Nové poznatky o konceptuálních svazech s neúplnou informací a o neúplné informaci vůbec

Michal Krupka, Jan Laštovička

Palacký University, Olomouc, Czech Republic

Introduction

Genesis

• Concept lattices with incomplete information

Introduction

Genesis

Concept lattices with incomplete information

Our approach

- Mathematical structures with incomplete information
- Incomplete information: equality of elements, membership in sets
- Treating all possible worlds at once, as single abstract (incomplete) world
- Ignorance embodied into structure of truth values

Introduction

Genesis

Concept lattices with incomplete information

Our approach

- Mathematical structures with incomplete information
- Incomplete information: equality of elements, membership in sets
- Treating all possible worlds at once, as single abstract (incomplete) world
- Ignorance embodied into structure of truth values

Influences

- Fuzzy sets
- Boolean valued models
- Possible worlds

Outline

Conditional universes

2 Conditional complete lattices

3 Conditional concept lattices

Boolean algebra of conditions ("structure of ignorance")

Conditions

- Information is of binary nature
- Missing bits of information determined by external conditions
- Complete Boolean algebra

Boolean algebra of conditions ("structure of ignorance")

Conditions

- Information is of binary nature
- Missing bits of information determined by external conditions
- Complete Boolean algebra

Realities

- Completion of unknown information: complete homomorphism $h: L \to K$
- Determines (partially) a possible world, reality
- h(c) = 1: c is satisfied in h
- $h: L \rightarrow \mathbf{2}$: total reality

Boolean algebra of conditions ("structure of ignorance")

Conditions

- Information is of binary nature
- Missing bits of information determined by external conditions
- Complete Boolean algebra

Realities

- Completion of unknown information: complete homomorphism $h \colon L \to K$
- Determines (partially) a possible world, reality
- h(c) = 1: c is satisfied in h
- $h: L \to \mathbf{2}$: total reality

Boolean algebra of conditions L

- Complete atomic Boolean algebra
- Construction: Lindenbaum algebra, admissible evaluations

Conditional universes ("ignorance of equality")

- Conditional universe: the underlying set of a structure
- with (incomplete) information on equality of elements
- $x_1 \approx x_2 \in L$: condition for " $x_1 = x_2$ "

Conditional universes ("ignorance of equality")

- Conditional universe: the underlying set of a structure
- with (incomplete) information on equality of elements
- $x_1 \approx x_2 \in L$: condition for " $x_1 = x_2$ "

Definition

An L-conditional universe is a set X together with an L-equality \approx , i.e. a mapping $\approx: X \times X \to K$ satisfying

$$x pprox x = 1,$$
 (reflexivity) $x_1 pprox x_2 = x_2 pprox x_1,$ (symmetry) $(x_1 pprox x_2) \wedge (x_2 pprox x_3) \leq x_1 pprox x_3,$ (transitivity) $x_1 pprox x_2 = 1$ implies $x_1 = x_2.$ (separation)

Subuniverses, products

- ullet For a total reality h, X should transform to an ordinary set with ordinary equality
- X becomes X^h , $x \in X$ becomes $x^h \in X^h$... realization
- ullet Equal elements of X should "glue" together
- Equal elements: $h(x_1 \approx x_2) = 1$

- For a total reality h, X should transform to an ordinary set with ordinary equality
- X becomes X^h , $x \in X$ becomes $x^h \in X^h$... realization
- ullet Equal elements of X should "glue" together
- Equal elements: $h(x_1 \approx x_2) = 1$
- For general h:

$$h(x_1 \approx x_2) = x_1^h \approx^h x_2^h \tag{*}$$

- ullet For a total reality h, X should transform to an ordinary set with ordinary equality
- X becomes X^h , $x \in X$ becomes $x^h \in X^h$... realization
- ullet Equal elements of X should "glue" together
- Equal elements: $h(x_1 \approx x_2) = 1$
- ullet For general h:

$$h(x_1 \approx x_2) = x_1^h \approx^h x_2^h \tag{*}$$

Definition

Let $h\colon L\to K$ be a reality. An h-realization of $\langle X,\approx \rangle$ is a K-conditional universe $\langle X^h,\approx^h \rangle$ together with a surjective mapping $X\to X^h$, $x\mapsto x^h$ satisfying (*).

