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Motivation

Equations of motion: classical and quantum

Symmetric and asymmetric top, tennis racket
instability and spin squeezing

Euler top with a rotor, Lipkin-Meshkov-Glick
model and excited state quantum phase
transitions

m LMG Floquet time crystal

m Summary




m “The same equations have the same
solutions” [The Feynman Lectures on
Physics, Vol. Il, Chap. 12-1.]

m Similarity of equations governing spin
squeezing and free Euler top. Any deeper
relationship?

m Do classical analogues of the
Lipkin-Meshkov-Glick exist?




Motion of classical rigid body

Euler dynamic equations
Angular momentum changes by torque

dl

M
dt ’
in a rotating system
dA_dA .
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Motion of classical rigid body

Euler dynamic equations
For coordinate system fixed with respect to the rotating body, principal
axes of inertia:

Lo b, k=1,2,3.
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For a free top, M = O:



Classical motion of a top with a rotor
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Classical motion of a top with a rotor

Euler dynamic equations
Torque stemming from a rotor with axis is fixed with body:

- S dK
M = —Niotor = ———
oto dt
- d'K /,
M = ~Gr —w0x K
= —QXK,

since d’K/dt = 0 (the rotor changes neither the magnitude of rotation
nor the axis orientation with respect to the rigid body).
This leads to
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Classical motion of a top with a rotor

Euler dynamic equations
Components of L:
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Classical motion of a top with a rotor

Euler dynamic equations

Suitable to work with the total angular momentum J=L[+K,
- 1 1 K: K:
ho= Dhds+ 2 dy = 2y,
B h b I
- 1 1 K: K
J2 = e J3J1 4+ == 2 J —1'J3a
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Classical motion of a top with a rotor

Euler dynamic equations
These equations conserve kinetic energy and magnitude of the total
angular momentum,

Ebody =0, -j2 =0,

where
2 12 2
N = L4524 L5
body ok 2L 2L
P o= B+hB+4

Evolution bound to intersections of energy ellipsoid and a displaced
angular momentum sphere (J = L + K).
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Quantum motion and spin squeezing

Two bosonic modes 4 and b with total number of particles N.
Commutators [, 4T] = [b, b'] = 1.

Introduce operator J:

SRV /N) Y
B o= Xatheabhy
x 2 ’ —®—|a)
~ 1 N P
J, = ?(éTb—ﬁbT),
1
. 1 W SO
5 = \i(sts— bth), NS %®/® '
2 eeeee ) 2 © yo,

with N = 4t3 + bb.
CgminutatioAn relatiQns: A N A
U, b =idz, [y, Jz] =iy, and [J;, I] = iJ,.
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Quantum motion and spin squeezing

Assume a general quadratic Hamiltonian in the form
A\= ZXk/JAkJA/ + Zijk-
kI k

By a suitable rotation of the coordinate system:

A = i(XkJEJerJAk).
k=1

Components xy form the twisting tensor
[T.O., PRA 91, 053826 (2015)].
Coefficients xi: eigenvalues of the twisting tensor.

12 /50



Quantum motion and spin squeezing

The Heisenberg equations of motion for H = Zi:l (ijkz + Qkfk>:

dJ; U S p /
d—tl = (x2 = x3)(hSz + S3 o) + Q23 — Q32,
dJ> NV . ’
Y - (x3 —x1)(Js1 + h13) + Q31 — Q1 S,
dJs

dr = (a-— Xz)(JA1JA2 + JAzJA1) + QlJAg — QZJAl.
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Correspondence of the models

Equations of the Euler top and of the bosonic modes correspond for

1 Ky
e Q —
Xk 20 k I
or
Qy
le ey ——, o
« 2Xk 2Xk

For angular momenta Jo J,
and for energy

14 /50



Invariance with respect to transformation

of X k and lk

Dynamics unchanged if a constant is added to all eigenvalues of ¥, i.e.,

Xk = Xk + Xo-
Similarly for the moments of inertia:

1 1 1

he Ik * lo

and the angular momentum of the rotor:

Kk—>

1+
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Invariance with respect to transformation

of X k and lk

Consequence:

m For each Euler top with a rotor one
finds corresponding quadratic
collective spin Hamiltonian

A=35 <ij£ + Qkfk)
m For each quadratic collective spin
Hamiltonian

A= Zi:l <XkJ2 + ijk) one finds
corresponding Euler top with a rotor.

