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State of the Art: Entropy
Measurement of relative information between two probability distributions:

a) Shannon’s information entropy

b) Kullback-Leibler divergence

DKL(P ∣∣Q) = ∑

i

pi ln
pi

qi
= Ep [ln qi] −Ep [lnpi] = SP (Q) − S(P ), (1)

where SP (Q) is so-called cross-entropy and S(P ) is the entropy of distribution P . In case,
when P is similar to Q, this measure can be approximated by entropy difference

∆S(P,Q) = S(Q) − S(P ). (2)

c) Rényi’s information entropy

Hα =
1

1 − α
ln

⎛

⎝

k

∑

j=1
pαj

⎞

⎠

(3)
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d) Generalised dimension in multifractal systems is based on Rényi entropy

Dα = lim
l→0

Hα(P (l))

ln l
(4)

e) In imaging using lenses the resulting interference pattern is multifractal because in each point
we have contribution of all imaged objects, their part in focus as well as outside focus
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Figure 1: Image of a volume objects from Braat J.J.M., Janssen A.J.E.M., Derivation of various transfer
functions of ideal or aberrated imaging systems from the three-dimensional transfer function, JOSA
A, 2015
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Our approach for obtaining the definition of information measure

Task:

What is the contribution of each element to the total information of the
multidimensional discrete space?
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Solutions:

1) Point information gain (PIG, Γα,i):

Γα,i = Hα,i −Hα =
1

1 − α
ln

⎛

⎝

k

∑
j=1

pαj,i
⎞

⎠
−

1
1 − α

ln
⎛

⎝

k

∑
j=1

pαj
⎞

⎠
, (5)

It may be written as

Γα,i =
1

1 − α
ln

⎛

⎝

∑
k
j=1 p

α
j,i

∑
k
j=1 p

α
j

⎞

⎠
(6)

where α is the Rényi coefficient, k is the number of phenomena in the discrete
distribution, pj = nj/n and pj,i = nj,i/(n − 1) is the probability of occurrence of
the j-th phenomenon in the original distribution and in the distribution without
one element i of the j-th phenomenon, respectively.
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2) Point information gain entropy (PIE, Hα):

Hα =
k

∑
j=1

njΓα,j . (7)

3) Point information gain entropy density (PIED, Ξα):

Ξα =
k

∑
j=1

Γα,j . (8)
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Properties of Γα,i, Hα, and Ξα

Figure 2: Γα,i-transformations of the discretized Lévy (a), Cauchy (b), and Gauss (c) distribution at α =
0.99. The deviation from the monotonous dependency in the Gauss distribution is due to the digital
rounding.
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Figure 3: Γα,i-transformations of the discretized Lévy distribution at α = {0.5; 0.99; 1.5; 2.0; 2.5; 4.0}
(from a to f). The dependency of Γα,i on number of counts is nearly linear for α = 2.
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It may be shown using Taylor expansion that

Γ2,i ≈ C2(n) +
1

1 − 2
⎛

⎝

∑
k−1
j=1,j≠i n

2
j + (ni − 1)2

∑
k
j=1 n

2
j

− 1
⎞

⎠
≈ C2(n) +

2ni − 1
∑
k
j=1 n

2
j

, (9)
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Application of Γα,i, Hα, and Ξα to image processing and analysis

Figure 4: Standard images. Γ0.99,i-transformations of the texmos2.s512 image. Original image (a) and
information images calculated from the whole image (b), a cross around each pixel (c), and squares
of the side of 5, 15, and 29 px, respectively, with the centered examined pixel(d–f).
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Figure 5: Standard images. Histograms of Γ0.99,i-transformations of the texmos2.s512 image. Original
image (a), original Γ0.99,i-values calculated from the whole image (b), original Γ0.99,i-values
calculated from a cross whose shanks intersect in the examined pixel (c), Γ0.99,i-transformed
images calculated from whole image (d), and Γ0.99,i-transformed images calculated from a cross
around each pixel (e). Colors in the original and globally (whole image) transformed histograms
correspond to the intensity levels with the identical frequencies of occurrences in the original image.
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Point information gain entropy (PIE, Hα)

