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Outline

1 Conditional universes

2 Conditional complete lattices

3 Conditional concept lattices
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Boolean algebra of conditions (“structure of ignorance”)

Conditions

Information is of binary nature

Missing bits of information determined by external conditions

Complete Boolean algebra

Realities

Completion of unknown information: complete homomorphism h : L→ K

Determines (partially) a possible world, reality

h(c) = 1: c is satisfied in h

h : L→ 2: total reality

Boolean algebra of conditions L

Complete atomic Boolean algebra

Construction: Lindenbaum algebra, admissible evaluations
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Conditional universes (“ignorance of equality”)

Conditional universe: the underlying set of a structure

with (incomplete) information on equality of elements

x1 ≈ x2 ∈ L: condition for “x1 = x2”

Definition

An L-conditional universe is a set X together with an L-equality ≈, i.e. a mapping
≈ : X ×X → K satisfying

x ≈ x = 1, (reflexivity)

x1 ≈ x2 = x2 ≈ x1, (symmetry)

(x1 ≈ x2) ∧ (x2 ≈ x3) ≤ x1 ≈ x3, (transitivity)

x1 ≈ x2 = 1 implies x1 = x2. (separation)

Subuniverses, products
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Realizations of universes

For a total reality h, X should transform to an ordinary set with ordinary equality

X becomes Xh, x ∈ X becomes xh ∈ Xh . . . realization

Equal elements of X should “glue” together

Equal elements: h(x1 ≈ x2) = 1

For general h:

h(x1 ≈ x2) = xh1 ≈h xh2 (∗)

Definition

Let h : L→ K be a reality. An h-realization of 〈X,≈〉 is a K-conditional universe
〈Xh,≈h〉 together with a surjective mapping X → Xh, x 7→ xh satisfying (∗).

(∗): “x1 = x2 in h iff it is satisfied in h that x1 = x2”

Moreover: if “x1 = x2 in each total h” then x1 = x2
All h-realizations are isomorphic

Xh may be obtained by factorization
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Conditional sets

Sets with incomplete information on membership of elements

In each total reality: classical sets

Definition

Conditional set A in X is an L-set A : X → L.

A(x): membership condition

Conditional relations
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Realizations of conditional sets
We are going to define for a conditional set A in X its realization Ah in Xh

Ah should satisfy

Ah(xh) = h(A(x)) (∗)

“x belongs to A in h iff it is satisfied in h that x belongs to A”

Definition

For a reality h : L→ K, the h-realization of A is the K-conditional set Ah in Xh given by

Ah(xh) = h

( ∨
x′h=xh

A(x′)

)
.

Proposition

If A is extensional then (∗) holds true.

Moreover. . .
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Power relations

Lifting binary relations on X to LX

Definition

Let R be a binary conditional relation on X. For conditional sets A,B in X we set

R→(A,B) =
∧

x1∈X

(
A(x1)→

∨
x2∈X

R(x1, x2) ∧B(x2)

)
,

R←(A,B) =
∧

x2∈X

(
B(x2)→

∨
x1∈X

A(x1) ∧R(x1, x2)
)

R+(A,B) = R→(A,B) ∧R←(A,B).
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Extensional equality
Consider the lifted relation ≈+

≈+ is reflexive, symmetric and transitive, separated on extensional sets

Ah ≈h+ Bh = h(A ≈+ B) even for non-extensional A, B

Theorem (extensional equality)

The following three conditions are equivalent for any two conditional sets A,B in X.

1 A ≈+ B = 1,

2 C≈A = C≈B,

3 A equals B in any total reality.

Definition

A, B above are called extensionally equal.

Challenge: find a minimal crisp subset Y ⊂ X extensionally equal with X (and,
possibly, satisfying additional conditions).

Y will not be extensional.
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Conditional bijection

Generalization of extensional equality

Conditional point, conditional mapping, conditional bijection: similar to the same
notions in fuzzy sets

Definition

Conditional set x in X is called a conditional point if it is a block of ≈:

x(x1) ∧ x(x2) ≤ x1 ≈ x2.

x is proper if its height
∨

x∈X x(x) is 1.

Definition

Conditional relation F between X and Y is a conditional mapping if for each proper
conditional point x in X, F (x) is a proper conditional point.
F is a conditional bijection if, in addition, F−1 is a conditional mapping.
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Conditional bijection

Generalization of extensional equality

Conditional point, conditional mapping, conditional bijection: similar to the same
notions in fuzzy sets

Definition

Conditional set x in X is called a conditional point if it is a block of ≈:

x(x1) ∧ x(x2) ≤ x1 ≈ x2.

x is proper if its height
∨

x∈X x(x) is 1.

