Bilattices in computer science

Manuel Ojeda-Aciego

INVESTMENTS IN EDUCATION DEVELOPMENT

BILATTICES, RELATED STRUCTURES, AND COMPUTER SCIENCE APPLICATIONS

Manuel Ojeda-Aciego

Dept. Applied Mathematics, University of Málaga, Spain

Olomouc, Sep 6, 2012

OUTLINE

2 BILATTICES

- Mathematics
- Logic

3 Residuated multilattices

- Homomorphisms
- Congruences
- Filters

WHY BILATTICES? (IN A NUTSHELL)

A bilattice is a doubly-ordered set satisfying certain properties which has applications in the following lines:

- Kripke-style truth-revision theory (underlying structure)
- Modal logic (modal operators parameterised by bilattice)
- Algebraic study of bilattice-based logics
- Logic programming (many-valuedness, wfs)
- Semantics of natural language questions
- Open constraint programming
- Uncertainty modelling
- Fuzzy logic

Some historical remarks

- Many inference systems in AI can be unified within a many-valued framework whose truth-values space is a *bilattice*
- Bilattices were proposed by Ginsberg in 1988 as a uniform framework for inference in AI which, besides the order associated with the degree of truth, contains another natural ordering
- Later, Fitting considered applications to LP, to philosophical problems such as the theory of truth, and studied their relationship with a family of many-valued systems generalizing Kleene's three-valued logics
- Other applications include the analysis of entailment, implicature and presupposition in natural language, the semantics of natural language questions, epistemic logic,

More historical remarks

- In the nineties, bilattices were also investigated by Arieli and Avron, both from an algebraic and from a logical point of view
- Logical bilattices were used to to deal with paraconsistency and non-monotonic reasoning in AI
- Lallouet gave a framework for Bilattice-valued Constraint Programming which allows to represent incomplete/conflicting information and to combine constraints with a set of operators
- Cornelis *et al* used bilattices as a framework for representing uncertain and potentially conflicting information, as in *L*-fuzzy set theory
- Rivieccio made an algebraic study of bilattice-based logics

MOTIVATION BILATTICES RESIDUATED MULTILATTICES FUTURE WORK

DIFFERENT APPROACHES TO BILATTICES

- From Mathematics
 - Algebraic structure and properties
 - General constructions
- From Logic
 - Semantics of proof systems
 - Paraconsistency
- From Computer Science
 - Generalized logic programming
 - Uncertainty modeling

MOTIVATION BILATTICES RESIDUATED MULTILATTICES FUTURE WORK

Mathematics Logic

OUTLINE

2 BILATTICES

- Mathematics
- Logic

3 Residuated multilattices

- Homomorphisms
- Congruences
- Filters

Mathematics Logic

BILATTICES

AND RELATED STRUCTURES

DEFINITIONS

- A prebilattice is a tuple (B, \leq_t, \leq_k) , such that both (B, \leq_t) and (B, \leq_k) are bounded lattices
- A bilattice is a tuple (B, ≤t, ≤k, ¬), such that (B, ≤t, ≤k, ¬) is a prebilattice and ¬ is an involutive negation wrt ≤t on B.

NOTATION

- t, f (resp. \top, \bot) are top and bottom elements wrt \leq_t (resp. \leq_k)
- \vee and \wedge (resp. \otimes, \oplus) are join and meet wrt \leq_t (resp. \leq_k)

MATHEMATICS LOGIC

BILATTICES

PLAYING WITH NEGATIONS

LEMMA

•
$$\neg (a \land b) = \neg a \lor \neg b$$
 $\neg (a \lor b) = \neg a \land \neg b$
 $\neg (a \otimes b) = \neg a \otimes \neg b$ $\neg (a \oplus b) = \neg a \oplus \neg b$

$$\bullet \ \neg f = t, \quad \neg t = f, \quad \neg \bot = \bot, \quad \neg \top = \top$$

LEMMA

If – is a conflation operator (a negation wrt \leq_k on B), then

•
$$-(a \wedge b) = -a \wedge -b$$
 $-(a \vee b) = -a \vee -b$
 $-(a \otimes b) = -a \oplus -b$ $-(a \oplus b) = -a \otimes -b$

