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Basics of continuous variable quantum computation

Quantum computation over continuous variables: Lloyd & Braunstein,
PRL 82, 1784 (1999).




Basics of continuous variable quantum computation
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Basics of continuous variable quantum computation

Single-mode transformations
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Basics of continuous variable quantum computation

Two-mode transformations

aﬁa2+ aa,

beam splitter

P P, quantum non—demolition
interaction




Physical model: trapped atoms in optical resonators

Collective spin operators:

N 1 4. A
X = E(aJ{az + alag),
A 1 e A
Y = Z(aiag = alaz),
~ 1N N

= 5(ala - 2la)

commutation relations [X, Y] =iZ, [V,Z] = iX, and [Z,X] = iY.

In a confined region near Y ~ —N/2, X and Z of spins have similar
properties as X and P of a harmonic oscillator.



Physical model: trapped atoms in optical resonators

Atoms in a single resonator:

(a) e

trap potential

Hamiltonian:
H=h (w2 -+ X22)

[Schleier-Smith et al, PRL 104, 073602 (2010); PRA 81, 021804(R)
(2010)]



Physical model: trapped atoms in optical resonators

Atoms in a single resonator:

H= hxz2

One-axis twisting.

By rotating the spins and switching the sign of the nonlinearity:
H = ny ()?2 # ?2)

A = hx <>?2+2)A<>

Two-axis countertwisting.



Coupling between different atomic samples

Two resonators in an interferometer:
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[T.O., PRL 119, 010502 (2017)]
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Coupling between different atomic samples

Atomic interactions:
A= b+ Te2)+x(2- 20,

where

6.3 R 1 </\>2 rR’

™ (1+T)2T \w/ A
_ 23 ReTs 1 (AT,
X T TR @x TR Ak \w) \Aa) ™

Leading to the QND interaction

":IQND = — h2X21 22 5



Coupling between different atomic samples

Power in a cavity:
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Detuning LAk =0.08T
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Coupling between different atomic samples

Power in a cavity:

(b)

log (P, /F,)
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Detuning LAk =0.5T
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Coupling between different atomic samples

Generalization to multiple resonators:
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Higher power Hamiltonians

Taking advantage of spin commutation rules
Expansion of commutators

_." _." 3 e A B 2
e IAAL —iBAt JIAAL IBAE _ e[A,B]At —{—O(At3)

Single-mode cubic Hamiltonian out of quadratic ones:

Two-mode Hamiltonian:

62 = ikt [(@ -8 %]

2 [z 2k, [ 42
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Higher power Hamiltonians

Resulting transformations of spin coherent and spin squeezed
states:

Calculations by Simon Brauer
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Conclusion and Summary

Challenges:
m Precise combination of cavities into interferometers
m Losses — connected with the dispersive interaction as
e~ N/ w)?(T/A)?
m Decoherence: phase of the atomic spins influenced by the
fluctuating light intensity.

Main advantages:

m Higher order Hamiltonians come naturally from the spin
commutators.

m For large atomic numbers: collective spin close to continuous
variables.

m Possibility to simulate dynamics of CV quantum systems.
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Conclusion and Summary

Summary:

m Basics of continuous variable quantum computation
m Physical model: trapped atoms in optical resonator
m Coupling between different atomic samples

m Higher power Hamiltonians

Thank you for your attention!
@ Palacky University
Olomouc
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