RPS in evolutionary biology: lizards

Common side-blotched **lizard** mating strategies (Sinervo and Lively, Nature, 1996) depending on the colour of throats of males

RPS in evolutionary biology: Survival of the Weakest

Cyclic competitions in spatial ecosystems (Reichenbach et al., 2007; Frey, 2009) (alternative to Lotka-Volterra equations, computer simulations using cellular automata)

- in large populations, the weakest species would with very high probability - come out as the victor
- ullet biodiversity in RPS games is negatively correlated with the rate of migration: critical rate of migration ϵ_{crit} above which biodiversity gets lost

Simulating microbial competition

Simulation setting:

- three subpopulations: A, B, C
- initial population density: 25 % A, 25 % B, 25 % C, 25 %
- cellular automaton on a square grid
- environmental conditions discarded

Simulating microbial competition: mechanisms

• Reproduction (μ) :

• Selection (σ) :

• Migration (ϵ):

Simulation experiment 1

 $\epsilon < \epsilon_0$

Simulation experiment 2

 $\epsilon > \epsilon_0$

3. Reciprocal relations

Reciprocal relations

Reciprocal relation: $Q: A^2 \rightarrow [0,1]$, with a **bipolar** semantics, satisfying

$$Q(a,b)+Q(b,a)=1$$

Example 1: 3-valued representation of a complete relation R

$$Q(a,b) = \begin{cases} 1 & \text{, if } R(a,b) = 1 \text{ and } R(b,a) = 0 \\ 1/2 & \text{, if } R(a,b) = R(b,a) = 1 \\ 0 & \text{, if } R(a,b) = 0 \text{ and } R(b,a) = 1 \end{cases}$$

• Example 2: winning probabilities associated with a random vector $(X_1, X_2, ..., X_n)$

$$Q(X_i, X_j) = \operatorname{Prob}\{X_i > X_j\} + \frac{1}{2}\operatorname{Prob}\{X_i = X_j\}$$

Possible complete asymmetric configurations (n = 3)

Oppenheimer's set of dice

Reciprocal relation:

$$Q = \begin{pmatrix} 1/2 & 24/36 & 16/36 \\ 12/36 & 1/2 & 24/36 \\ \hline 20/36 & 12/36 & 1/2 \end{pmatrix}$$

T-transitivity of reciprocal relations

Although not compatible with the bipolar semantics, T-transitivity can be imposed formally

Theorem

Consider a reciprocal relation on three elements:

- There are either 3, 5 or 6 T_{M} -triplets
- There are either 3, 4, 5 or 6 T_P-triplets
- There are either 3 or 6 T_L-triplets

T_L -transitivity of reciprocal relations

 T_L -transitivity of a reciprocal relation = "triangle inequality":

$$Q(a,b) + Q(b,c) \geq Q(a,c)$$

Theorem

The winning probability relation associated with a random vector satisfies the triangle inequality

Stochastic transitivity of reciprocal relations

A reciprocal relation Q is called g-stochastic transitive if

$$(Q(a,b) \ge 1/2 \land Q(b,c) \ge 1/2) \Rightarrow g(Q(a,b),Q(b,c)) \le Q(a,c)$$

- weak stochastic transitivity (g = 1/2): iff 1/2-cut of Q is transitive
- moderate stochastic transitivity ($g = \min$): iff all α -cuts (with $\alpha \ge 1/2$) are transitive
- strong stochastic transitivity (g = max)

A reciprocal relation Q is called partially stochastic transitive if

$$(Q(a,b) > 1/2 \land Q(b,c) > 1/2) \Rightarrow \min(Q(a,b),Q(b,c)) \leq Q(a,c)$$
;

iff all α -cuts (with $\alpha > 1/2$) are transitive

4. Dice games: independent RV

A probabilistic viewpoint

Three random variables X_1 , X_2 and X_3 :

$${\rm Prob}\{X_1 > X_2 \ \land \ X_2 > X_3\} \leq {\rm Prob}\{X_1 > X_3\}$$

Even if they are independent, then not necessarily

$$\operatorname{Prob}\{X_1>X_2\}\operatorname{Prob}\{X_2>X_3\}\leq\operatorname{Prob}\{X_1>X_3\}$$

How close are winning probabilities to being T_{P} -transitive

$$Q(a,b)Q(b,c) \leq Q(a,c)$$
?