 $\bullet \ -f=f, \quad -t=t, \quad -\bot=\top, \quad -\top=\bot$

Mathematics Logic

BILATTICES

Additional properties

DEFINITIONS

- A (pre)bilattice B satisfies the interlacing condition if and only if sup_t, inf_t, sup_k and inf_k are monotonic with respect to both ≤_t and ≤_k In such a case we say that B is interlaced
- A (pre)bilattice is distributive if all the (twelve) possible distributive laws concerning ∧, ∨, ⊗, ⊕ hold

THEOREM (FITTING)

Every distributive (pre)bilattice is interlaced

LEMMA

If B is interlaced, then $\bot \land \top = f$, $\bot \lor \top = t$, $f \otimes t = \bot$, $f \oplus t = \top$

MATHEMATICS LOGIC

CONSTRUCTING BILATTICES The product

DEFINITION

Given two bounded lattices (L_1, \leq_1) and (L_2, \leq_2) , $L_1 \odot L_2$ denotes the pre-bilattice $(L_1 \times L_2, \leq_t, \leq_k)$ where:

- $\bullet \ \langle a,b\rangle \leq_t \langle c,d\rangle \quad \text{if and only if} \quad a\leq_1 c \ \text{ and } \ b\geq_2 d$
- $\langle a,b\rangle \leq_k \langle c,d
 angle$ if and only if $a\leq_1 c$ and $b\leq_2 d$

If $L_1 = L_2 = L$ and \Box and \Box are the join and meet in L, then in $L \odot L$: $(a,b) \lor (c,d) = (a \sqcup c, b \sqcap d)$ $(a,b) \land (c,d) = (a \sqcap c, b \sqcup d)$ $(a,b) \oplus (c,d) = (a \sqcup c, b \sqcup d)$ $(a,b) \otimes (c,d) = (a \sqcap c, b \sqcap d)$ $\neg (a,b) = (b,a)$

Furthermore, if 1 and 0 are the top and bottom elements of L, then

$$\perp = (0,0), \quad \top = (1,1), \quad t = (1,0), \quad f = (0,1)$$

CONSTRUCTING BILATTICES The product

THEOREM

- $L \odot L$ is always interlaced
- $L \odot L$ is distributive if so is L
- Every distributive bilattice is isomorphic to $L \odot L$ for some complete distributive lattice
- \bullet Every interlaced bilattice is isomorphic to $L\odot L$ for some complete lattice

If $(x, y) \in L \odot L$, then x represents the information for some assertion, and y is the information against it

CONSTRUCTING BILATTICES THE INTERVALS

DEFINITION

Given a complete lattice (L, \leq_L) , we define $(\mathcal{I}(L), \leq_t, \leq_k)$ by:

•
$$\mathcal{I}(L) = \{[a, b,] \mid a \leq_L b\}$$

•
$$[a,b] \leq_t [c,d]$$
 if and only if $a \leq_L c$ and $b \leq_L d$

 $\bullet \ [a,b] \leq_k [c,d] \quad \text{if and only if} \quad a \leq_L c \ \text{ and } \ b \geq_L d$

The intuition is that intervals represent uncertain measures; \leq_t compares degree of truth by 'shifting rightwards'; \leq_k compares approximations by 'interval narrowing'

Note the similarity with the product construction.

Mathematics Logic

CONSTRUCTING BILATTICES THE INTERVALS

Let (L,\leq_L) be a complete lattice with an involutive negation -

- A conflation operator can be defined on $L \odot L$ by -(a,b) = (-b,-a)
- An element $(a,b) \in L \odot L$ is **coherent** if $(a,b) \leq_k -(a,b)$

THEOREM

 $\mathcal{I}(L)$ is isomorphic to the substructure of the coherent elements of $L \odot L$

MATHEMATICS LOGIC

Abstract approach to logic

DEFINITION

A consequence relation in a language L is a relation \vdash between 2^L and L satisfying

```
Reflexivity \varphi \vdash \varphi
```

```
MONOTONICITY If \Gamma \vdash \varphi and \Gamma \subseteq \Gamma', then \Gamma' \vdash \varphi
```

TRANSITIVITY If $\Gamma \vdash \varphi$ and $\Gamma, \varphi \vdash \psi$, then $\Gamma \cup \Gamma' \vdash \psi$

DEFINITION

A **propositional logic** is a pair (L, \vdash) where L is a *propositional* language and \vdash is a *consequence relation* for L.