Hα =
k

∑
j=1

njΓα,j (10)

Point information gain entropy density (PIED, Ξα)

Ξα =
k

∑
j=1

Γα,j (11)
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Figure 6: Standard images. Hα-
and Ξα-spectra for seman-
tic information and different
syntactic surroundings of
a unifractal (texmos2.s512,
column a) and multifracal
(wd950112, column b) im-
age at α = {0.1, 0.2,..., 0.9,
0.99, 1.1, 1.2,..., 4.0}. The
maximum in the mulstifrac-
tal image is in all cases at
the position of α = 1 and
the inflection point at α =
2.
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State of the Art: Divergence

Measurement of relative information between two probability distribu-
tions:

The Point Divergence Gain (PDG, Ω(l→m)α ), where a discrete distribution P (i) is
replaced by a distribution

P (l→m) = {p
(l→m)
j }

k

j=1
= {

n1

n
, . . . ,

nl − 1
n

, . . . ,
nm + 1
n

, . . . ,
nk
n

} , (12)

which can be obtained from the original distribution P , where the occurrence of
the examined l-th phenomenon ( nl ∈ N + ) is removed and supplied by a point
of the occurrence of the m-th phenomenon (nm ∈ N0).
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Ω(l→m)α does not depend (contrary to the Γ(i)α ) on n but depends only on the
number of elements of each phenomenon j. Let us design the nominator ∑kj=1 n

α
j ,

which is constant and related to the original distribution (histogram) of elements
and to the parameter α, as Cα. It gives us the final form

Ω(l→m)α =
1

1 − α
ln [

(nl − 1)α − nαl + (nm + 1)α − nαm
Cα

+ 1]. (13)

For a particular distribution, Ω(l→m)α is a function only of the parameter α and
frequencies of occurrences of the phenomena nl and nm in the original distribution,
between which the exchange of the element occurs.
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Now we will consider the specific case α = 2 (collision entropy) for which it may
be written

Ω(l→m)2 = − ln [
2
C2

(nm − nl + 1) + 1] = − ln [
2
C2

(∆n(l→m) + 1) + 1]. (14)

For a specific difference ∆n(x→y) =D, which can be approximated by the 1st-order
Taylor sequence

Ω(l→m)2 ≈ − ln [
2
C2

(D + 1) + 1] − 2
2(D + 1) + C2

(∆n(l→m) −D)

= −
2

2D + 2 + C2
∆n(l→m) + 2D

2D + 2 + C2
− ln [

2D
C2

+ C2 + 1]. (15)

Which shows the connection between Ωα and simple subtraction. It will
be shown in the next presentation that in correct datasets Ωα may be
successfully replaced by simple subtraction, i.e. multifractality may be
neglected.
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Point Divergence Gain Entropy and Point Divergence Gain
Entropy Density

The resulting Ω(ai→bi)α then quantifies how much information is gained/lost, when,
at the i-th position, we replace the value ai for the value bi. A Point Divergence
Gain Entropy (PDGE, Iα) is defined as a sum of absolute values of all PDGs for
all pixels, i.e.,

Iα(Ia;Ib) =
n

∑
i=1

∣Ω(ai→bi)α ∣ =
k

∑
l=1

k

∑
m=1

nlm∣Ω(l→m)α ∣, (16)

where nlm denotes the number of present substitutions l →m, when we transform
Ia → Ib. The absolute value ensures that the contribution of the transformation
of a rare point to a frequent point (negative Ωα) and a frequent point to a rare
point (positive Ωα) do not cancel each other and both contribute to the resulting
PDGE.The PDGE can be understood as an absolute information change.
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Moreover, it is possible to introduce other macroscopic quantity – a Point
Divergence Gain Entropy Density (PDGED, Pα), where we do not sum over all
pixels, but only over all realized transitions l → m. Thus, the PDGED can be
defined as