Oppenheimer's set of dice

Reciprocal relation:

$$Q = \begin{pmatrix} 1/2 & 24/36 & 16/36 \\ 12/36 & 1/2 & 24/36 \\ \hline 20/36 & 12/36 & 1/2 \end{pmatrix}$$

Four product-triplets, the only conditions not fulfilled are

$$Q(b,c)Q(c,a) \leq Q(b,a)$$
 and $Q(c,a)Q(a,b) \leq Q(c,b)$

since

$$\frac{20}{36} \times \frac{24}{36} = \frac{12}{36} + \frac{1}{27} > \frac{12}{36}$$

Cycle-transitivity

Reciprocal relation Q:

 $\begin{array}{ll} \alpha_{abc} & \min\{Q(a,b),Q(b,c),Q(c,a)\} \\ \beta_{abc} & \max\{Q(a,b),Q(b,c),Q(c,a)\} \\ \gamma_{abc} & \max\{Q(a,b),Q(b,c),Q(c,a)\} \end{array}$

$T_{\rm P}$ -transitivity

A reciprocal relation Q is $T_{\rm P}$ -transitive if and only if $\alpha\beta \leq 1-\gamma$ (both clockwise and counter-clockwise)

Pairwise independent random variables

Theorem (characterization for n=3 and rational numbers)

The winning probability relation Q^P associated with pairwise **independent** random variables is **weakly** T_{P} -transitive (dice-transitive), i.e.

$$\beta \gamma \le 1 - \alpha$$

(both clockwise and counter-clockwise)

Interpretation

The winning probability relation Q^{P} is at least $\frac{4}{6} \times 100\%$ T_{P} -transitive

Some interesting numbers for 3 dice

	4 faces	5 faces	6 faces	7 faces
4 T _P -triplets	8.66%	1.67%	0.325%	0.060%
5 T_{P} -triplets	14.01%	7.98%	4.2 %	2.31 %
6 T_{P} -triplets	85.90%	92.00%	95.8%	97.68%
total number	5.78E+03	1.26E+05	2.86E+06	6.65 + 07

Avoiding cycles

• The strict ϕ -cut of $Q^{\mathbf{P}}$, with ϕ the golden section:

$$\frac{22}{36} < \phi = \frac{\sqrt{5} - 1}{2} < \frac{23}{36}$$

contains no cycles of length 3

• The 3/4-cut of Q^P is acyclic

5. Poset ranking: coupled RV

Partially ordered sets

Partially ordered sets (posets) are witnessing an increased interest:

- multi-criteria analysis without a common scale
- allow for incomparability
- usually based on product ordering in a multi-dimensional setting
- the Hasse diagram technique in environmetrics and chemometrics

Real-world example: pollution in **Baden-Württemberg**

Toy example: a poset and its linear extensions

Linear extension: an order-preserving permutation of the elements

Toy example: average rank

Discrete random variable X_a describing the position of a in a random linear extension

Toy example: poset ranking

Ranking the elements according to their average rank (weak order)

Toy example: mutual rank probabilities

Fraction of linear extensions in which a is ranked above b:

$$Prob\{X_a > X_b\} = \frac{3}{9}$$

Mutual rank probability relation

Mutual rank probability relation: reciprocal relation expressing the probability that x_i is ranked above x_i

$$Q(x_i, x_j) = \text{Prob}\{X_i > X_j\}$$

Toy example:

$$Q = \begin{pmatrix} 1/2 & 3/9 & 0 & 0 & 0 \\ 6/9 & 1/2 & 3/9 & 0 & 1/9 \\ 1 & 6/9 & 1/2 & 2/9 & 0 \\ 1 & 1 & 7/9 & 1/2 & 4/9 \\ 1 & 8/9 & 1 & 5/9 & 1/2 \end{pmatrix}$$