Mathematics Logic

MATRICES AND SEMANTICS

DEFINITIONS

A matrix for L us a triple $\mathcal{M} = (\mathcal{V}, \mathcal{D}, \mathcal{O})$ where

 $\mathcal V$ is the set of *truth-values*

 ${\mathcal D}$ is the set of *designated elements* of ${\mathcal V}$

 $\mathcal O$ are the *truth-tables* (interpretations) of the connectives in L

A matrix allows for defining the standard semantic notions of valuation and model.

 $\Gamma \vdash_{\mathcal{M}} \varphi \text{ iff } mod_{\mathcal{M}}(\Gamma) \subseteq mod_{\mathcal{M}}(\varphi)$

THEOREM

The relation $\vdash_{\mathcal{M}}$ is a consequence relation on L and, hence, $\langle L, \vdash_{\mathcal{M}} \rangle$ is a propositional logic (induced by \mathcal{M})

Mathematic Logic

LOGICS VIA BILATTICES

Matrices defined on bilattices generate interesting logics because:

- It is possible to incorporate information-based considerations.
- There are ways of representing different levels of inconsistency and incompleteness.
- When defining a bilattice-based logic:
 - The interpretations of the connectives are usually defined by the basic $\leq_t \text{-ordering}$
 - The choice of the designated elements in a multiple-valued setting is usually done as a filter or, even, a prime (ultra-)filter in ${\cal V}$
 - Dual notions for lattice filters and prime-filters are needed

MOTIVATION BILATTICES RESIDUATED MULTILATTICES FUTURE WORK

Mathematics Logic

LOGICAL BILATTICES BIFUTERS

DEFINITION

- Let $(B, \leq_t, \leq_k, \neg)$ be a bilattice
- **()** A **bifilter** of B is a nonempty subset $F \subseteq B$ such that

 - $a \otimes b \in F \text{ iff } a \in F \text{ and } b \in F$
- A bifilter F is prime if the following holds:
 - $a \lor b \in F$ iff $a \in F$ or $b \in F$
 - $a \oplus b \in F \text{ iff } a \in F \text{ or } b \in F$

Mathematics Logic

LOGICAL BILATTICES

DEFINITION

A logical bilattice is a pair (B,F) where B is a bilattice and F is a prime bifilter of B

• Logical bilattices can be used for defining logics similarly to the way Boolean algebras and prime filters are used.

THEOREM

Let (B, F) be a logical bilattice. There exists a unique homomorphism $h \colon B \to \mathcal{FOUR}$ such that $h(b) \in \{t, \top\}$ if and only if $b \in F$

- Every complete distributive lattice can be turned into a logical bilattice
- Every distributive bilattice can be turned into a logical bilattice

Mathematics Logic

LOGICAL BILATTICES

DEFINITION

- Let B be a bilattice. Consider
 - $D_k(B) = \{x \mid x \ge_k t\}$ (designated values of B wrt \le_k)
 - $D_t(B) = \{x \mid x \ge_t \top\}$ (designated values of B wrt \le_t)

 ${\cal D}_k({\cal B})$ seems to be a particularly natural candidate to play the role of the designated values of ${\cal B}$

LEMMA

- $t, \top \in D_k(B) \cap D_t(B)$
- $f, \perp \notin D_k(B) \cup D_t(B)$
- $D_k(B) \cup D_t(B)$ is included in any bifilter
- If $D_k(B) = D_t(B)$, and this holds for interlaced bilattices, then this is the smaller bifilter

