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Outline

Logical Analysis of Data (LAD)

Fuzzy Rough Concept Analysis (FRCA) = FCA + Fuzzy sets + Rough sets
FRCA A LAD

FRCA v LAD
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LOGICAL ANALYSIS OF DATA
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Logical Analysis of Data

Sources:

¥ |. Chikalov, V. Lozin, I. Lozina, M. Moshkov, H.S. Nguyen, A. Skowron, B. Zielosko
Three Approaches to Data Analysis:
Test Theory, Rough Sets and Logical Analysis of Data
Series: Intelligent Systems Reference Library, Vol. 41 2013, XVIII, 202 p.

[ G. Alexe, S. Alexe, T.O. Bonates, A. Kogan
Logical Analysis of Data — the Vision of Peter L. Hammer.
Annals of Mathematics and Atrtificial Intelligence, April 2007, 49(1-4), pp. 265-312.

Wikipedia:

Peter Ladislaw Hammer (December 23, 1936 — December 27, 2006) was an American
mathematician native to Romania. He contributed to the fields of operations research and
applied discrete mathematics through the study of pseudo-Boolean functions and their
connections to graph theory and data mining.
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LAD — Input: Dataset (Context)

Denote

QF = (XY, I, Q0 =XV, I ), Q=(Xt UX",Y,I* uI).
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LAD — Overview

@ Redundant variables in the original dataset we extract from it a subset S, capable of
distinguishing the positive observations from the negative ones.

e Cover dataset Q" with a family of possibly overlapping homogeneous subsets of
{0,1}"™, each of these subsets having a significant intersection with with Q*, but being
disjoint from €2~. Similarly handle dataset Q2.

@ A subset of the positive (resp. negative) patterns, the union of which covers every
observation in QT (resp. 27) is identified. The collection of these two subsets of
intervals is called a “model.”

@ A classification method is developed which defines the positive or negative intervals of
the model, leaving as “unclassified” those observations which are not covered by this
union.

@ One of the standard validation methods is applied to verify the accuracy of the
resulting classification system.
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LAD — Terms

@ Term over Y — conjunction of literals,

o Literal — either y or —y.

Example
C = —y1ys J

For term C, denote

@ Pos(C') — positive literals of C,

e Neg(C) — negative literals of C,

e Lit(C) — all literals of C; Pos(C') u Neg(C),

@ Mod(C) — set of all models of C'
that is, evaluations w, s.t. |C, = 1.
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LAD — Terms

Mod(C) forms n-dimensional subcube of {0,1}Y; n = |Y — Lit(C)|.
Example

Considering Y = {y1, y2, .

.., Yn} we can unify evaluation w with the string
w(y)w(yz) - - w(yn)-

C = —11y3

01111
P N
01110 01101 00111
> >
01100 00110 00101
~ | -
00100

Such subcubes of {0, 1} are in one-to-one correspondence with terms over Y
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LAD - Patterns

@ Basic notion in LAD

e Positive pattern is simply a subcube of {0,1}¥ which intersect Q* and is disjoint from
Q.
Negative patterns have a similar definition.

Definition

A term C is called a positive pattern of a dataset 2 if
@ |Cly =0 for every we Q7

@ |C|, =1 for at least one vector w € Q7.

A term C is called a negative pattern of a dataset (2 if
@ ||Cll, = 0 for every w e Q7

@ |C|w =1 for at least one vector w € Q7.
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Pareto-optimality of Patterns

Definition
Given a preorder < on the set of patterns, a pattern P will be called pareto-optimal with
respect to <, if there is no distinct pattern P’ such that P < P'.

Definition (Simplicity preference)

A pattern Py is simplicity-wise preferred to a pattern P, (denoted by P, <, Py) if
Lit(Pl) ) Lit(PQ).

Pareto-optimal patters w.r.t. <, are called prime

Remark J

Inspired by the Occam’s razor.
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Pareto-optimality of Patterns

Definition (Evidential preference)

A pattern P is evidentially preferred to a pattern P, (denoted by P, <. P) if
COV(Pl) ) COV(PQ).

Cov(P) denotes Mod(P) n €.
Evidentially Pareto-optimal patterns are called strong.

Definition (Evidential preference)

A pattern P is selectively-wise preferred to a pattern P, (denoted by P, <y P) if and
only if Mod(P;) € Mod(FP2).

Pareto-optimal patterns w.r.t. 3 A € are called spanned.
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Classification with LAD

Lets have

e 't — collection of (selected) positive patterns, s.t. it covers QF,

@ I'™ — collection of (selected) negative patterns, s.t. it covers 7.

For collection of positive (or negative) patterns I' and new observation w define
(w,T) = {[Plw | PeT}

Diskriminant . B
[6(w,IT)[ 6w, I'7)]

B T
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FUZZY CONCEPT ANALYSIS
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more precisely...