Definition

Conditional relation F between X and Y is a conditional mapping if for each proper
conditional point x in X, F (x) is a proper conditional point.
F is a conditional bijection if, in addition, F−1 is a conditional mapping.
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Conditional bijection (remarks)

Conditional points

For total h, xh has at most 1 element

If xh = ∅, we say that x does not exist in h

x is proper iff it exists in each total reality

Conditional mappings

F is a conditional mapping iff it is a (ordinary) mapping in each total reality

F is a conditional bijection iff it is a (ordinary) bijection in each total reality

Crisp subsets Y1, Y2 ⊆ X are extensionally equal iff ≈ ∩ (Y1 × Y2) is a conditional
bijection Y1 → Y2
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Conditional ordered sets

Conditional order: example of a conditional structure

Definition

A conditional order on an L-conditional universe 〈U,≈〉 is an extensional binary
conditional relation � which is reflexive and transitive and satisfies

(u1 � u2) ∧ (u2 � u1) ≤ u1 ≈ u2. (antisymmetry)

� is a (partial) order in each total reality

For extensional � also vice versa

�h is unique; extensionality gives

uh1 �h uh2 = h(u1 � u2)
V h
1 �h+ V h

2 = h(V1 �+ V2)

V1, V2 need not be extensional
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Conditional ordered sets

Conditional order: example of a conditional structure

Definition

A conditional order on an L-conditional universe 〈U,≈〉 is an extensional binary
conditional relation � which is reflexive and transitive and satisfies

(u1 � u2) ∧ (u2 � u1) ≤ u1 ≈ u2. (antisymmetry)

� is a (partial) order in each total reality

For extensional � also vice versa

�h is unique; extensionality gives

uh1 �h uh2 = h(u1 � u2)
V h
1 �h+ V h

2 = h(V1 �+ V2)

V1, V2 need not be extensional
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Isotone conditional mappings

Definition

A conditional mapping F : U → V is isotone if for each u1, u2 ∈ U

(u1 �U u2) ∧ F (u1, v1) ∧ F (u2, v2) ≤ v1 �V v2. (isotony)

F is a conditional isomorphism if F−1 is isotone as well.

Proposition

The following three conditions are equivalent.

1 F is isotone.

2 u1 �+ u2 ≤ F (u1) �+ F (u2) for any two proper conditional points u1,u2 ⊆ U .

3 F is an isotone mapping of ordered sets in each total reality.
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Suprema and infima
Upper and lower cones

UV (v) =
∧
u∈U

V (u)→ (u � v) LV (v) =
∧
u∈U

V (u)→ (v � u)

( UV (v) = V �→ {v} LV (v) = {v} �← V )

Supremum and infimum

SupV (u) = UV (u) ∧ LUV (u), Inf V (u) = LV (u) ∧ ULV (u)

SupV and Inf V are conditional points

Proposition

For each reality h:

(SupV )h = SupV h, (Inf V )h = Inf V h.

V need not be extensional
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Suprema and infima
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Conditional complete lattices

Proposition

The following conditions are equivalent:

1 � is a complete lattice order in each total reality.

2 For each conditional set V , Inf V is a proper conditional point.

3 For each conditional set V , SupV is a proper conditional point.

Definition

If the above three conditions are satisfied, 〈〈U,≈〉,�〉 is called a conditional complete
lattice.

〈〈U,≈〉,�〉 need not be a completely lattice L-ordered set
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Outline

1 Conditional universes

2 Conditional complete lattices

3 Conditional concept lattices
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Conditional context, conditional concepts

Conditional context: “incomplete context”

Definition

L-conditional formal context is a triple 〈X,Y, I〉 where X and Y are L-conditional
universes with associated L-equalities ≈X and ≈Y , respectively; and I : X × Y → L is an
extensional conditional relation.

〈X,Y, I〉h = 〈Xh, Y h, Ih〉: h-realization of 〈X,Y, I〉
Conditional concepts: pairs that realize to concepts

Definition

Let A and B be extensional conditional sets in X and Y , respectively. We call the pair
〈A,B〉 a conditional concept of 〈X,Y, I〉 if for each total reality h the pair
〈A,B〉h = 〈Ah, Bh〉 is a concept of 〈X,Y, I〉h.

The set of all conditional concepts is B(X,Y, I)
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Conditional concept lattices

The definition is in accordance with our approach

Any set of conditional concept that realizes to the respective concept lattices is a
conditional concept lattice

Thus, there are several conditional concept lattices of 〈X,Y, I〉, all extensionally equal

Definition

By a conditional concept lattice of the context 〈X,Y, I〉 we understand any set U of its
conditional concepts (i.e. crisp subset U ⊆ B(X,Y, I)) which is extensionally equal to
B(X,Y, I). B(X,Y, I) itself is called the maximal conditional concept lattice of 〈X,Y, I〉.

For each total reality h we have Uh = B(Xh, Y h, Ih)

We can describe easily ordering of concepts in each total reality from the structure of
U . . .

. . . as well as suprema and infima
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Basic theorem of conditional concept lattices

Theorem

1. Any conditional concept lattice U of 〈X,Y, I〉 is a conditional complete lattice.
Suprema and infima in U are given by

SupM(〈A,B〉) = B ≈+
Y

⋂
MY , InfM(〈A,B〉) = A ≈+

X

⋂
MX .

2. A conditional complete lattice V is conditionally isomorphic with a conditional concept
lattice of 〈X,Y, I〉 iff there exist conditional mappings γ : X → V and µ : Y → V such
that γ(X) is Sup -dense in V , µ(Y ) is Inf -dense in V and I(x, y) = γ(x) �+ µ(y).

Part 2 provides an easy way to tell the structure of each of the possible concept
lattices and to reconstruct the relation I from a diagram

γ and µ need not be extensional
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Construction of conditional concept lattices

Crisply generated concepts: infima of crisp sets are easy

Closure to a complete sublattice of B(X,Y, I): both suprema and infima are easy
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Next steps

Add non-existence (non-reflexive equality)

Theory for other structures (finding minimal universes)

Heyting algebras? Residuated lattices?

Describing L by formulas of a predicate logic
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