Linear extension majority cycles

Linear Extension Majority: x_i is ranked above x_j if $\text{Prob}\{X_i > X_j\} > \frac{1}{2}$

• May lead to cycles $(n \ge 9)$: only 5 out of 183 231 posets of size 9 contain LEM 3-cycles, none of them contains longer LEM cycles

$$Q(g,h) = Q(h,i) = Q(i,g) = \frac{720}{1431}$$

 $Q(d,e) = Q(e,f) = Q(f,d) = \frac{720}{1431}$
 $Q(a,b) = Q(b,c) = Q(c,a) = \frac{720}{1431}$

• Yu (1998): α -cuts of Q_P are transitive for

$$\alpha > \frac{1}{2} \left(1 + (\sqrt{2} - 1) \sqrt{2\sqrt{2} - 1} \right) \approx 0.78$$

Transitivity

Theorem

The mutual rank probability relation is **moderately** T_{P} -transitive, i.e.

$$\alpha \gamma \le 1 - \beta$$

(both clockwise and counter-clockwise)

Interpretation

The mutual rank probability relation is at least $\frac{5}{6} \times 100\%$ T_P -transitive

Avoiding 3-cycles

The strict ϕ -cut of Q_P , with ϕ the **golden section**, contains no cycles of length 3

Product-triplets and min-triplets

There are 1 104 891 746 non-isomorphic posets of 12 elements

6. Graded stochastic dominance: artificially coupled RV

Stochastic dominance

Aim:

- to define a partial order relation on a set of real-valued RV
- semantics: RV taking higher values are preferred

Application areas:

- economics and finance
- social statistics
- decision making under uncertainty
- machine learning and multi-criteria decision making

Stochastic dominance

General principle:

- pairwise comparison of RV
- pointwise comparison of performance functions

The cumulative distribution function (CDF) F_X :

$$F_X(x) = \operatorname{Prob}\{X \le x\}$$

First order stochastic dominance (FSD)

First order stochastic dominance relation (FSD):

$$X \succeq_{\mathrm{FSD}} Y \stackrel{\mathrm{def}}{\Leftrightarrow} F_X \leq F_Y$$

or, equivalently,

$$\mathbf{E}[u(X)] \geq \mathbf{E}[u(Y)]$$

for any increasing function u

• FSD implies weak statistical preference: $Q^{\mathbf{P}}(X,Y) \geq 1/2$

Shortcomings

- no tolerance for small deviations, no grading
- usually sparse graphs

Dice games versus co-monotone comparison

$$Q^{\mathbf{P}}(X, Y) = 7/16$$

$$Q^{M}(X,Y) = 3/8$$

Proportional expected difference

• Reciprocal relation: $Q^{\mathbf{M}}(X,Y) = \frac{1}{n} \sum_{k=1}^{n} \delta_{k}^{\mathbf{M}}$ with

$$\delta_k^{\mathbf{M}} = \begin{cases} 1 & , \text{ if } x_k > y_k \\ 1/2 & , \text{ if } x_k = y_k \\ 0 & , \text{ if } x_k < y_k \end{cases}$$