®
®
©
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Invariance with respect to transformation

of X k and lk

Proof: mass can be assembled such as to have arbitrary principal
moments of inertia /g, provided they are positive and satisfy the triangle
inequality /; < I + 1.

First condition: by a suitable choice of the additive constant yo making
all values xk negative.

If the resulting values /i violate the triangle inequality (say,

lh > h + k), choose Iy satisfying

bis + \//22/32 bl b )
KTy — s :

0<hh<
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Lipkin-Meshkov-Glick model

H. J. Lipkin, N. Meshkov, A.J. Glick, “Validity of many-body
approximation methods for a solvable model...” Nuclear Physics 62,

188 (1965).

m Hamiltonian
— e+ V(2 -+ W2+ B)

m /N fermions in two degenerate levels
whose energies differ by e.

m Exactly solvable (under some
conditions).

Harry (Zvi) Lipkin
(1921 - 2015)

m Toy model for quantum phase
transitions.
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Lipkin-Meshkov-Glick model

LMG corresponds to a diagonal twisting tensor Yy,

w4+ Vv 0 0
X = 0 w-v 0 ],
0 0 0

and a rotational vector © = (0,0, €).

m Any diagonal x can be expressed in a form equivalent to the
quadratic term of LMG.

m The LMG parameters are W = (x1 + x2)/2 — x3 and
V= (a1 - x2)/2.

m Any quadratic Hamiltonian is equivalent to LMG, provided the
linear term is along a principal axis.

m Any free top with a rotor along a principal axis corresponds to a
LMG.
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Lipkin-Meshkov-Glick model

(a) : (b)

. ‘N

© ' (d)

> «

(a), (b) and (c) correspond to a LMG.
(d) corresponds to a generalized LMG.
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Free symmetric top and spin squeezing by one-axis

twisting

Symmetric top with ; = k # I3 with no rotor, i.e., Kx = 0.

d-)l = —ng,
= Quy,
(.;}3 = 07
where
~ KB—=h 1 1
Q= = [ 3= A/ ).
h w3 (Il /3> }
In quantum domain:
Hoar = xJ?
with
1 1
= e
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Free symmetric top and spin squeezing by one-axis
twisting

Hoar = xJ2

M. Kitagawa and M. Ueda, One-axis-twisting (OAT) scenario of spin
squeezing, PRA 47, 5138 (1993).
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Free symmetric top and spin squeezing by one-axis

twisting

Pioneering experiments of OAT
Nonlinear atom interferometer surpasses classical precision limit
Gross et al., Nature 464, 1165 (2010)
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~ 400 atoms squeezed by ~ —8 dB in ~ 20 ms
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Free symmetric top and spin squeezing by one-axis

twisting

Pioneering experiments of OAT
Atom-chip-based generation of entanglement for quantum
metrology, Riedel et al., Nature 464, 1170 (2010)
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~ 1250 atoms squeezed by ~ —3.7 dB in ~ 10 ms
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Free symmetric top and spin squeezing by one-axis

twisting

“Surely, You Are Joking, Mr. Feynman!” (1985):

“... 1 was in the [Cornell] cafeteria and some guy, fool-
ing around, throws a plate in the air. As the plate went
up in the air | saw it wobble, and | noticed the red
medallion of Cornell on the plate going around. It was
pretty obvious to me that the medallion went around
faster than the wobbling. | had nothing to do, so I start
to figure out the motion of the rotating plate. | dis-
cover that when the angle is very slight, the medallion
rotates twice as fast as the wobble rate—two to one. It
came out of a complicated equation!”
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Free symmetric top and spin squeezing by one-axis

twisting

BUT: For a plate 1} = I, = I3/2, therefore

L—h
h

Q= w3 = w3,

with € being the wobble frequency with respect to the (rotating) plate.
The wobble frequency with respect to external observer is

f2+w3 = 2ws.