Pα(Ia;Ib) =
k

∑
l=1

k

∑
m=1

χlm∣Ω(l→m)α ∣, (17)

where
χlm = {

1, nlm ≥ 1;
0, nlm = 0. (18)

We can understand the quantity PDGED as an absolute information change of
all realized transitions of phenomena m→ l.
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Applications

Each multidimensional dataset is characterised by a vector of Γα and / or Ξα
values. If we know the appropriate surrounding, we may use it for the calculation
of the Γα or Ξα value. If not, calculation from the whole image means that
we ignore the structure of the system while calculation using the cross method
comprises (blindly) all possible contexts. The resulting values are typically used as
initial variables in multivariate analysis. Weights (contributions) of each principle
component may be understood as spectral contribution of "measurable" variables
to the combined "internal" variable.

Dalibor Štys, Renata Rychtáriková ∣ Institute of Complex Systems, FFPW, U. South Bohemia 20/28



PIG, PIE, PIED, PDG, PDGE, PDGED

Figure 7: Left panel: Trajectory in principal component space of series of images of the chemical self-
organisation (Belousov-Zhabotinsky reaction) based on combination of whole and cross surroundings
for 13 Γα values for each colour channel. (2x39 values).
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In each physico-chemical textbook is introduced the idea of the chemical potential
µi and the activity ai which are the real measures of the contribution of each
molecule to total Gibbs energy G of the examined system. It is not from the first
sight controversial to write the total Gibbs energy as

G =
n

∑
i=0
µi, (19)

where index i determines the individual chemical component of n components
present in the mixture. We should, however, expand µi as

µi = µ0,i + νiRT ln(ai) = µ0,i + νiRT ln(ci ∗ γi) = µ0,i+

νiRT ln(ci) + νiRT ln(f(c1, c2...cn, T, p, V...),
(20)
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where µ0,i is the standard chemical potential of the i-th component of concentra-
tion ci, γi = f(c1, c2...cn, T, p, V...) is its activity coefficient, νi is the respective
stoichiometric coefficient, and R is the universal gas constant.

The activity coefficient is in principle a function of concentrations ci of all com-
ponents in the mixture and all other relevant state variables such as temperature
T , pressure p, volume V , etc. The replacement γi = 1 by ci is impossible, each
compound must be accounted together with its interactions with its surrounding.
Γi may be understood as the equivalent of µi and Ξi as the equivalent of γi in
structured system. In fact, however, the intermolecular interactions have both
asymmetry (= geometric directionality) and distance dependency and are from
certain point of view multifractal too.
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The generalized Point Divergence Gain Ω(l→m)α was originally used for character-
ization of dynamic changes in image series, namely in z-stacks of raw RGB data of
unmodified live cells obtained via scanning along the z-axis using video-enhanced
digital bright-field transmission microscopy.
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Figure 8: Left panel: Clustering of a z-stack of grayscale microscopic images of a microring obtained using a
fluorescence mode.
Right panel: Clustering of a z-stack of grayscale microscopic images in diffraction mode.
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Figure 9: In the real microscopic image of multiple objects the transfer function is represented by multiple
self-simular responses from multiple different objects. This is the origin of multifractality in the
image. The multifractality originating from all imaged objects is to a different extent present in
all parts of the image. The Ω(l→m)α = 0 may, in some positive cases, represent the location of
the object and its extreme value (darkest or brightest voxel) is the centroid of the response of the
electromagnetic field to the interaction with the objects, the electromagnetic centroid.
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Conclusions

PIG (Γα,i), PIE (Hα), PIED (Ξα), PDG Ω(l→m)α , PDGE Iα and PDGED Pα are
useful tools for classification of multidimensional datasets.
They have potential in image enhancement, feature extraction, image sorting,
data compression etc.
And there is a suspicion that the non-equilibrium thermodynamics may be more
naturally established using them, but that would mean to introduce them to the
equilibrium thermodynamics first.
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Thank you for your attention!
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