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Open  quantum systems 

, 

The dynamical map                   has to be linear, trace 

preserving and completely positive (CP) 

Time – dependent GKSL master equation 

No time-dependence and non-negative rates 

QUANTUM 
DYNAMICAL 
SEMIGROUPS 



Quantum  non - Markovianity 

NON – MARKOVIANITY  IN  QUANTUM  DYNAMICS 

There is no immediate quantum parallel of the classical definition 

Non-Makovianity is related to the presence of memory effects in the dynamics 

Many sufficient conditions and estimators have been constructed which  

cope with the time-behavior of the statistical operator 𝜌(𝑡). 

CP – divisibility based criterion A´ . Rivas, S.F. Huelga, M.B. Plenio, PRL 105, 050403 (2010) 

The time-evolution of a quantum system described in terms of a family of quantum 

dynamical maps {Λ(𝑡, 𝑡0)}𝑡≥𝑡0
 is Markovian if it is CP-divisible. 

Markovian dynamics Non-Markovian dynamics 



Quantum  non - Markovianity 

Trace-distance based criterion 

H. – P. Breuer, E. – M. Laine, J- Piilo, PRL 103 210401 (2009) 

It is a contraction under the action of PTP maps 

It is a measure of the distinguishability between quantum states  

Its can be employed to quantify the information flow between S and E  
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Heat in open quantum systems 

Change in the internal energy: 

Closed quantum systems 



Work 
(no change in system’s entropy) 

Heat 
(no change in the Hamiltonian) 

First law of thermodynamics 
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Heat in open quantum systems 

Open quantum systems 

The eventual time dependence has to be thought as due to external  

driving fields, under the control of an eventual experimenter.  

For this reason HE is considered independent on time. 
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Full – Counting Statistics 

of a change  

The full-counting statistics allows to access all the cumulants 

 of the probability distribution  

 in the eigenvalues of a self-adjoint operator  

 whose eventual time-dependence is due  

to the action of external driving fields 



Perform a projective measurement  
 of the observable  
A  at initial time 

Let the overall system 
 undergo the coupled evolution 

Full – Counting Statistics 

Consider a composite system  
 starting in a product state and 
such a selected observable A 

SYSTEM 
ENVIRONMENT 

Esposito, Harbola, Mukamel, Rev. Mod. Phys. 81, 1665 (2009) 

Detatch S and E and perform 
another measurement  

of the same observable A 
 at time t 

1 

2 

3 

4 

Two – time measurement protocol 



Full – Counting Statistics 

The probability distribution  for a change  

 to occur between time 0 and time t is given by 

 where 

Upon introducing the cumulant  generating function 

 the cumulants of Δ𝑎 are obtained by derivation as 



Full – Counting Statistics 

Under the assumption                            , 
 
the cumulant generating can be re-expressed as 

 where 

 with 

System’s operator 

Modified evolution operator: usual evolution conditioned on   
 two ‘rotations’ induced by the observable A 



Full – Counting Statistics 

Under the same approximations and employing the same techniques 

(Nakajima-Zwanzig projectors, perturbative expansion...) used to 

derive a master equation for the evolution of 𝜌𝑆 𝑡 , one obtains a master 

equation for 𝜌𝑆 𝜂, 𝑡 , usually called generalized master equation (GME). 

MAIN POINT: USEFULNESS OF FULL-COUNTING STATISTICS 

The cumulant generating function                                                  is then  

obtained by solving the GME and, simply by derivation, it gives the 

cumulants of the probability distribution for the change in the selected 

observable. 
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Heat Backflow: occurrence and quantifier 

Weak coupling between S and E 

𝜌𝐸 Gibbs state 



Heat Backflow: occurrence and quantifier 

Weak coupling between S and E 

Projection – operator technique and second-order time-convolutionless expansion 

𝜌𝐸 Gibbs state 
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Heat Backflow: occurrence and quantifier 