Wobbling is twice as fast as the rotation.
Opposite as in Feynman's story!

[See, e.g. B. F. Chao, Physics Today 42(2), 15 (1989).]
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Free asymmetric top, tennis-racket instability, and

two-axis countertwisting

Assume moments of inertia 1 < I3 < k, and Ky = 0. Angular velocities
evolve as

h—1h
w1 = | Waws3,
1
LKh—h
w2 = / w3wi,
b
h—b
W3 = w1
3

In quantum domain:

with
— 1 1
X+ = 2_/3_E
1 1
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Free asymmetric top, tennis-racket instability, and

two-axis countertwisting

In the special case of

 2hb
37 h+b

the Hamiltonian takes the form
Fract = x(2 — )

with

h =1
41

Two-axis countertwisting (TACT) scenario of spin squeezing.

28 /50



Free asymmetric top, tennis-racket instability, and
two-axis countertwisting

Fract = x(J2 — )

M. Kitagawa and M. Ueda, Two-axis-countertwisting (TACT) scenario
of spin squeezing, PRA 47, 5138 (1993).
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Free asymmetric top, tennis-racket instability, and

two-axis countertwisting

In classical physics

m Stable rotation around the highest and lowest moment of inertia
principal axes.

m Unstable rotation around the intermediate exis.

m Spectacular under zero-gravity conditions: Dzhanibekov effect
(Vladimir Dzhanibekov, on 1985 Soyuz T-13 mission).
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Symmetric top with a coaxial rotor, spin twisting

with coaxial rotation

VAR

Quantum motion:

A =xJ3 + Qs
LMG with V = 0.

Classical motion, wobble frequency:

- L — I K 1 1 K
Q —(3 1)ws + :< >J3

h h

]
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Symmetric top with a coaxial rotor, spin twisting

with coaxial rotation

m Wobbling frequency can be tuned by angular momentum of the
rotor.

m Example: by choosing K = —%/3(.03 one gets the wobbling exactly
as in Feynman's story.
m Two different quantum regimes:

m dominant rotation, |x|N < ||, nondegenerate spectrum
m dominant nonlinearity, |x|N > ||, degeneracies occur

m Corresponding classical regimes:

m dominant rotation, |K|/J > |1 — /|, only stable fixed points
m dominant nonlinearity, |K|/J < |1 — /|, unstable fixed points for
the rotational axis occur
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Symmetric top with a coaxial rotor, spin twisting
with coaxial rotation

|

Angular momentum geometry:
(a) dominant rotation, (b) dominant nonlinearity.
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Symmetric top with a perpendicular axis rotor,

twist-and-turn Hamiltonian

m Hamiltonian:

A=xJ+Qk,

m LMG with V = W.

m Twist-and-turn spin squeezing [T.O. PRA 91, 053826 (2015);
Muessel et al, PRA 92, 023603 (2015).]
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Symmetric top with a perpendicular axis rotor,

twist-and-turn Hamiltonian

Two-trap BEC regimes with quantum phase transition at |Q| = N|x|
(Leggett, 2001):

m Rabi regime, [Q2/x| > N (population oscillations),

m Josephson regime, 1/N < |Q/x| < N (oscillations with
self-trapping),

m Fock regime, /x| < 1/N.
(note N = 2J)
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Symmetric top with a perpendicular axis rotor,
twist-and-turn Hamiltonian

Q/(xJ) =0.2 (a), 1 (b), 1.7 (c), and 2 (d).
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Asymmetric top with a principal axis rotor, LMG

Hamiltonian:

I
I

3
Qs+ i,
k=1

or equivalently

Aing = eds + V(R = B) + W(R2 + B).
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Asymmetric top with a principal axis rotor, LMG

(a) : (b) : ©
=~ & <&

Classical questions:

m How does the rotational axis move with respect to the body?

m What are the fixed points of the rotational axis?