MOTIVATION BILATTICES RESIDUATED MULTILATTICES FUTURE WORK

Mathematics Logic

RESIDUATED BILATTICES

- Recently, Jansana and Rivieccio introduced a new product bilattice construction, allowing to obtain a bilattice with two residuated pairs as a certain kind of power of a biresiduated lattice
- Actually, they use a slightly more general notion of biresiduated lattice, in that the existence of a unit element for the product is not required

Mathematics Logic

RESIDUATED BILATTICES

The construction

DEFINITIONS

• Given a biresiduated lattice $(L, \Box, \sqcup, \cdot, \backslash, /)$ the product biresiduated bilattice is defined as $L \odot L$ together with the operations \supset, \subset given, for all $(a_1, a_2), (b_1, b_2) \in L \times L$, by

$$(a_1, a_2) \supset (b_1, b_2) = (a_1 \setminus b_1, b_2 \cdot a_1) (a_1, a_2) \subset (b_1, b_2) = (a_1/b_1, b_1 \cdot a_2)$$

 \bullet The following derived operations are crucial. For all $\alpha,\beta\in L\times L$

$$\alpha \to \beta = (\alpha \supset \beta) \land (\neg \alpha \subset \neg \beta)$$
$$\alpha \leftarrow \beta = \neg \alpha \to \neg \beta$$
$$\alpha * \beta = \neg (\beta \to \neg \alpha)$$

RESIDUATED BILATTICES

Any product residuated bilattice contains indeed two residuated pairs

Theorem

Let $L\odot L$ be a product biresiduated bilattice. Then, for all $\alpha,\beta,\gamma\in L\times L$,

$$\alpha \ast \beta \leq_t \gamma \quad \textit{iff} \quad \beta \leq_t \alpha \rightarrow \gamma \quad \textit{iff} \quad \alpha \leq_t \gamma \leftarrow \beta$$

Bou and Rivieccio proved that the lattice of congruences of any interlaced bilattice $L \odot L$ is isomorphic to that of L. The same holds in this more general context.

Homomorphisms Congruences Filters

OUTLINE

MOTIVATION

2 BILATTICES

- Mathematics
- Logic

3 Residuated multilattices

- Homomorphisms
- Congruences
- Filters

MULTILATTICES

• Multisupremum (Multisup): minimal element of the set of upper bounds.

DEFINITION

A poset, (M, \leq) , is a **join-multisemilattice** if, for all $a, b, x \in M$,

 $a \leq x \text{ and } b \leq x \text{ implies that there exists } z \in \mathrm{Multisup}(\{a,b\}) \text{ such that } z \leq x$

Dual property defines the concept of meet-multisemilatice.

DEFINITION

A **multilattice** is a poset (M, \leq) which is a meet and a join-multisemilattice.

Homomorphisms Congruences Filters

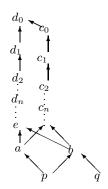
Full multisemilattices and multilattices

DEFINITION

- A join-multisemilattice (M, \leq) is full if, for all $a, b \in M$, Multisup $(\{a, b\}) \neq \emptyset$.
- A meet-multisemilattice (M, \leq) is full if, for all $a, b \in M$, Multiinf $(\{a, b\}) \neq \varnothing$.
- A multilattice is full if both multisemilattices are full.

Homomorphisms Congruences Filters

EXAMPLES



- Any finite poset is a multilattice.
- The poset in the figure is a meet-multisemilattice but not a join-multisemilattice.
- The set of words in a universal language with the subword relation is a multilattice.

MOTIVATION BILATTICES RESIDUATED MULTILATTICES FUTURE WORK

Iomomorphisms Congruences Filters

POCRIMS

DEFINITION

A tuple $(A, *, \rightarrow, 1, \leq)$ is said to be a *partially ordered commutative residuated integral monoid*, briefly a **pocrim**, if the following properties hold:

- (A, *, 1) is a commutative monoid.
- (A, \leq) is a partially ordered set in which 1 is the maximum.
- The residuum property holds. That is, for every $a, b, c \in A$,

$$a * b \leq c$$
 if and only if $a \leq b \rightarrow c$

Iomomorphisms Congruences Vilters

RESIDUATED MULTILATTICES

DEFINITION

A tuple $(M, \sqcup, \sqcap, *, \to, 1)$ is said to be a **residuated multilattice** if the following properties hold:

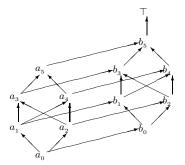
- (M, *, 1) is a commutative monoid.
- (M, \sqcup, \sqcap) is a multilattice in which 1 is the maximum.
- The residuum property holds.