Born-Markov 
and RWA 

approximations 

Time-independent GKSL master equation 

Temperature-induced steady heat flow from hot to cold subsystem 

Esposito et al., RMP 81, 1665 (2009); Ren et al., PRL 104, 170601 (2010); C. Uchiyama PRE 89, 052108 (2014) 



Heat Backflow: occurrence and quantifier 

QUANTUM 
DYNAMICAL 
SEMIGROUPS 

Time-independent GKSL master equation 

Temperature-induced steady heat flow from hot to cold subsystem 

Esposito et al., RMP 81, 1665 (2009); Ren et al., PRL 104, 170601 (2010); C. Uchiyama PRE 89, 052108 (2014) 

Beyond semigroup dynamics 



Heat Backflow: occurrence and quantifier 

G. Guarnieri, C. Uchiyama, B. Vacchini, PRA 93, 012118 (2016) 



Heat Backflow: occurrence and quantifier 

After the maximization over the possible initial states of the reduced system, it 
becomes a property of the dynamical map only. 



Application to the Spin – boson model 

The two – level system is coupled to an environment consisting of  
an infinite number of bosonic modes.  

The Hamiltonian is  



Application to the Spin – boson model 

Environmental correlation function 

The two – level system is coupled to an environment consisting of  
an infinite number of bosonic modes.  

The energy flow per unit of time has the form 

The Hamiltonian is  



Application to the Spin – boson model 

Assuming the spetral density to be of the form 

𝑇𝑆  ≥ 𝑇𝐸  
Condition which guarantees, in the Born-Markov limit,  
a steady heat flow from the system to the environment 



Application to the Spin – boson model 

𝑇𝑆 = 5⍵0 

λ = 0. 1 

Ω = 0. 4 ⍵0 

For every value of λ, Ω and 𝑇𝐸 the heat backflow is maximized by the choice 𝑇𝑆 = 𝑇𝐸 

Assuming the spetral density to be of the form 

𝑇𝑆  ≥ 𝑇𝐸  
Condition which guarantees, in the Born-Markov limit,  
a steady heat flow from the system to the environment 



Application to the Spin – boson model 

G. Guarnieri, C. Uchiyama, B. Vacchini, PRA 93, 012118 (2016) 

Region of max heat backflow 

𝑇𝑆 = 𝑇𝐸  

Region of absent  
heat backflow 



Connection with the non-Markovianity in the SB 

Spin – boson model 

 The reduced dynamics is always 
 non-Markovian except on the  
 resonance curve, defined by the 
 condition 

Relationship with the non-Markovanity 

 Locally white-noise spectrum  
 around the system’s transition  
 frequency 

G. Clos, H. – P. Breuer, PRA 86, 012115 (2012) 



Application to the Spin – boson model Relationship with the non-Markovanity 



Application to the Spin – boson model 

 The non-Markovianity 
measure is suppressed 

whenever  
 the resonance condition 

strictly holds  
(i.e. on the white line) 

 The heat backflow 
measure is suppressed 

whenever 
 the resonance condition 

approximately holds  
(i.e. on the black region) 

Relationship with the non-Markovanity 

G. Guarnieri, C. Uchiyama, B. Vacchini, PRA 93, 012118 (2016) 



Application to the QBM 

An harmonic oscillator is coupled to an environment consisting of an infinite  
number of bosonic modes.  
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Analytic solution for the heat flow rate 



Application to the QBM 

An harmonic oscillator is coupled to an environment consisting of an infinite  
number of bosonic modes.  

Weak coupling regime Strong coupling regime 

Analytic Fokker-Planck master equation  

Analytic solution for the heat flow rate 

Fully numerical simulation with  
finite-number of environmental modes 



Application to the QBM 

𝑇𝑆 = 𝑇𝐸  

G. Guarnieri, J. Nokkala, R. Schmidt, S. Maniscalco, B. Vacchini, PRA 94 (2016) 

Cut-off values in λ and Ω for the heat backflow 



Connection with the non-Markovianity in the SB 

Gaussian Interferometric Power 

Relationship with the non-Markovanity 

H. S. Dhar, M. N. Bera, G. Adesso, PRA 91, 032115 (2015) 

Quantum Fisher Information 

Likewise the trace distance, this figure of merit is  
a contraction under the action of CPT maps 