- ullet For a total reality h, X should transform to an ordinary set with ordinary equality
- X becomes X^h , $x \in X$ becomes $x^h \in X^h$... realization
- ullet Equal elements of X should "glue" together
- Equal elements: $h(x_1 \approx x_2) = 1$
- For general h:

$$h(x_1 \approx x_2) = x_1^h \approx^h x_2^h \tag{*}$$

Definition

Let $h\colon L\to K$ be a reality. An h-realization of $\langle X,\approx \rangle$ is a K-conditional universe $\langle X^h,\approx^h \rangle$ together with a surjective mapping $X\to X^h$, $x\mapsto x^h$ satisfying (*).

- (*): " $x_1 = x_2$ in h iff it is satisfied in h that $x_1 = x_2$ "
- Moreover: if " $x_1 = x_2$ in each total h" then $x_1 = x_2$
- All h-realizations are isomorphic
- X^h may be obtained by factorization

Conditional sets

- Sets with incomplete information on membership of elements
- In each total reality: classical sets

Conditional sets

- Sets with incomplete information on membership of elements
- In each total reality: classical sets

Definition

Conditional set A in X is an L-set $A: X \to L$.

- A(x): membership condition
- Conditional relations

- ullet We are going to define for a conditional set A in X its realization A^h in X^h
- A^h should satisfy

$$A^h(x^h) = h(A(x)) \tag{*}$$

- ullet We are going to define for a conditional set A in X its realization A^h in X^h
- A^h should satisfy

$$A^h(x^h) = h(A(x)) \tag{*}$$

ullet "x belongs to A in h iff it is satisfied in h that x belongs to A"

- We are going to define for a conditional set A in X its realization A^h in X^h
- A^h should satisfy

$$A^{h}(x^{h}) = h(A(x)) \tag{*}$$

ullet "x belongs to A in h iff it is satisfied in h that x belongs to A"

Definition

For a reality $h\colon L\to K$, the h-realization of A is the K-conditional set A^h in X^h given by

$$A^h(x^h) = h\left(\bigvee_{x'^h = x^h} A(x')\right).$$

- We are going to define for a conditional set A in X its realization A^h in X^h
- A^h should satisfy

$$A^{h}(x^{h}) = h(A(x)) \tag{*}$$

ullet "x belongs to A in h iff it is satisfied in h that x belongs to A"

Definition

For a reality $h\colon L\to K$, the h-realization of A is the K-conditional set A^h in X^h given by

$$A^h(x^h) = h\left(\bigvee_{x'^h = x^h} A(x')\right).$$

Proposition

If A is extensional then (*) holds true.

Moreover...

Power relations

ullet Lifting binary relations on X to L^X

Definition

Let R be a binary conditional relation on X. For conditional sets A, B in X we set

$$R^{\to}(A,B) = \bigwedge_{x_1 \in X} \left(A(x_1) \to \bigvee_{x_2 \in X} R(x_1, x_2) \land B(x_2) \right),$$

$$R^{\leftarrow}(A,B) = \bigwedge_{x_2 \in X} \left(B(x_2) \to \bigvee_{x_1 \in X} A(x_1) \land R(x_1, x_2) \right)$$

$$R^{+}(A,B) = R^{\to}(A,B) \land R^{\leftarrow}(A,B).$$

- ullet Consider the lifted relation $pprox^+$
- ullet $pprox^+$ is reflexive, symmetric and transitive, separated on extensional sets
- $A^h \approx^{h+} B^h = h(A \approx^+ B)$ even for non-extensional A, B

- Consider the lifted relation \approx^+
- ullet $pprox^+$ is reflexive, symmetric and transitive, separated on extensional sets
- $A^h \approx^{h+} B^h = h(A \approx^+ B)$ even for non-extensional A, B

Theorem (extensional equality)

The following three conditions are equivalent for any two conditional sets A, B in X.

- **1** $A \approx^+ B = 1$,
- \bullet A equals B in any total reality.

- ullet Consider the lifted relation $pprox^+$
- ullet $pprox^+$ is reflexive, symmetric and transitive, separated on extensional sets
- $A^h \approx^{h+} B^h = h(A \approx^+ B)$ even for non-extensional A, B

Theorem (extensional equality)

The following three conditions are equivalent for any two conditional sets A, B in X.