MOTIVATION BILATTICES RESIDUATED MULTILATTICES FUTURE WORK FILTER

Homomorphisms Congruences Filters

EXAMPLE

Let $A = \{a_i \mid 0 \le i \le 5\}, B = \{b_i \mid 0 \le i \le 5\}$ and $C = \{b_2, b_3, b_4, b_5\}$



 $x * y = \begin{cases} x & \text{if } y = \top \\ y & \text{if } x = \top \\ b_2 & \text{if } x, y \in C \\ b_0 & \text{if } x \in B \smallsetminus C, y \in B \\ b_0 & \text{if } x \in B, y \in B \smallsetminus C \\ a_0 & \text{otherwise.} \end{cases} \qquad \qquad x \to y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{if } x = \top \\ a_5 & \text{if } x \in B, y \in A \\ b_1 & \text{if } x \in C \\ a \text{and } y \in B \smallsetminus C \\ b_5 & \text{otherwise.} \end{cases}$

Homomorphisms Congruences Filters

Homomorphisms between residuated multilattices

DEFINITION

Let $h\colon M\to M'$ be a map between residuated multilattices, h is said to be a homomorphism if, for all $a,b\in M$,

•
$$h(a * b) = h(a) * h(b)$$
, $h(a \rightarrow b) = h(a) \rightarrow h(b)$

• $h(a \sqcup b) \subseteq h(a) \sqcup h(b)$, and $h(a \sqcap b) \subseteq h(a) \sqcap h(b)$

As a consequence the following conditions hold:

•
$$h(1) = 1$$

•
$$h(a \sqcup b) = (h(a) \sqcup h(b)) \cap h(M)$$
 and
 $h(a \sqcap b) = (h(a) \sqcap h(b)) \cap h(M)$

MOTIVATION BILATTICES RESIDUATED MULTILATTICES FUTURE WORK HOMOMORPHISMS CONGRUENCES FILTERS

Congruences on residuated multilattices

DEFINITION

A **congruence** on M is any equivalence relation \equiv such that, for all $a, b, c \in M$, if $a \equiv b$, then

•
$$a * c \equiv b * c$$
, $a \to c \equiv b \to c$, $c \to a \equiv c \to b$,

•
$$a \sqcup c \cong b \sqcup c$$
, and $a \sqcap c \cong b \sqcap c$,

Theorem

Given a homomorphism $h: M \to M'$, the kernel relation, defined as $a \equiv b$ if and only if h(a) = h(b), is a congruence.

THEOREM

If \equiv a congruence on M, then the mapping $p: M \to M/\equiv$ such that p(x) = [x] is a surjective homomorphism.

Homomorphisms Congruences Filters

FILTERS IN POCRIMS

DEFINITION

Given $\mathcal{A} = (A, \leq, *, \rightarrow, 1)$ a pocrim, $\emptyset \neq F \subseteq A$ is said to be a **filter** if the following conditions hold:

- I) if $a, b \in F$, then $a * b \in F$
- II) if $a \leq b$ and $a \in F$, then $b \in F$.

On the other hand, ${\boldsymbol{F}}$ is said to be a **deductive system** if

- I) $1 \in F$ and
- II) $a \to b \in F$ and $a \in F$ imply $b \in F$.

Both definitions are equivalent.

Homomorphisms Congruences Filters

FILTERS IN MULTILATTICES

DEFINITION

Let (M, \sqcup, \sqcap) be a multilattice. A non-empty set $F \subseteq M$ is said to be a filter if the following conditions hold:

- $i, j \in F \text{ implies } \emptyset \neq i \sqcap j \subseteq F.$
- $a \in F \text{ implies } i \sqcup a \subseteq F \text{ for all } a \in M.$
- **③** For all $a, b \in M$, if $(a \sqcup b) \cap F \neq \emptyset$ then $a \sqcup b \subseteq F$.

