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Basics of continuous variable quantum computation

Quantum computation over continuous variables: Lloyd & Braunstein,
PRL 82, 1784 (1999).
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Basics of continuous variable quantum computation

[Xk ,Pk ] = i

X

X

X

X

X

X

1

2

3

4

5

n

1
2

3
f 

(X
  

, 
X

  
, 

X
  

..
..

 X
  

)
n

4 / 18



Basics of continuous variable quantum computation

Single-mode transformations

X  + P

P

P

2 2

3

P

X

2

5 / 18



Basics of continuous variable quantum computation

Two-mode transformations
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Physical model: trapped atoms in optical resonators

Collective spin operators:

X̂ =
1

2
(â†1â2 + â1â

†
2),

Ŷ =
1

2i
(â†1â2 − â1â

†
2),

Ẑ =
1

2
(â†1â1 − â†2â2)

commutation relations [X̂ , Ŷ ] = i Ẑ , [Ŷ , Ẑ ] = i X̂ , and [Ẑ , X̂ ] = i Ŷ .

In a confined region near Y ≈ −N/2, X̂ and Ẑ of spins have similar
properties as X̂ and P̂ of a harmonic oscillator.
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Physical model: trapped atoms in optical resonators

Atoms in a single resonator:

trap potential
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Hamiltonian:

H = ~
(
ωẐ + χẐ 2

)
[Schleier-Smith et al, PRL 104, 073602 (2010); PRA 81, 021804(R)
(2010)]
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Physical model: trapped atoms in optical resonators

Atoms in a single resonator:

Ĥ = ~χẐ 2

One-axis twisting.

By rotating the spins and switching the sign of the nonlinearity:

Ĥ = ~χ
(
X̂ 2 − Ŷ 2

)
Ĥ = ~χ

(
X̂ Ẑ + Ẑ X̂

)

Two-axis countertwisting.
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Coupling between different atomic samples

Two resonators in an interferometer:
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[T.O., PRL 119, 010502 (2017)]
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Coupling between different atomic samples

Atomic interactions:

Ĥ = ~
[
ω(Ẑ1 + TB Ẑ2) + χ(Ẑ1 − Ẑ2)2

]
,

where

ω =
26 · 3
π2

RB

(1 + TB)2

1

T

(
λ

w

)2 Γ

∆
R,

χ = −28 · 32

π4

RBTB

(1 + TB)3

1

TL∆k

(
λ

w

)4( Γ

∆

)2

R.

Leading to the QND interaction

ĤQND = −~2χẐ1Ẑ2.
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Coupling between different atomic samples

Power in a cavity:
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Coupling between different atomic samples

Power in a cavity:
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Coupling between different atomic samples

Generalization to multiple resonators:
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Higher power Hamiltonians

Taking advantage of spin commutation rules
Expansion of commutators

e−i Â∆te−i B̂∆te i Â∆te i B̂∆t = e [Â,B̂]∆t2
+O(∆t3)

Single-mode cubic Hamiltonian out of quadratic ones:

X̂ 3 =
i

4

[
(Ẑ 2 − Ŷ 2), (Ŷ Ẑ + Ẑ Ŷ )

]
+
i

4

[
(X̂ Ẑ + Ẑ X̂ ), (X̂ Ŷ + Ŷ X̂ )

]
+

1

4
X̂

Two-mode Hamiltonian:

X̂ 3
1 Ẑ2 =

1

4
X̂1Ẑ2 +

1

4

[
(Ẑ 2

1 − Ŷ 2
1 ),
[
Ẑ 2

1 , X̂1Ẑ2

]]
−1

4

[
X̂1Ẑ1 + Ẑ1X̂1,

[
X̂ 2

1 , Ẑ1Ẑ2

]]
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Higher power Hamiltonians

Resulting transformations of spin coherent and spin squeezed
states:

Calculations by Šimon Bräuer
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Conclusion and Summary

Challenges:

Precise combination of cavities into interferometers

Losses — connected with the dispersive interaction as
ε ∼ N(λ/w)2(Γ/∆)2

Decoherence: phase of the atomic spins influenced by the
fluctuating light intensity.

Main advantages:

Higher order Hamiltonians come naturally from the spin
commutators.

For large atomic numbers: collective spin close to continuous
variables.

Possibility to simulate dynamics of CV quantum systems.
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Conclusion and Summary

Summary:

Basics of continuous variable quantum computation

Physical model: trapped atoms in optical resonator

Coupling between different atomic samples

Higher power Hamiltonians

Thank you for your attention!

18 / 18