- **1** $A \approx^+ B = 1$,
- A equals B in any total reality.

Definition

A, B above are called *extensionally equal*.

- ullet Consider the lifted relation $pprox^+$
- ullet $pprox^+$ is reflexive, symmetric and transitive, separated on extensional sets
- $A^h \approx^{h+} B^h = h(A \approx^+ B)$ even for non-extensional A, B

Theorem (extensional equality)

The following three conditions are equivalent for any two conditional sets A,B in X.

- **1** $A \approx^+ B = 1$,
- A equals B in any total reality.

Definition

A, B above are called *extensionally equal*.

- Challenge: find a minimal crisp subset $Y \subset X$ extensionally equal with X (and, possibly, satisfying additional conditions).
- Y will not be extensional.

Conditional bijection

- Generalization of extensional equality
- Conditional point, conditional mapping, conditional bijection: similar to the same notions in fuzzy sets

Conditional bijection

- Generalization of extensional equality
- Conditional point, conditional mapping, conditional bijection: similar to the same notions in fuzzy sets

Definition

Conditional set x in X is called a *conditional point* if it is a block of \approx :

$$\mathbf{x}(x_1) \wedge \mathbf{x}(x_2) \leq x_1 \approx x_2.$$

x is proper if its height $\bigvee_{x \in X} \mathbf{x}(x)$ is 1.

Conditional bijection

- Generalization of extensional equality
- Conditional point, conditional mapping, conditional bijection: similar to the same notions in fuzzy sets

Definition

Conditional set x in X is called a *conditional point* if it is a block of \approx :

$$\mathbf{x}(x_1) \wedge \mathbf{x}(x_2) \le x_1 \approx x_2.$$

x is proper if its height $\bigvee_{x \in X} \mathbf{x}(x)$ is 1.

Definition

Conditional relation F between X and Y is a conditional mapping if for each proper conditional point \mathbf{x} in X, $F(\mathbf{x})$ is a proper conditional point.

F is a conditional bijection if, in addition, F^{-1} is a conditional mapping.

Conditional bijection (remarks)

Conditional points

- For total h, \mathbf{x}^h has at most 1 element
- If $\mathbf{x}^h = \emptyset$, we say that \mathbf{x} does not exist in h
- ullet ${f x}$ is proper iff it exists in each total reality

Conditional bijection (remarks)

Conditional points

- For total h, \mathbf{x}^h has at most 1 element
- If $\mathbf{x}^h = \emptyset$, we say that \mathbf{x} does not exist in h
- x is proper iff it exists in each total reality

Conditional mappings

- ullet F is a conditional mapping iff it is a (ordinary) mapping in each total reality
- F is a conditional bijection iff it is a (ordinary) bijection in each total reality
- Crisp subsets $Y_1,Y_2\subseteq X$ are extensionally equal iff $pprox \cap (Y_1\times Y_2)$ is a conditional bijection $Y_1\to Y_2$

Outline

Conditional universes

2 Conditional complete lattices

Conditional concept lattices

• Conditional order: example of a conditional structure

• Conditional order: example of a conditional structure

Definition

A conditional order on an L-conditional universe $\langle U, \approx \rangle$ is an extensional binary conditional relation \preceq which is reflexive and transitive and satisfies

$$(u_1 \leq u_2) \wedge (u_2 \leq u_1) \leq u_1 \approx u_2.$$

(antisymmetry)

• Conditional order: example of a conditional structure

Definition

A conditional order on an L-conditional universe $\langle U, \approx \rangle$ is an extensional binary conditional relation \preceq which is reflexive and transitive and satisfies

$$(u_1 \leq u_2) \wedge (u_2 \leq u_1) \leq u_1 \approx u_2.$$

(antisymmetry)

- ≤ is a (partial) order in each total reality

Conditional order: example of a conditional structure

Definition

A conditional order on an L-conditional universe $\langle U, \approx \rangle$ is an extensional binary conditional relation \preceq which is reflexive and transitive and satisfies

$$(u_1 \leq u_2) \wedge (u_2 \leq u_1) \leq u_1 \approx u_2.$$

(antisymmetry)

- ≤ is a (partial) order in each total reality
- \leq^h is unique; extensionality gives

$$u_1^h \leq^h u_2^h = h(u_1 \leq u_2)$$

 $V_1^h \leq^{h+} V_2^h = h(V_1 \leq^+ V_2)$

 V_1 , V_2 need not be extensional

Isotone conditional mappings

Definition

A conditional mapping $F: U \to V$ is isotone if for each $u_1, u_2 \in U$

$$(u_1 \preceq_U u_2) \land F(u_1, v_1) \land F(u_2, v_2) \le v_1 \preceq_V v_2.$$
 (isotony)

F is a conditional isomorphism if F^{-1} is isotone as well.