Homomorphisms Congruences Filters

FILTERS IN RESIDUATED MULTILATTICES

DEFINITION

A non-empty set in a residuated multilattice is going to be called

- deductive system if it is a filter in the underlying pocrim
- m-filter if it is a filter in the underlying multilattice
- **r-filter** if it is both a deductive system and an *m*-filter

EXAMPLE

Let $A = \{a_i \mid 0 \le i \le 5\}$, $B = \{b_i \mid 0 \le i \le 5\}$ and $C = \{b_i \mid 2 \le i \le 5\}$

- $C \cup \{\top\}$ is a deductive system but it is not an *m*-filter because $b_3 \sqcap b_4 = \{b_1, b_2\} \not\subseteq C$.
- $\{b_5, \top\}$ is an *m*-filter that is not a deductive system because $b_5 * b_5 = b_2 \notin \{b_5, \top\}.$
- $B \cup \{\top\}$ is both a deductive system and an *m*-filter.

Homomorphisms Congruences Filters

FILTERS IN RESIDUATED MULTILATTICES

THEOREM

Let $h: M \to M'$ be a homomorphism between residuated multilattices. Then $h^{-1}(1) = \{x \in M \mid h(x) = 1\}$ is an *r*-filter of M, the kernel filter.

THEOREM

Let M be a residuated multilattice, 1 the top element and \equiv a congruence. The equivalence class [1] is an *r*-filter.

OUTLINE

MOTIVATION

2 BILATTICES

- Mathematics
- Logic

3 Residuated multilattices

- Homomorphisms
- Congruences
- Filters

FUTURE WORK

- Kind of filters that defines a congruence in a residuated multilattice
- Algebraic properties in a residuated multilattice
- Considering the residuated operations ⊙ and → as hyperoperations, thus leading to a complete embedding of the structure into a hyperalgebraic framework.

BILATTICES, RELATED STRUCTURES, AND COMPUTER SCIENCE APPLICATIONS

Manuel Ojeda-Aciego

Dept. Applied Mathematics, University of Málaga, Spain

Olomouc, Sep 6, 2012

BIBLIOGRAPHY I

O. Arieli and A. Avron.

Reasoning with logical bilattices.

Journal of Logic, Language, and Information, 5(1):25-63, 1996.

M. Fitting.

Bilattices and the semantics of logic programming.

J. Logic Programming, 11:91–116, 1991.

M. Fitting.

Kleene's three-valued logics and their children. Fundamenta Informaticae, 20:113–131, 1994

G. Gargov.

Knowledge, uncertainty and ignorance in logic: bilattices and beyond. Journal of Applied Non-Classical Logics, 9:195–283, 1999

BIBLIOGRAPHY II

M. Ginsberg.

Multivalued logics: a uniform approach to reasoning in Al. Computational Intelligence, 4:256–316, 1988.

M. Ginsberg.

Bilattices and modal operators.

Journal of Logic and Computation, 1(1):41-69, 1990.

R. Jansana and U. Rivieccio.

Residuated bilattices.

Soft Computing, 16:493-504, 2012.

M. Kondo.

Filter theory of bilattices in the semantics of logic programming. Far East J. Mathematical Sciences, 3(2):177–189, 2001.

BIBLIOGRAPHY III

Y. Loyer and U. Straccia.

Epistemic foundation of the well-founded semantics over bilattices. Lecture Notes in Computer Science 3153:513–524, 2004.

K. Mong Sim.

Beliefs and bilattices.

Lecture Notes in Computer Science 869:594-603, 1994

R. Nelken and N. Francez.

Bilattices and the semantics of natural language questions. Linguistics and Philosophy, 25(1):37–64, 2002

A. Schöter.

Evidential bilattice logic and lexical inference.

Journal of Logic, Language and Information, 5(1):65–105, 1996.