Proportional expected difference relation:

$$Q^{\text{PED}}(X,Y) = \frac{\frac{1}{n} \sum_{k=1}^{n} (x_k - y_k)_+}{\frac{1}{n} \sum_{k=1}^{n} |x_k - y_k|} = \frac{\mathbf{E}[(X - Y)_+]}{\mathbf{E}[|X - Y|]}$$

with $Q^{\text{PED}}(X, Y) = 1$ if and only if $X \succ_{\text{FSD}} Y$

Proportional expected difference

The case of continuous RV:

$$Q^{\mathrm{PED}}(X,Y) = \frac{\int \left(F_Y(x) - F_X(x)\right)_+ \, \mathrm{d}x}{\int \left|F_Y(x) - F_X(x)\right| \, \mathrm{d}x}$$

Transitivity

Theorem

The proportional expected difference relation Q^{PED} is partially stochastic transitive

Use

ullet The strict 1/2-cut of Q^{PED} yields the strict order relation characterized by

$$Q^{\mathrm{PED}}(X,Y) > \frac{1}{2} \quad \Leftrightarrow \quad \mathbf{E}[X] > \mathbf{E}[Y]$$

• Any α -cut (with $\alpha > 1/2$) yields a **strict order relation**: with increasing α the graph (Hasse diagram) becomes more and more sparse (Hasse tree)

Example

Integers 1–9 distributed over **5 dice**:

$$Q^{\text{PED}} = \begin{pmatrix} 1/2 & 1/3 & 1/3 & 1/5 & 1/4 \\ 2/3 & 1/2 & 1/3 & 1/4 & 1/5 \\ 2/3 & 2/3 & 1/2 & 1/3 & 0 \\ 4/5 & 3/4 & 2/3 & 1/2 & 2/5 \\ 3/4 & 4/5 & 1 & 3/5 & 1/2 \end{pmatrix}$$

Example

7. More dice games: beyond transitivity

Rock-Paper-Scissors-Lizard

Integers 1–12 distributed over **4 dice**:

Α	1	6	12
В	4	5	10
С	3	8	9
D	2	7	11

Statistical preference: 4-cycle ABCD and two 3-cycles ABC and BCD

Possible complete asymmetric configurations (n = 4)

Product-triplets (n = 4)

Interpretation

The winning probability relation $Q^{\mathbf{P}}$ is at least $\frac{4}{6} \times 100\%$ $T_{\mathbf{P}}$ -transitive

Some figures: number of product-triplets for 4 dice

	4 faces	5 faces	6 faces
16 triplets	-	-	-
17 triplets	-	-	0.000001 %
18 triplets	0.001%	0.00004%	0.000003 %
19 triplets	0.010%	0.0013%	0.0001%
20 triplets	0.26%	0.080%	0.018 %
21 triplets	3.37%	1.51%	0.54 %
22 triplets	17.45%	9.48%	4.91 %
23 triplets	10.63%	8.23%	5.35 %
24 triplets	68.28%	80.69%	89.18%
total number	2.63E+06	4.89E+08	9.30E+10

At least 16 product-triplets it is!

Integers 1–36 distributed over 4 dice:

Α	4	5	6	7	8	9	10	34	35
В	11	12	13	14	15	16	17	18	36
С	1	19	20	21	22	23	24	25	26
D	2	3	27	28	29	30	31	32	33

Semi-transitivity and the Ferrers property

Semi-transitivity:

if aRb and bRc, then aRd or dRc

The Ferrers property:

if aRb and cRd, then aRd or cRb

Key property of methods for ranking fuzzy intervals (numbers), rather than transitivity!

T-semi-transitivity

A fuzzy relation R on A is called T-semi-transitive, with T a t-norm and T^* its dual t-conorm, if

$$T(R(a,b),R(b,c)) \leq T^*(R(a,d),R(d,c))$$

for any a, b, c, d in A

T-Ferrers property

A fuzzy relation R on A is called T-Ferrers, with T a t-norm and T^* its dual t-conorm, if

$$T(R(a,b),R(c,d)) \leq T^*(R(a,d),R(c,b))$$

for any a, b, c, d in A

Reciprocal relations

- Complete relations: transitivity implies semi-transitivity and the Ferrers property
- Reciprocal relations: if T is 1-Lipschitz continuous, then
 - T-transitivity implies T-semi-transitivity
 - T-transitivity implies the T-Ferrers property

