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Fuzzy relational equations: introduction
Prof. Elie Sanchez (1944–2014), French mathematician

Sanchez’s seminal paper:
Sanchez E. 1976.
Resolution of composite fuzzy relation equations.
Information and Control 30:38–48.
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Fuzzy relational equations: introduction
we consider:
L . . . lattice of truth degrees (Sanchez: Brouwerian lattice)
X ∈ Ln . . . unknown unary fuzzy relation (fuzzy set)
S ∈ Ln×m . . . given fuzzy relation
T ∈ Lm . . . given fuzzy set
◦ . . . sup-t-norm composition operator (other types are also possible)
fuzzy relational equation is an expression

X ◦ S = T

a solution to X ◦ S = T is any R ∈ Ln for which R ◦ S = T , i.e.∨n
l=1(Rl ⊗ Slj) = Tj ,

where Slj ∈ L denotes the degree to which l is related to j by S, Rl is the degree to
which l belongs to R; similarly for Tj
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Application: medical diagnosis
known fuzzy relations:
S . . . association between diagnoses and symptoms (corpus of medical knowledge)
T . . . symptoms of a patient
we want to find:
R . . . diagnosis of the patient such that R ◦ S = T

Projects:
1968–2004, University of Vienna’s Medical School: CADAIG I, II (Computer Assisted
Diagnosis System)
nowadays, Vienna General Hospital: MedFrame, MONI system (Monitoring of
Nosocomial Infections)
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Application: rule based fuzzy control
we suppose:
Φ . . . control function
D = {〈Si, Ti〉 | i ∈ I} . . . incomplete description of Φ using input-output data pairs
D can be seen as a list of linguistic control rules:

if σ is Si then τ is Ti, i ∈ I,

where σ is input variable, and τ is output variable
aim: to interpolate Φ, i.e. to find Φ∗ such that

Φ∗(Si) = Ti, i ∈ I

Eduard Bartl (Palacký University, Olomouc) Fuzzy Relational Equations Olomouc, April 2015 6 / 22

http://www.inf.upol.cz


Application: rule based fuzzy control
controler is realized by fuzzy relation R connecting inputs Si with outputs Ti via
compositional rule of inference
that is, we try to solve a system of equations

X ◦ Si = Ti, i ∈ I

in practice, solution is given by (Mamdani and Assilian approach)

RMA =
⋃
i∈I

(Si × Ti)
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Criteria of solvability
well-known fundamental theorem providing a condition for solvability

Theorem (Sanchez, 1976)
An equation X ◦ S = T has a solution iff (S /T−1)−1 is a solution. If X ◦ S = T is
solvable then (S /T−1)−1 is its greatest solution.

what is the relationship between

R̂ = (S /T−1)−1 and
RMA =

⋃
i∈I

(Si × Ti)?

Theorem (corollary of some results of Klawonn, 2000)
If all Si are normal fuzzy sets and RMA ⊆ R̂, then RMA is solution of X ◦ S = T .
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Minimal solutions
solvable equation:

unique maximal solution R̂;
how many minimal solutions?

there may be no minimal solution but usually there are variety of them
for instance:

x⊗ 0.5 = 0.5

where x ∈ [0, 1], ⊗ is nilpotent minimum defined as

a⊗ b =
{

0 if a+ b ≤ 1
min{a, b} otherwise

this equation has solution-set (0.5, 1], i.e. it has no minimal solution
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All solutions
if there is a minimal solution, the set of all solutions may be represented as the union
of intervals bounded from above by the greatest solution and from below by the
minimal solutions

R̂

R̆1 . . . R̆i . . . R̆h

therefore, minimal solutions play a crucial role
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Papers on minimal solutions
due to the importance of minimal solutions, several methods to find all of them have
been published
but more fundamental is the computational complexity of finding minimal solutions
recently, some papers addressing this issue appeared
all of them adopt the well-known set-cover problem to justify that the problem of
finding all minimal solutions is NP-hard
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Various flaws in the literature
(i) the notion of covering is used in confusing manner
(ii) the concept of minimal solution is used in confusing manner
(iii) the problem of computing all minimal solutions, presented in the literature as an

optimization problem, is ill-conceived since it does not fit the notion of an optimization
problem
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Recall: Set-cover problem
Set-cover is optimization problem given by:

instances: pairs 〈U,S〉 where U = {1, . . . ,m} and S = {Ci ⊆ U | i = 1, . . . , n} such
that

⋃n
i=1Ci = U

feasible solution: C ⊆ S such that
⋃
C = U

function sol: assigning to every instance the set of all feasible solutions
function cost: assigning to every instance 〈U,S〉 and every feasible solution
C ∈ sol(U,S) a positive rational number specifying the cost of the given solution:

cost(〈U,S〉, C) = |C|

our aim is to minimize the cost

We also require some additional conditions:
for every instance 〈U,S〉, the length of each feasible solution C ∈ sol(U,S) is bounded
by a polynomial of the length of 〈U,S〉
cost is computable in polynomial time
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Problem to find a minimal solution to fuzzy relational equation
It is sufficient to restrict to a special case: ordinary (Boolean) relational equations.

