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Linear inverse problems 
 

ML estimation is excellent tool for solving linear inverse 
problems with constraints  (= tomography) 

   
  Ij = Σk cjk µk  

 
detected mean values  Ij, j= 1,2,…M  
reconstructed signal  µk k= 1,2,…N  
 
Over-determined problems     M> N 
Well defined problems          M= N  
Under-determined problems      M< N 



Tomography and 
 Inverse Radon Transformation 

Radon  transformation 

Inverse Radon  transformation- 
Fourier transformation method 

Projection theorem 
(ray sum) 

Gθ(ξ) = F (ξ cos θ, ξ sin θ)) f(x, y) = F−1Gθ

g(s, θ) =

�
dxdyf(x, y)δ(x cos θ + y sin θ − s)
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!  s = x cos + y sin
u = – x sin + y cos , (8)

!  x = s cos – u sin
y = s sin + u cos . (9)

Substituting Eq. (9) into Eq. (6), it follows that the ar-
gument of the -function is

!  x cos + y sin –s
= (s cos – u sin ) cos + (s sin + u cos ) sin – s
= s (cos2 + sin2 ) – u sin cos + u cos sin – s
= 0

.

(10)

Since the translation from the (x, y)-coordinate to the
(s, u)-coordinate yields no expansion or shrinkage,
we get dxdy = dsdu. Thus we get from Eq. (6)

!  g(s, )

= f (s cos – u sin , s sin + u cos ) (0) dsdu
–

.

(11)

Since the -function in Eq. (6) is a function of vari-

able s, we get

  ! (0) ds
–

= 1 . (12)

It follows from the above that the Radon transforma-
tion g(s, ) in Eq. (6) is translated into the following
integral of one variable u,

!  g(s, ) = f (s cos – u sin , s sin + u cos ) du
–

.

(13)

This equation expresses the sum of f(x, y) along the
X-ray pass whose distance from the origin is s and
whose normal vector is in  direction. This sum, g(s,

) is called ray-sum.

Projection theorem
The image reconstruction from projection is equiva-
lent to the inverse Radon transformation, i. e. obtain-
ing f(x, y) from given g(s, ) for 0! !  <! *). An im-
portant key for solving this problem is projection
theorem, explained in the following.

Fig. 3. Projection theorem.
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Probability in Quantum Mechanics: 
  pj= Tr(ρAj) 

 
Measurement: elements of positive-valued 
operator measure (POVM)     Aj ≥ 0 
 
Relation of completeness Σj Aj  = 1 
 
Signal:   density matrix ρ ≥ 0 

 
 

Elements of quantum theory 



Von Neumann Measurement 



Estimation Theory in Drawings  
 

Necessary ingredients: 
 
• Input signal  
• Controllable transformation 
• Feasible detection 
   



Quantum Estimation Theory  
 

  Quantum Estimation Theory  
  =  Quantum Theory + Estimation Theory 
 
Some peculiarities: 
• Quantum state ρ plays the role of c-number (matrix) with 
special constraints (ρ ≥ 0 ) 
• Quantum measurement must obey uncertainty principle 



Maximum Likelihood Estimation (1922) 
 

Sir Ronald Aylmer Fisher, FRS (17 February 1890 – 29 July 1962) 
http://digital.library.adelaide.edu.au/coll/special/fisher/papers.html 

• Maximum Likelihood (MaxLik)  principle is 
not a rule that requires justification: Bet 
Always  On the Highest Chance! 
• Numerous applications in signal analysis, 
optics, geophysics, nuclear physics,…  
• A. Witten, The application of ML 
estimator to tunnel detection, Inverse 
Problems 7(1991), 49.  
• MaxLik analysis= pea plant experiment 
of G. Mendel was contrived (too good to 
be true, statistically J ) 



 
• Likelihood  L  quantifies the degree of belief in 
certain hypothesis under the condition of the given 
data. 
• MaxLik principle  selects  the most likely  
configuration 
• Information is updated according to the Bayes rule 
prior probability    è  posterior  probability 
 
              P(ρ¦D) = P(D¦ρ) p(ρ) [p(D)]-1 
 

Maximum Likelihood Tomography  



Generic reconstruction scheme 

Log-likelihood for generic measurement 
log L  = ∑i Nj log pj / (∑k pk) 

(probabilities are mutually normalized) 
 

Equivalent formulation: estimation of parameters with 
Poissonian probabilities and unknown mean  λ 

(constrained MaxLik by Fermi) 
 

log L  = ∑j Nj log (λ pj )   - λ ∑j pj  
 
  



Likelihood is convex functional defined on the 
convex manifold of density matrices 



Information criteria and MaxLik tomography 
  

 “The most valuable commodity I 
know of is information, wouldn’t 
you agree?” (M. Douglas as tycoon 
Gordon Gekko in the movie Wall 
Street)  



 Many random phenomena, such as those arising in biological and 
ecological applications, are extremely complex, potentially 
involving an endless assortment of variables and interactions, 
„good“ models are needed.An optimal statistical model is 
characterized by three fundamental attributes: 

 
1.  Parsimony (model simplicity) 
2.  Goodness-of-fit (conformity of the fitted model to the data at 

hand) 
3.  Generalizability  (applicability of the fitted model to describe or 

predict new data) 

Good statistical models 



 
• Law of Parsimony: No more causes should be assumed than those 
that will account for the effect. 
More philosophy behind: 
• Occam’s Razor: “Plurality should not be posited without 
necessity.” (Franciscan monk William of Ockham 1285–1349) 
• “Everything should be made as simple as possible, but not simpler.”  
(Albert Einstein, 1879–1955). 
• “When you hear hoofbeats, think horses, not zebras.” (popular adage 
from medical schools and residency programs) 
• “Simplicity is the ultimate sophistication.” ( Leonardo da Vinci, 1452–
1519). 

