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Alice sends a secret message to Bob
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Alice sends a secret message to Bob

through a channel observed by Eve.
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Conditions for Perfect Secrecy

Alice sends a secret message to Bob
through a channel observed by Eve.

Alice Bob
avdoygv . avdoygv
+ Eve -
message —IIin—jpnawhzna Q nawhzna—gZZD-» message
J nawhzna
=bonjour+11ixksi?
=message+avdoygv?

She encrypts the message with a secret key
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Conditions for Perfect Secrecy

Alice sends a secret message to Bob
through a channel observed by Eve.

Alice Bob
avdoygv . avdoygv
+ Eve -
message —IIin—jpnawhzna Q nawhzna—gZZD-» message
J nawhzna
=bonjour+11ixksi?
=message+avdoygv?

She encrypts the message with a secret key
as long as the message.



Alice sends quantum objects to Bob
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Quantum Key Distribution

Alice sends quonTum objects to Bob

(Alice Eve (Bob
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Eve’s Measurenents
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Quantum Key Distribution

Alice sends quonTum objects to Bob
(Alice

(;

kfsbgjcxlzt

Eve (Bob

0fsFgjcxlzU

Eve’s Measurenents = measurable perturbations

= secret key generation



Single Photon QKD

» Long Range (~ 100 km)
» Low rate (kbit/s)
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Unconditionnally Secure Systems ...

Single Photon QKD

» Long Range (~ 100 km)
» Low rate (kbit/s) maybe a few Mbit/s in the long run
Classical One-Time-Pad

» Very Long Range (Paris—-Olomouc)
» Not so small rate :
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Unconditionnally Secure Systems ...

Single Photon QKD

» Long Range (~ 100 km)
» Low rate (kbit/s) maybe a few Mbit/s in the long run
Classical One-Time-Pad

» Very Long Range (Paris—-Olomouc)
» Not so small rate :

e 1 CD /year =180 bits/s
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Unconditionnally Secure Systems ...

Single Photon QKD

» Long Range (~ 100 km)

» Low rate (kbit/s) maybe a few Mbit/s in the long run
Classical One-Time-Pad

» Very Long Range (Paris—-Olomouc)

» Not so small rate :

e 1 CD /year =180 bits/s
e 1iPod (160 GB)/ year = 40 kbit/s

Next
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Unconditionnally Secure Systems ...

Single Photon QKD

» Long Range (~ 100 km)

» Low rate (kbit/s) maybe a few Mbit/s in the long run
Classical One-Time-Pad

» Very Long Range (Paris—-Olomouc)

» Not so small rate :

e 1 CD /year =180 bits/s
e 1iPod (160 GB)/ year = 40 kbit/s

» But the data has to stay here
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» Medium Range :~ 25 km
» Medium Rate :~ a few kbit/s
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» Medium Range :~ 25 km

» Medium Rate :~ a few kbit/s
» Much less matfure
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...and Continuous Variable

» Medium Range :~ 25 km ; 80 km soon ?
» Medium Rate :~ a few kbit/s ; Mbits/s soon ?
» Much less mature = Much room for improvements
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Field quadratures

Classical field

Electromagnetic field
described by Q4 and Py
E(t) = Q4 cos wt + Py sin wt P
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Field quadratures

Classical field

Electromagnetic field
described by Q4 and Py4
E(t) = Q4 cos wt + Py sin wt

Quantum description
Q and P do not commute:

[Q, P] o ifi.

Add a

“quantum noise”:

Q=QA+BQ etP =P+ Bp
Heisenbberg = ABoABp > 1
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Photocurrents:

i o (Eosc.(t) = Egnal(t))?

o Eosc.(f)2 * 2Eosc. () Esignal(t)
after substraction:

01 oc  Eosc.(t)Esigna(t)

o

Eosc.(Qsignai €08 @ + Pigno sin @)
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At the end of XXth century it was obvious that a

generalization of QKD to continuous variables could be
inferesting.

Problem : discrete bits # confinuous variable
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XX century CVQKD

Next

At the end of XXth century it was obvious that a

generalization of QKD to continuous variables could be
interesting.

Problem : discrete bits # continuous variable

Adapting BB84?

Mark Hillery, "Quantum Cryptography with
Squeezed States”,
arXiv:quant-ph/9909006/PRA 61 022309




Intro. Cont. Var. Information Theory CVQKD XP Next
[e]e] o] °
[o]e] [} [e]e] 00 [e]

XX century CVQKD

At the end of XXth century it was obvious that a
generalization of QKD to continuous variables could be
interesting.