T_L -Ferrers

The **winning probability relation** associated with a random vector is T_1 -Ferrers

The Ferrers property

Four **independent** random variables X_1 , X_2 , X_3 and X_4 :

$$\operatorname{Prob}\{X_1>X_2\}\operatorname{Prob}\{X_3>X_4\}$$

$$\leq \operatorname{Prob}\{X_1 > X_4\} + \operatorname{Prob}\{X_3 > X_2\} - \operatorname{Prob}\{X_1 > X_4\} \operatorname{Prob}\{X_3 > X_2\}$$

Theorem

The winning probability relation Q^P associated with pairwise independent random variables is T_P -Ferrers

A stronger version of the T_P -Ferrers property

Weak T_P -transitivity and the T_P -Ferrers property revisited

• A reciprocal relation Q is weakly $T_{\mathbf{P}}$ -transitive (dice-transitive) if and only if for any 3 consecutive weights (t_1, t_2, t_3) it holds that

$$t_1 + t_2 + t_3 - 1 \ge \min(t_1t_2, t_2t_3, t_3t_1)$$

• A reciprocal relation Q is $T_{\mathbf{P}}$ -Ferrers if and only if for any 4 consecutive weights (t_1, t_2, t_3, t_4) it holds that

$$t_1 + t_2 + t_3 + t_4 - 1 \ge t_1 t_3 + t_2 t_4$$

4-cycle condition

The winning probability relation $Q^{\mathbf{P}}$ associated with pairwise independent random variables satisfies for any 4 consecutive weights (t_1, t_2, t_3, t_4)

$$t_1 + t_2 + t_3 + t_4 - 1 \ge t_1t_3 + t_2t_4 + \min(t_1, t_3)\min(t_2, t_4)$$

What if God does throw dice?

Integers 1–20 distributed over **5 dice**:

Α	1	5	12	20
В	2	6	15	18
С	3	9	14	17
D	4	8	11	19
Ε	7	10	13	16

Whatever X, Y selected by Oppenheimer and Einstein, God can select Z such that

$$Prob\{Z > \max(X, Y)\} > Prob\{X > \max(Y, Z)\}$$

$$Prob\{Z > \max(X, Y)\} > Prob\{Y > \max(X, Z)\}$$

This cannot be realized with 3 or 4 dice

Conclusion

Conclusion

- Cyclic phenomena are not necessarily incompatible with transitivity, but arise due to the granularity considered
- Cycle-transitivity yields a general framework for studying the transitivity of reciprocal relations
- Frequentist interpretation of the transitivity of winning probabilities in terms of product-transitivity
- Alternative theories of stochastic dominance
- In silico species competition and coexistence
- In machine learning, the AUC (area under the ROC curve) in a 1-versus-1 multi-class classification scheme form a reciprocal relation

References: Bell inequalities

- S. Janssens, B. De Baets and H. De Meyer, Bell-type inequalities for parametric families of triangular norms, Kybernetika 40 (2004), 89–106.
- ② S. Janssens, B. De Baets and H. De Meyer, *Bell-type inequalities for quasi-copulas*, Fuzzy Sets and Systems 148 (2004), 263–278.
- B. De Baets, S. Janssens and H. De Meyer, Meta-theorems on inequalities for scalar fuzzy set cardinalities, Fuzzy Sets and Systems 157 (2006), 1463–1476.

References: similarity measures

- B. De Baets, H. De Meyer and H. Naessens, A class of rational cardinality-based similarity measures, J. Comput. Appl. Math. 132 (2001), 51–69.
- B. De Baets and H. De Meyer, Transitivity-preserving fuzzification schemes for cardinality-based similarity measures, European J. Oper. Res. 160 (2005), 726–740.
- 3 B. De Baets, S. Janssens and H. De Meyer, *On the transitivity of a parametric family of cardinality-based similarity measures*, Internat. J. Approximate Reasoning 50 (2009), 104–116.