Isotone conditional mappings

Definition

A conditional mapping $F: U \to V$ is isotone if for each $u_1, u_2 \in U$

$$(u_1 \leq_U u_2) \land F(u_1, v_1) \land F(u_2, v_2) \leq v_1 \leq_V v_2.$$
 (isotony)

F is a conditional isomorphism if F^{-1} is isotone as well.

Proposition

The following three conditions are equivalent.

- F is isotone.
- $\mathbf{Q} \ \mathbf{u}_1 \preceq^+ \mathbf{u}_2 \leq F(\mathbf{u}_1) \preceq^+ F(\mathbf{u}_2)$ for any two proper conditional points $\mathbf{u}_1, \mathbf{u}_2 \subseteq U$.
- $oldsymbol{3}$ F is an isotone mapping of ordered sets in each total reality.

Suprema and infima

Upper and lower cones

$$\begin{split} \mathcal{U}V(v) &= \bigwedge_{u \in U} V(u) \to (u \preceq v) \\ \text{(} \quad \mathcal{U}V(v) &= V \preceq^{\to} \{v\} \end{split} \qquad \qquad \begin{split} \mathcal{L}V(v) &= \bigwedge_{u \in U} V(u) \to (v \preceq u) \\ \mathcal{L}V(v) &= \{v\} \preceq^{\leftarrow} V \end{split} \text{)} \end{split}$$

Supremum and infimum

$$\operatorname{Sup} V(u) = \mathcal{U}V(u) \wedge \mathcal{L}\mathcal{U}V(u), \qquad \operatorname{Inf} V(u) = \mathcal{L}V(u) \wedge \mathcal{U}\mathcal{L}V(u)$$

Suprema and infima

Upper and lower cones

$$\begin{split} \mathcal{U}V(v) &= \bigwedge_{u \in U} V(u) \to (u \preceq v) \\ \text{(} \quad \mathcal{U}V(v) &= V \preceq^{\to} \{v\} \end{split} \qquad \qquad \begin{split} \mathcal{L}V(v) &= \bigwedge_{u \in U} V(u) \to (v \preceq u) \\ \mathcal{L}V(v) &= \{v\} \preceq^{\leftarrow} V \end{split} \text{)} \end{split}$$

Supremum and infimum

$$\operatorname{Sup} V(u) = \mathcal{U}V(u) \wedge \mathcal{L}\mathcal{U}V(u), \qquad \operatorname{Inf} V(u) = \mathcal{L}V(u) \wedge \mathcal{U}\mathcal{L}V(u)$$

 \bullet Sup V and Inf V are conditional points

Suprema and infima

Upper and lower cones

$$\begin{split} \mathcal{U}V(v) &= \bigwedge_{u \in U} V(u) \to (u \preceq v) \\ (\quad \mathcal{U}V(v) &= V \preceq^{\to} \{v\} \end{split} \qquad \qquad \begin{split} \mathcal{L}V(v) &= \bigwedge_{u \in U} V(u) \to (v \preceq u) \\ \mathcal{L}V(v) &= \{v\} \preceq^{\leftarrow} V \end{split}$$

Supremum and infimum

$$\operatorname{Sup} V(u) = \mathcal{U}V(u) \wedge \mathcal{L}\mathcal{U}V(u), \qquad \operatorname{Inf} V(u) = \mathcal{L}V(u) \wedge \mathcal{U}\mathcal{L}V(u)$$

ullet Sup V and Inf V are conditional points

Proposition

For each reality h:

$$(\operatorname{Sup} V)^h = \operatorname{Sup} V^h, \qquad (\operatorname{Inf} V)^h = \operatorname{Inf} V^h.$$

V need not be extensional

Conditional complete lattices

Proposition

The following conditions are equivalent:

- $oldsymbol{0} \leq$ is a complete lattice order in each total reality.
- **2** For each conditional set V, $\operatorname{Inf} V$ is a proper conditional point.
- **3** For each conditional set V, $\operatorname{Sup} V$ is a proper conditional point.