m What is their stability?
Quantum questions:

m What is the spectrum of the Hamiltonian?

m What are the singularities in the spectrum?

m What are the quantum phase transitions due to parameter
variations?
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Asymmetric top with a principal axis rotor, LMG

x3 =0, x1 = —10x2,
(a) Q3 =0, (b) [23] = 1.7J|x2|, (c) 23] = 2J|x2], (d) 23] = 2J[x1].
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Asymmetric top with a principal axis rotor, LMG

Stationary values of the angular momentum:

grad Eyoqy = A grad J?

leads to
LK1
Jl < )
(h—=h)Jhs+ hKs
LK>J
b = 3KoJ3

(/3 — /2)J3 + /2K37

and to the polynomial equation for Jz,

6
Z apd; =0,
n=0

with an explicit expression for coefficients a,.
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Asymmetric top with a principal axis rotor, LMG

! ©
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4 5

Qx/al Qx/aj
Energies of the stationary angular momenta and spectra of the
Hamiltonian with N = 40. (a), (d): x1 =4, x2 =3, x3 =2, (b), (e):
X1 = 0.25, X2 = 1, X3 = 2, (C), (f) X1 = 1, X2 = 4, X3 = 2.

Excited state quantum phase transitions
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Asymmetric top with a general axis rotor,

generalized LMG

Stationary values of the angular momentum:
grad Epogy = A grad ¥V

Points of touch of the energy ellipsoid and the angular momentum
sphere.
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Asymmetric top with a general axis rotor,

generalized LMG

E [arb. units]
E [arb. units]
E larb. units]

Ej, larb. units]

2 25 8 0 05 1

0 05 1

1.5 2 ' 25 3 0 1 2 ' 3 4
Qi Qs

The twisting tensor eigenvalues x1 = 4, x2 = 3, x3 = 2, the ratio of

components of vector Q are Q3 : Q5 : Q3 as follows, (a,d) 2:1:1, (b,e)
1:2:0, (c,f) 2:0:1.

15
Q/J
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Asymmetric top with a general axis rotor,

generalized LMG

@
o m
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Density of states [arb. units]
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w
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Contours of the equal energy (left) and density of states (right) with
(Xl, X2, X3) == (2, 0, —2) and (Q]_, Qz, Q3) = (0.5, 0.5, 0.5).
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LMG Floquet time crystals

Time crystals:

m Concept introduced by F. Wilczek (2012), processes in which
spontaneous breaking of time symmetry occurs

m Floquet time crystal: Hamiltonian periodic with 7 but dynamics
repeats with period n7; robust, long lasting

m Experiments 2017, Nature: trapped ions (Monroe group), diamond
NV centers (Lukin group). Disorder-induced many-body
localization.

m Floquet time crystal in “clean system” (no disorder induced MBL):
Russomanno et al, PRB 95, 214307 (2017). Switching parameters
of the LMG.
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LMG Floquet time crystals

Classical realization:

(d)
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LMG Floquet time crystals

Classical realization:
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Conclusion

Problems of classical physics
B gyroscope motion,
m satellite stabilization,
m Earth wobble, etc.
closely related to quantum problems
B spin squeezing,
m BEC self trapping,

m excited state quantum phase transitions, etc.
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Conclusion

“I went on to work out equations of wobbles.
Then | thought about how electron orbits start
to move in relativity. Then there's the Dirac
Equation in electrodynamics. And then quan-
tum electrodynamics. [...] It was effortless. It
was easy to play with these things. It was like
uncorking a bottle: Everything flowed out ef-
fortlessly. | almost tried to resist it! There was
no importance to what | was doing, but ulti-
mately there was. The diagrams and the whole
business that | got the Nobel Prize for came
from that piddling around with the wobbling
plate.”

“Surely, You Are Joking, Mr. Feynman!” (Norton, New York, 1985).
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Conclusion

b5

50 So

.
S,

GPS stabilized by momentum wheels

Bharadwaj et al, The diver with

Riedel et al, Nature 2010
a rotor, Ind. Math. 2016
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