References: comparison of random variables

- B. De Schuymer, H. De Meyer, B. De Baets, S. Jenei, On the cycle-transitivity of the dice model, Theory and Decision 54 (2003), 264–285
- A H. De Meyer, B. De Baets, B. De Schuymer, Extreme copulas and the comparison of ordered lists, Theory and Decision 62 (2007), 195–217.
- B. De Schuymer, H. De Meyer, B. De Baets, Cycle-transitive comparison of independent random variables, J. Multivariate Analysis 96 (2005), 352–373.
- H. De Meyer, B. De Baets, B. De Schuymer, On the transitivity of the comonotonic and countermonotonic comparison of random variables,
 J. Multivariate Analysis 98 (2007), 177–193.
- **Solution** B. De Baets, H. De Meyer, *Cycle-transitive comparison of artificially coupled random variables*, Int. J. Approx. Reasoning 47 (2008), 306–322.

References: order theory

- K. De Loof, H. De Meyer and B. De Baets, *Exploiting the lattice of ideals representation of a poset*, Fundamenta Informaticae 71 (2006), 309–321.
- K. De Loof, B. De Baets, H. De Meyer, Counting linear extension majority cycles in posets on up to 13 points, Computers and Mathematics with Applications 59 (2010), 1541–1547.
- 3 B. De Baets, H. De Meyer, K. De Loof, *On the cycle-transitivity of the mutual rank probability relation of a poset*, Fuzzy Sets and Systems 161 (2010), 2695–2708.
- K. De Loof, B. De Baets and H. De Meyer, Approximation of average ranks in posets, MATCH - Communications in Mathematical and in Computer Chemistry 66 (2011), 219–229.
- **Solution** K. De Loof, B. De Baets and H. De Meyer, *A necessary 4-cycle condition for dice representability of reciprocal relations*, 4OR, to appear.
- **10** K. De Loof, B. De Baets and H. De Meyer, *A frequentist view on cycle-transitivity w.r.t. commutative dual quasi-copulas*, Fuzzy Sets and Systems, submitted.

References: machine learning

- W. Waegeman, B. De Baets, A transitivity analysis of bipartite rankings in pairwise multi-class classification, Information Sciences 180 (2010), 4099–4117.
- 2 T. Pahikkala, W. Waegeman, E. Tsivtsivadze, T. Salakoski, B. De Baets, *Learning intransitive reciprocal relations with kernel methods*, European J. Oper. Res. 206 (2010), 676–685.
- W. Waegeman, B. De Baets, *On the ERA representability of pairwise bipartite ranking functions*, Artificial Intelligence Journal 175 (2011), 1223–1250.

References: decomposition of fuzzy relations

- B. Van de Walle, B. De Baets and E. Kerre, Characterizable fuzzy preference structures, Annals of Operations Research 80 (1998), 105–136.
- B. De Baets and J. Fodor, Additive fuzzy preference structures: the next generation, in: Principles of Fuzzy Preference Modelling and Decision Making (B. De Baets and J. Fodor, eds.), Academia Press, 2003, pp. 15–25. Additive decomposition of fuzzy pre-orders, Fuzzy Sets and Systems 158 (2007), 830–842.
- S. Díaz, S. Montes and B. De Baets, *Transitivity bounds in additive fuzzy preference structures*, IEEE Trans. Fuzzy Systems 15 (2007), 275–286.
- S. Díaz, B. De Baets and S. Montes, On the compositional characterization of complete fuzzy pre-orders, Fuzzy Sets and Systems 159 (2008), 2221–2239.
- S. Díaz, B. De Baets and S. Montes, General results on the decomposition of transitive fuzzy relations, Fuzzy Optimization and Decision Making 9 (2010), 1–29.