Structure of truth degrees = complete residuated lattice
L={,n,Vv,® —,01)

(L, n,v,0,1) ...complete lattice

(L,®,1) ...commutative monoid

(®,—) ...adjoint pair (a®b<ciffa<b—c)

L-set A in universe U ...mapping A: U — L
Interpretation of A(u): “degree to which u belongs to A”
Operations with L-sets defined component-wise
e A-intersection (A u B)(u) = A(u) u B(u)
e complement (—A)(u) = A(u) = 0
Set of all L-sets in U is denoted by LY.

Binary L-relation R between sets U, V ... mapping R: U xV — L,
Interpretation of R(u,v): “degree to which u and v are R-related”
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Fuzzy Concept Analysis

Fuzzy Context — triple (X, Y, I) Y1 Y2 Y3 Ua
z1] 0.1 1.0 0.2 0.3
X ... (finite crisp) set of objects 25| 1.0 0.5 0.0 0.6
Y ... (finite crisp) set of attributes z3| 0.5 0.8 1.0 0.6
I .. . L-relation [: X xY — L x4] 0.0 0.0 1.0 1.0
Antitone L-concept-forming operators: (1)': LX — LY ()V: LY — LX.
= /\ A(x) > I(z,y) and B'(z) = /\ B(y) = I(z,y)
zeX yeY

Formal concept w.r.t. {1, ) is pair (A,B)st. A1 =B, B! = A
A=extent, B=intent

Concept lattice
B (X,Y,I) = {¢A,B)| AT = B, B* = A}
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Fuzzy Concept Analysis — Isotone case
Isotone L-concept-forming operators (n,u): (:)": LX — LY ()V: LY — LX,

\/A )®I(z,y) and BY(x) = /\I(m,y)—>B(y)

zeX yey
Formal concept w.r.t. {n,u) is pair (4, B) s.t. A" = B, BY = A; A=extent, B=intent

Concept lattice
BY(X,Y,I) = {{A,B)| A" = B,B" = A}

Isotone L-concept-forming operators {1, v) (:)" : LX — LY ()V:LY — LX.

AMy) = N\ I(z,y) > Ax) and B'(z) = \/ By) ®I(z,y)

rzeX yeY
Formal concept w.r.t. {x,v) is pair (A, B) s.t. A" = B, B" = A; A=extent, B=intent
Concept lattice

BAV(X1Y7I) = {<A?B> ‘ Al = BvBV :A}
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intermezzo: ROUGH SETS
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Rough Sets

Pawlak approximation space — (U, E), where
e U is a non-empty set of objects (universe),
@ F is an equivalence relation on U,

the rough approximation of a crisp set A € U by E is the pair (A#, AT2) of sets in U
defined by

ze AYE iff ((VyeU){x,y)e E implies y € A),
ze Ale iff ((GyeU)lx,y)e E and y € A).

AYE and A2 are called lower and upper approximation of the set A by F, respectively.
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Rough Sets

set A

J R S O O D+D ANE — upper approx. of A
A D AYE — lower approx. of A
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Fuzzy Rough Sets

In the fuzzy setting, one can generalize (A#, AT as in

[4 Didier Dubois and Henri Prade.
Rough fuzzy sets and fuzzy rough sets.
International Journal of General Systems, 17(2-3):191-209, 1990.

[ Didier Dubois and Henri Prade.
Putting rough sets and fuzzy sets together.

Intelligent Decision Support, volume 11 of Theory and Decision Library, pages
203-232., 1992.

[ Anna Maria Radzikowska and Etienne E. Kerre.
Fuzzy rough sets based on residuated lattices.

Transactions on Rough Sets I, volume 3135 of Lecture Notes in Computer Science,
pages 278-296., 2005.

AYe(z) = N\ (E(z,y) —> A(y)) and  AT%(z) = \/(A(y) ® E(z,y))
yeU yeU
for L-equivalence E € LY*V and L-set A e LY.
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Rough Sets — properties of approximations

:."""" . sets A, B

LI anpys
i
i i : We have:
“ahansnnshussnanpnannnngs® (AﬂB)UE _ AUE A BJlE
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Rough Sets — properties of approximations

:.“""" . sets A, B

L] (auB)e
iA
i i : We have:
®spsnnsnspasnnnnpunnnnngs® (AU B)ﬂE — AﬂE U BﬂE
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(Fuzzy Rough) Concept Analysis

Observation

Intents in B"V(X,Y, I) behave like upper approximations in FRS.

Intents in BT (X, Y, I) behave like lower approximations in FRS.

[ Robert E. Kent
Rough Concept Analysis
Rough Sets, Fuzzy Sets and Knowledge Discovery
Workshops in Computing 1994, pp 248-255

@ Ming-Wen Shao, Min Liu, and Wen-Xiu Zhang.
Set approximations in fuzzy formal concept analysis.
Fuzzy Sets Syst., 158(23):2627-2640, December 2007.
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More precisely,. . .

AME = A"E and AlE = A'E

Let £ € LY*Y be Leibniz L-equivalence induced by I < LX*Y that is

E(yl»yQ) = /\ I(mvyl) <« I(x7y1)7
reX

then E is compatible with I:
I=1oF=1vF.

where

(Ao B)(x,y) = \/ Ale,f)®B(f.y).

feF

(AeB)(z,y) = /\B(f.y)— A, f).

feF
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I=IoFE=1IvE.