Conditional complete lattices

Proposition

The following conditions are equivalent:

- $\mathbf{0} \leq \text{is a complete lattice order in each total reality.}$
- $oldsymbol{2}$ For each conditional set V, $\operatorname{Inf} V$ is a proper conditional point.
- **3** For each conditional set V, $\operatorname{Sup} V$ is a proper conditional point.

Definition

If the above three conditions are satisfied, $\langle\langle U,\approx\rangle,\preceq\rangle$ is called a *conditional complete lattice*.

• $\langle \langle U, \approx \rangle, \preceq \rangle$ need not be a completely lattice L-ordered set

Outline

Conditional universe

2 Conditional complete lattices

Conditional concept lattices

• Conditional context: "incomplete context"

Definition

L-conditional formal context is a triple $\langle X,Y,I \rangle$ where X and Y are L-conditional universes with associated L-equalities \approx_X and \approx_Y , respectively; and $I\colon X\times Y\to L$ is an extensional conditional relation.

Conditional context: "incomplete context"

Definition

L-conditional formal context is a triple $\langle X,Y,I \rangle$ where X and Y are L-conditional universes with associated L-equalities \approx_X and \approx_Y , respectively; and $I\colon X\times Y\to L$ is an extensional conditional relation.

• $\langle X, Y, I \rangle^h = \langle X^h, Y^h, I^h \rangle$: h-realization of $\langle X, Y, I \rangle$

• Conditional context: "incomplete context"

Definition

L-conditional formal context is a triple $\langle X,Y,I \rangle$ where X and Y are L-conditional universes with associated L-equalities \approx_X and \approx_Y , respectively; and $I\colon X\times Y\to L$ is an extensional conditional relation.

- $\langle X, Y, I \rangle^h = \langle X^h, Y^h, I^h \rangle$: h-realization of $\langle X, Y, I \rangle$
- Conditional concepts: pairs that realize to concepts

Definition

Let A and B be extensional conditional sets in X and Y, respectively. We call the pair $\langle A,B\rangle$ a conditional concept of $\langle X,Y,I\rangle$ if for each total reality h the pair $\langle A,B\rangle^h=\langle A^h,B^h\rangle$ is a concept of $\langle X,Y,I\rangle^h$.

Conditional context: "incomplete context"

Definition

L-conditional formal context is a triple $\langle X,Y,I \rangle$ where X and Y are L-conditional universes with associated L-equalities \approx_X and \approx_Y , respectively; and $I\colon X\times Y\to L$ is an extensional conditional relation.

- $\langle X, Y, I \rangle^h = \langle X^h, Y^h, I^h \rangle$: h-realization of $\langle X, Y, I \rangle$
- Conditional concepts: pairs that realize to concepts

Definition

Let A and B be extensional conditional sets in X and Y, respectively. We call the pair $\langle A,B\rangle$ a conditional concept of $\langle X,Y,I\rangle$ if for each total reality h the pair $\langle A,B\rangle^h=\langle A^h,B^h\rangle$ is a concept of $\langle X,Y,I\rangle^h$.

• The set of all conditional concepts is $\mathcal{B}(X,Y,I)$

- The definition is in accordance with our approach
- Any set of conditional concept that realizes to the respective concept lattices is a conditional concept lattice
- ullet Thus, there are several conditional concept lattices of $\langle X,Y,I \rangle$, all extensionally equal

- The definition is in accordance with our approach
- Any set of conditional concept that realizes to the respective concept lattices is a conditional concept lattice
- ullet Thus, there are several conditional concept lattices of $\langle X,Y,I\rangle$, all extensionally equal

Definition

By a conditional concept lattice of the context $\langle X,Y,I\rangle$ we understand any set U of its conditional concepts (i.e. crisp subset $U\subseteq \mathcal{B}(X,Y,I)$) which is extensionally equal to $\mathcal{B}(X,Y,I)$. $\mathcal{B}(X,Y,I)$ itself is called the maximal conditional concept lattice of $\langle X,Y,I\rangle$.