Problem : discrete bits # continuous variable

Natural modulation + information theory!
Nicolas J. Cerf, Marc Lévy, Gilles Van
Assche : "Quantum distribution of Gaussian
keys using squeezed states”,
arXiv:quant-ph/0008058/PRL 63 052311



Quite frequent discussion with discrete quantum
cryptographers :

DQC : How do you encode a0 ora 1in CVQKD?

Me : | don’t care, C. E. Shannon tells me
"We>0,dcode ofrate] —e.”
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Where are the bits ?

Quite frequent discussion with discrete quantum
cryptographers :

DQC : How do you encode aQora 1in CVQKD?

Me : Gilles/Jérbme/Anthony/Sébastien developed
a really efficient code, using sliced
reconciliation/LDPC matrices/IR® rotations and
octonions. Only he knows how it works.

Next
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Where are the bits ?

Quite frequent discussion with discrete quantum
cryptographers :

DQC : How do you encode aQora 1in CVQKD?

Me : Gilles/Jérbme/Anthony/Sébastien developed
a really efficient code, using sliced
reconciliation/LDPC matrices/IR® rotations and
octonions. Only he knows how it works.

Computation of the ideal code performance is easy | )




Modulation Gaussienne

Availaible informationin a continuous signal

Signal Envoyé
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They’re hidden

Availaible informationin a continuous signal

Modulation Gaussienne

Signal Envoyé

Differential entropy

H(X) = =), P(x) dxlog P(x) dx
~ [dxP(x)logP(x)— logdx

——
H(X) constante
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They’re hidden

Availaible informationin a continuous signal

with noise ?
Modulation Gaussienne

Signal Envoyé

Differential entropy

H(X) = =), P(x) dxlog P(x) dx
~ [dxP(x)logP(x)— logdx

N——
H(X) constante

H(X) = log AX + constante

v
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They’re hidden

Availaible informationin a continuous signal

Modulation Gaussienne

Signal Envoyé

Differential entropy

H(X) = =), P(x) dxlog P(x) dx
~ [dxP(x)logP(x)— logdx

~——

H(X) constante

v

with noise ?

Bruit Mesuré

Mutual information
I(X:Y)=H(Y) - H(Y|X)

= H(Y) - H(YIX)
AY?

=1]
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Heisenberg :

ABEVeABBob >1
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Alice&Bob evaluate Ige
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Alice&Bob evaluate I I

Alice&Bob share Iz identical bits.
Eve knows Igye.
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Quantum Key Distribution Protocols

Channel Evauation (noise measure)
Alice&Bob evaluate Ig ¢

Reconciliation (error correction)
Alice&Bob share Iz, identical bits.

Eve knows Ige.

Privacy Amplification
Alice&Bob share Iz — Irye identical bits.
Eve knows ~ 0.
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Theoretical Progresses in the last 10 years

We went from a protocol
» using squeezed states,
» insecure beyond 50% losses (15 km),

» proved secure against Gaussian individual attack
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Theoretical Progresses in the last 10 years

We went from a protocol
» using squeezed states,
» insecure beyond 50% losses (15 km),

» proved secure against Gaussian individual attack

to a protocol
» using coherent states

Next
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We went from a protocol
» using squeezed states,
» insecure beyond 50% losses (15 km),

» proved secure against Gaussian individual attack
to a protocol

» using coherent states
» with no fundamental range limit
» proved secure against collective attacks
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Theoretical Progresses in the last 10 years

We went from a protocol
» using squeezed states,
» insecure beyond 50% losses (15 km),
» proved secure against Gaussian individual attack
to a protocol
using coherent states
with no fundamental range limit
proved secure against collective attacks
likely secure against coherent aftacks
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Theoretical Progresses in the last 10 years

We went from a protocol
» using squeezed states,
» insecure beyond 50% losses (15 km),
» proved secure against Gaussian individual attack
to a protocol
using coherent states
with no fundamental range limit
proved secure against collective attacks
likely secure against coherent aftacks
and experimentally working
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e Experimental systems

@ Ist and 2nd generation demonstrators
@ Key-Rates

@ Integration with classical cryptography
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1st generation demonstrator

F. Grosshans et. al., Nature (2003) & Brevet US

m

Key rate

» /5 kbit/s 3.1 dB (51%) losses
» 1.7 Mbit/s without losses
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Integration with classical cryptography

Secret Keys

Encrypted user traffic

Secret Keys

SEQURE interface

QKDTL

Q3P

KEY
STORE

Q3P

XP
00

SEQURE interface

QKDTL

Quantum device

Q3P

KEY
STORE

.q-------...‘

Cuantum device
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Integration with classical cryptography
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» Finite size effects

» Link with post-selection based protocols (. de,
» Side-channels and quantum hacking
» Other cryptographic applications
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