• Laplace's Principle of Insufficient Reasoning: If there is no reason 
to prefer among several possibilities, than the best strategy is to 
consider them as equally likely and  pick up the average. 

 

Parsimony 



All models are wrong, some are useful           
(George E. P. Box) 



Akaike´s information criterion (AIC) 
 Akaike,IEEE Trans. Auto Control 19, 716 (1974) 



Rationale behind  AIC 

•  Could  MaxLik be used for comparing various models? 
•  No, MaxLik favours overfitting: More complex model 

means better fit!!  
•  Akaike´s suggestion: Use Mean LogLik instead of 

LogLik itself !!! 

•  Akaike´s Information Criterion- remove the bias 
from MaxLik  

    AIC  = log L(x|θML) – M 
 

 M….. dimension of parameter space  θ    
 



Schwarz and Bayesian Information 
Criterion (BIC) 

Schwarz, Annals of Stat. 6, 461 (1978) 
Konishi, Ando, Imoto, Biometrica 91, 27 (2004) 



Penalized MaxLik estimation  

Hint: Consider the averaged  Likelihood. The normalization 
term is  state independent but dimension dependent! 
 
Modified Schwarz information 
 
IMS = log L(ρ)  - ½ M log N + ½ M log(2π) - ½ log detF 
 
M … dimension of estimated variable (density matrix) 
N … dimension of data set  
 



Entropy and quantification of 
ignorance 

 Yong Siah Teo, Huangjun Zhu, B-G Englert, J. Řeháček, Z. Hradil, 
Quantum-State Reconstruction by Maximizing Likelihood and 

Entropy,Phys. Rev. Lett. 107, 020404 (2011)  



MLME estimation 

Likelihood L(ρ) quantifies the knowledge 
 
Entropy  S = -Tr(ρlog ρ)    quantifies the ignorance 
 
I(λ,ρ) =  λ S(ρ) +  1/N  log L(ρ) 
 
In the limit  λ = 0 we are searching for the most likely states with  
the  highest entropy. 
 
MLME  is robust and always selects the single solution. 
 
 
 
 
 
 
 
 
 
 
 



Examples…  



• Phase estimation 
• Transmission tomography 
• Tomography of CP maps 
• Reconstruction of photocount statistics 
• Image reconstruction  
• Vortex beam analysis 
• Quantification of entanglement 
• Reconstruction of neutron wave packet 
• Reconstruction based on homodyne detection  
• Full reconstruction based on on/off detection 
• Reconstruction of coherent matrix 

Several examples 



Scanning of the optical field: 
Hartmann-Shack sensor 

Roland Shack 
(1970’s) 

Johannes Hartmann 
(1865-1936) 



Scheme of the wave-front reconstruction 



•  Detected amplitude: 

  φdet(ξ)= ∫dx’ dq’ φ(x’)h(x’-q’)Ai(q’) exp(i kξq’/f)  
•  Detected signal: 

    Si(ξ) =<|φdet((ξ)|2>average  
 = ∫dx’ dx’’ ∫dq’ dq’’ Q(x’,x’’) h(x’-q’) α(q’, ξ) h*(x’’-q’’) α*(q’’, ξ)  

where  Q… function of mutual coherence 
       αi(q’,ξ) = Ai(q’) exp(i kξq’/f)  

•  Quantum formulation in x-representation 
   Si(ξ) = <αiξ|U† Q U|αiξ> 

Q(x’,x’’)= <x’|Q|x’’>, h(x’-q’)= <q’|U|x’>, < x’|αiξ> = αi(q’,ξ)  
 

Wave theory for HS sensor 

φ 
h 

Ai 



HS sensor: Quantum Consequences 

• Smooth Gaussian approximation of aperture function: 

  Ai(q’) ≈ exp[- (q’-xi)2/4 (∆x)2] 
 
• Detection= Projection into the minimum uncertainty states 

  
 αi,ξ= exp[- (q’-xi)2/4 (∆x)2  + i kξq’/f ] 

 
• Heisenberg uncertainty relations 
 

  ∆x ∆p ≥  ћ/2 
• Generalized measurement of non-commuting variables x and p, (Arthurs, 
Kelly 1964) 

   ∆X ∆P ≥  ћ 
See the excellent paper: S. Stenholm, Simultaneous measurement of 
conjugate variables, Annals of Physics 218, 233-254 (1992).  



Further Quantum Consequences 
 

•  POVM corresponds  to detection of annihilation operator 

    a = x+ ip 
   1/π ∫ dα2  |α><α| = 1 
• Q-distribution (Husimi) 

∆x ∆x 

∆p ∆p 



Detection of partially coherent signal  



Hartmann-Shack sensor of the wavefront?  



Planck mission of ESA: 
scanning of cosmic background radiation   



Temperature anisotropies  

COBE-DMR resolution 

Planck resolution 


