It is optimization problem given by:
instances: ordinary equations X ◦ S = T

feasible solution: relation R such that R ◦ S = T

function sol: assigning to every instance the set of all feasible solutions
function cost: assigning to every X ◦ S = T and every solution R ∈ sol(X ◦ S = T )
the cost of the given solution (next slide)
our aim is to minimize the cost
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Two notions of a minimal solution
A solution R ∈ sol(X ◦ S = T ) is called

#-minimal (cardinality-minimal) if |R| ≤ |R′| for every R′ ∈ sol(X ◦ S = T ), where
|R| =

∑n
i=1Ri is the cardinality of R; cost function is then defined by

cost#(X ◦ S = T,R) = |R|

⊆-minimal (inclusion-minimal) if R is minimal w.r.t. ⊆ in 〈sol(X ◦ S = T ),⊆〉, i.e. if
no Ri may be flipped from 1 to 0 without losing the property of being a solution; cost
function is then defined by

cost⊆(X ◦ S = T,R) =
{

1 if R is ⊆-minimal
2 otherwise
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Two Corresponding Optimization Problems
MINSOL# with #-minimal solutions
MINSOL⊆ with ⊆-minimal solutions

Lemma
Function cost⊆ is computable in polynomial time.

Proof: We have algorithm computing cost⊆ in polynomial time (R[Ri = 0] denotes the
relation resulting from R by flipping the i-th element to 0):

Input: a solution R to equation X ◦ S = T
Output: 1 if R is ⊆-minimal; 2 otherwise

for i = 1, . . . , n do
if Ri = 1 and R[Ri = 0] ◦ S = T then

return 2
end if

end for
return 1
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Relationship between set-cover and MINSOL...

Definition
By the equation associated to 〈U,S〉 (we assume a fixed indexation of elements of U and
S) we understand the equation X ◦ S = T where S ∈ {0, 1}n×m and T ∈ {0, 1}m are
defined by

Sij =
{

1, if j ∈ Ci,
0, if j /∈ Ci,

and Tj = 1

for all i = 1, . . . , n and j = 1, . . . ,m.
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Relationship between set-cover and MINSOL...

Lemma
Let X ◦ S = T be an equation associated to 〈U,S〉 of set-cover problem. Then
(a) the mapping sending an arbitrary C ⊆ S to RC ∈ {0, 1}n, defined by

(RC)i = 1 iff Ci ∈ C
is a bijection for which

C ∈ sol(U,S) iff RC ∈ sol(X ◦ S = T )
(b) C ∈ opt#(U,S) iff RC ∈ opt#(X ◦ S = T )
(c) C ∈ opt⊆(U,S) iff RC ∈ opt⊆(X ◦ S = T )

by opt...(. . . ) we denote the set of all optimal solutions (solutions with minimal cost)
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Complexity of MINSOL...

Theorem
(a) MINSOL# is NP-hard.
(b) MINSOL⊆ ∈ PO.

Proof:
(a) Directly from NP-hardness of a decision version of set-cover problem.
(b) The following algorithm solves MINSOL⊆ and has a polynomial time complexity:

Input: FRE X ◦ S = T
Output: ⊆-minimal solution to X ◦ S = T
Ri ← 1 for every i ∈ {1, . . . , n}
while there is i ∈ {1, . . . , n} such that (Ri = 1) and (R[Ri = 0] ◦ S = T ) do
R← R[Ri = 0]

end while
return R
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Problem of computing all ⊆-minimal solutions
existing papers: allMINSOL⊆ is NP-hard optimization problem
but NP-hardness imply that:

if P 6=NP then there does not exist an efficient algorithm
computing all minimal solutions;

we show a stronger version of this claim is true: condition “if P 6=NP” can be dropped
allMINSOL⊆ is not an optimization problem in terms of computational complexity
theory since there are equations with exponentially many minimal solutions
original idea: is there any equation such that all ⊆-minimal solutions forms the longest
antichain in 〈{0, 1}n,⊆〉? (Sperner’s theorem)
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Problem of computing all ⊆-minimal solutions

Lemma
For every positive integer m, there exist relations S ∈ {0, 1}2m×m and T ∈ {0, 1}m such
that the set of all ⊆-minimal solutions of X ◦ S = T has 2m elements.

Proof: Define equation:

X ◦



1 0 . . . 0
0 1 . . . 0
...
... . . . ...

0 0 . . . 1
1 0 . . . 0
0 1 . . . 0
...
... . . . ...

0 0 . . . 1


= ( 1 1 . . . 1 )

If R ∈ {0, 1}2m is a solution, then Rj = 1 or R2j = 1 or both. If both Rj = 1 and
R2j = 1, then R is not ⊆-minimal. Hence, in a minimal solution R, exactly one of Rj and
R2j equals 1. The number of such Rs is clearly 2m.
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Problem of computing all ⊆-minimal solutions

Theorem
There does not exist a polynomial time algorithm solving allMINSOL⊆.
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