¥ R. Belohlavek.
Fuzzy Relational Systems: Foundations and Principles.
Kluwer Academic Publishers, Norwell, USA, 2002.

From that we have
Al = (AT)/\E,
Aﬁ _ (A(\)(\E.

[ Belohlavek R., Konecny J.
Row and Column Spaces of Matrices over Residuated Lattices.
Fundamenta Informaticae 115(4)(2012), 279-295.
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(Fuzzy Rough) Concept Analysis

Definition

Let (X,Y,I) be an L-context. Define L-rough concept-forming operators as
A% =(A" A" and (B,BYY =B'NB’

for Ae LX B, Be LY.

L-rough concept is then a fixed point of (A, V), i.e. a pair (A4,(B,B)) e LX x (L x L)Y

such that
AL = <§,§> and <§,§>V = A.

A" and A" are called lower intent approximation and upper intent approximation,
respectively.

Will be presented at CLA 2014.
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THE LINK BETWEEN FRCA AND LAD
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Crisp Case L = {0,1}

@ not very interesting

@ similar results would be obtained using apposition of the context with its complement.

‘ H Y1 Y2 Y3 \
I 0 1 0
zo | 1 1 0
T2 1 0 1

=

Still, it provides a connection to LAD.

Jan Konecny (DAMOL)
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‘ H Y1 Y2 Y3 ‘ Y1 TY2 Y3 \
z1 || 0 1 O 0 1
z2 | 1 1 O 0 1
x|l 1 0 1 1 0
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(crisp) rough sets on Y correspond to subcubes of {0, 1}

Example
<A7 Z> = <{y3}7 {y27 Y3, Y4, y5}>

Characteristic vectors of sets for which (A, A) is their rough approximation:

C = —y1y3

01111
S BN
01110 01101 00111
> >
01100 00110 00101
~ |
00100
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Formal Rough (Crisp) Concept Analysis and Logical Analysis of Data

Denote
O =<X+,Y,I+>,Q_ =(X,Y,I"),Q= <XJr uX Y, IT ul).

Definition

For a term C' define pair rs(C') of sets as

rs(C) — (Pos(C),Y — Neg(C)).

Theorem

Term C' is a positive pattern iff
g #rs(C)"2 € Xt andrs(C)"2 n X~ = .
Term C' is a negative pattern iff

g #rs(C)"2 < X~ andrs(C)"2 n X = .
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Denote .
Q=(XtuvX,Yu{d,ITul uD).

Theorem
Term C' is a positive pattern iff

1s(C - d)"e =rs(C)Va # .
Term C' is a negative pattern iff

rs(C - —d)Ve = 15(C)Ve # &.
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Theorem
Py <5, Py iffrs(Py) < rs(P2).

Theorem

Py < Py iffrs(Py)V* S rs(Po)Ve.

Theorem

Pattern P is spanned iff rs(P) is intent in B~V ().

Jan Konecny (DAMOL)

Logical Analysis of Data & Formal Concept Analysis




Conclusions

We have some meeting points between FRCA and LAD.
What now?

@ Algorithms for LAD based on FCA
o Fuzzy setting
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Algorithm SPIC (for generating all spanned patterns)

Input: Cp: the collection of patterns spanned by each individual observation in Q.
Initialize C := Cj
Repeat the following operation until the collection C' cannot be furthermore enlarged.
if their consensus P’ exists and
if it is not absorbed by a pattern already contained in C,
then add it to C.

From the point of view of FCA this is a naive generation of (part of) a concept lattice.
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Algorithms for LAD based on FCA

[§ Petr Krajca, Jan Outrata, Vilem Vychodil
Advances in algorithms based on CbO.
Proc. CLA 2010, 2010, pp. 325337.

Patterns as closure systems.

close-positive(A) = X her
otherwise.

{A fX"nA=g,

[§ Belohlavek R., Vychodil V.
Closure based constraints in formal concept analysis.
Discrete Applied Mathematics 161(13-14)(2013), 1894-1911. closures
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Algorithms for LAD based on FCA

Do they know or not?
From

[4 Alexe, Gabriela and Alexe, Sorin and Bonates, Tibérius O. and Kogan, Alexander.
Logical Analysis of Data — the Vision of Peter L. Hammer.
Annals of Mathematics and Atrtificial Intelligence, April 2007, 49(1-4), pp. 265-312.

For instance, Malgrange (ref) used a consensus-type approach to find all maximal
submatrices consisting of ones of a 0-1 matrix (see also Kuznetsov and Obiedkov
(ref) for references to algorithms with polynomial delay), while a concensus-type
algorithm for finding all maximal bicliques of a graph was presented in (ref).

[1 Kuznetsov, S.0., Obiedkov S.A.

Comparing performance of algorithms for generating concept lattices.
J. Exp. Theor. Artif. Intell. 14, 189-216 (2002)
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Fuzzy Setting

Since the concept-forming operators (A, V) are defined in fuzzy setting, we have a direct
lead to fuzzy logical analysis of data.

THANK YOU FOR YOUR ATTENTION.
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