- The definition is in accordance with our approach
- Any set of conditional concept that realizes to the respective concept lattices is a conditional concept lattice
- ullet Thus, there are several conditional concept lattices of $\langle X,Y,I \rangle$, all extensionally equal

Definition

By a conditional concept lattice of the context $\langle X,Y,I\rangle$ we understand any set U of its conditional concepts (i.e. crisp subset $U\subseteq \mathcal{B}(X,Y,I)$) which is extensionally equal to $\mathcal{B}(X,Y,I)$. $\mathcal{B}(X,Y,I)$ itself is called the maximal conditional concept lattice of $\langle X,Y,I\rangle$.

• For each total reality h we have $U^h = \mathcal{B}(X^h, Y^h, I^h)$

- The definition is in accordance with our approach
- Any set of conditional concept that realizes to the respective concept lattices is a conditional concept lattice
- ullet Thus, there are several conditional concept lattices of $\langle X,Y,I \rangle$, all extensionally equal

Definition

By a conditional concept lattice of the context $\langle X,Y,I\rangle$ we understand any set U of its conditional concepts (i.e. crisp subset $U\subseteq \mathcal{B}(X,Y,I)$) which is extensionally equal to $\mathcal{B}(X,Y,I)$. $\mathcal{B}(X,Y,I)$ itself is called the maximal conditional concept lattice of $\langle X,Y,I\rangle$.

- For each total reality h we have $U^h = \mathcal{B}(X^h, Y^h, I^h)$
- \bullet We can describe easily ordering of concepts in each total reality from the structure of $U\,\dots$
- ... as well as suprema and infima

Theorem

1. Any conditional concept lattice U of $\langle X,Y,I\rangle$ is a conditional complete lattice. Suprema and infima in U are given by

$$\operatorname{Sup} M(\langle A, B \rangle) = B \approx_Y^+ \bigcap M_Y, \qquad \operatorname{Inf} M(\langle A, B \rangle) = A \approx_X^+ \bigcap M_X.$$

Theorem

1. Any conditional concept lattice U of $\langle X,Y,I\rangle$ is a conditional complete lattice. Suprema and infima in U are given by

$$\operatorname{Sup} M(\langle A, B \rangle) = B \approx_Y^+ \bigcap M_Y, \qquad \operatorname{Inf} M(\langle A, B \rangle) = A \approx_X^+ \bigcap M_X.$$

2. A conditional complete lattice V is conditionally isomorphic with a conditional concept lattice of $\langle X,Y,I\rangle$ iff there exist conditional mappings $\gamma\colon X\to V$ and $\mu\colon Y\to V$ such that $\gamma(X)$ is Sup -dense in V, $\mu(Y)$ is Inf -dense in V and $I(x,y)=\gamma(x)\preceq^+\mu(y)$.

Theorem

1. Any conditional concept lattice U of $\langle X,Y,I\rangle$ is a conditional complete lattice. Suprema and infima in U are given by

$$\operatorname{Sup} M(\langle A, B \rangle) = B \approx_Y^+ \bigcap M_Y, \qquad \operatorname{Inf} M(\langle A, B \rangle) = A \approx_X^+ \bigcap M_X.$$

- 2. A conditional complete lattice V is conditionally isomorphic with a conditional concept lattice of $\langle X,Y,I\rangle$ iff there exist conditional mappings $\gamma\colon X\to V$ and $\mu\colon Y\to V$ such that $\gamma(X)$ is Sup -dense in V, $\mu(Y)$ is Inf -dense in V and $I(x,y)=\gamma(x)\preceq^+\mu(y)$.
 - Part 2 provides an easy way to tell the structure of each of the possible concept lattices and to reconstruct the relation I from a diagram
 - ullet γ and μ need not be extensional

Construction of conditional concept lattices

- Crisply generated concepts: infima of crisp sets are easy
- Closure to a complete sublattice of $\mathcal{B}(X,Y,I)$: both suprema and infima are easy

Next steps

- Add non-existence (non-reflexive equality)
- Theory for other structures (finding minimal universes)
- Heyting algebras? Residuated lattices?
- ullet Describing L by formulas of a predicate logic