Non-Markovian dynamics if 
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Connection with the non-Markovianity in the SB 

Gaussian Interferometric Power 

Relationship with the non-Markovanity 

For the QBM model 

λ dependence: cut-off for the heat backflow, absent for the nM measure 

Ω dependence: very similar behavior, cut-off for frequency both measures 



Connection with the non-Markovianity in the SB Conclusions 

For both the spin – boson model and for the quantum Brownian motion,  

we had that: 

The occurrence of heat backflow represents a stricter condition than  
non-Markovianity, in the sense that the latter is required in order to 
witness the former and that, on the contrary, a Markovian dynamics 

prevents its observation. 

A generally non-Markovian description of the reduced dynamics causes 
the  heat flow to oscillate and even come back from the environment to 

the system. 

The heat backflow measure is maximized whenever the initial 
temperatures of system and environment are equal to each other 
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Landauer’s principle 

Lower bound to the mean dissipated heat 

ERASURE PROTOCOL SCENARIO 

1 

2 

3 

4 

S and E described in terms  
of Hilbert spaces;   

D. Reeb and M. M. Wolf, New J. Phys. 16, 103011 (2014) 



Non-equilibrium lower bound 

J. Goold and M. Paternostro and K. Modi, Phys. Rev. Lett. 114, 060602 (2015) 

A thermodynamic-based lower bound 

constructed by means of the Ak ’s contains far more information than just 

Jensen’s inequality 

Non – unitality degree  
of the environmental map 

Transformation of the  
environmental state 



Non-equilibrium lower bound 

J. Goold and M. Paternostro and K. Modi, Phys. Rev. Lett. 114, 060602 (2015) 

Spin system coupled to  

an isotropic XX model 

The thermodynamical bound 

 here outperforms Landauer’s  

(altough not in general) 



Non-equilibrium lower bound 

Obtained exploiting FCS 

Convexity property of the cumulant generating function 

Hölder’s inequality 

Laplace transform of the probability distribution 

A full – counting statistics – based approach 



Non-equilibrium lower bound 



Non-equilibrium lower bound 



Non-equilibrium lower bound 

New one-parameter family of lower bounds to the mean dissipated heat 

It applies to a non-equilibrium scenario  



Non-equilibrium lower bound 

Consider the family of lower bounds 

For this choice of the counting field parameter we retrieve the lower 

bound btained by Goold, Modi and Paternostro. 

For 0 < 𝜂 ≤ 𝛽 we therefore find lower bounds which outperform it  

case 



XX – coupled and driven V - system 

Interaction picture 



XX – coupled and driven V - system 

Asymptotically tight family of lower  bounds to the mean dissipated heat 

Even the 𝜂 = 𝛽 case outperforms Landauer’s result in this case, since the  
change in the system’s entropy is here a non-positive quantity at any time 



Conclusions (1) 

Heat, in an open quantum systems’ scenario, is a delicate concept.  One 
useful way to characterize it is by using the so-called full counting 

statistics. By means of it, we have studied the time-behavior of the mean 
value of heat in a generally non-Markovian regime, introducing a 
condition/quantifer for the occurrence/amount of heat backflow. 

Explicit calculations in a spin-boson model and in a quantum Brownian 
motion model have shown that heat backflow is maximized when the 

system and environment initially start at the same temperature. 



Conclusions (2) 

A comparative analysis with suitable quantifier of non-Markovianity in 
both models have moreover shown that occurrence of heat backflow 

represents a stricter condition than non-Markovianity, in the sense that 
the latter is required in order to witness the former and, viceversa, a 

Markovian dynamics prevents the observation of heat backflow. 

Finally, exploiting again full counting statistics, we have derived a family 
of lower bounds to the mean dissipated heat in an environmental-

assisted erasure protocol scenario. The latter has been characterized in a 
specific model consisting of an externally driven ad XX-coupled V-
system, where the new lower bound can be proven to outperform 

original Landauer’s bound. 
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