Experimental detection of strongly non-classical states of light

M. Ježek, M. Mičuda, I. Straka, M. Dušek, L. Mišta, J.F., and R. Filip

Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic

A. Tipsmark, R. Dong, and U.L. Andersen

Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby, Denmark

INVESTMENTS IN EDUCATION DEVELOPMENT

Outline of the talk

- I. Quantum non-Gaussian states
- **II.** Witness of quantum non-Gaussian states
- **III.** Application to conditionally generated heralded single-photon state
- IV. Application to noisy photon subtracted squeezed vacuum state

Gaussian states and their mixtures

Gaussian states

- Possess Gaussian Wigner function
- Thermal, coherent and squeezed states
- Admit simple analytical desription
- Can be easily generated experimentally
- Crucial resource in CV QIP
- Do not form convex set

[x, p] = i

 $W(x, p) = \frac{ab}{\pi} e^{-a^2(x-x_0)^2 - b^2(p-p_0)^2}$

Gaussian states and their mixtures

Gaussian states

- Possess Gaussian Wigner function
- Admit simple analytical desription
- Can be easily generated experimentally
- Crucial resource in CV QIP
- Do not form convex set

Mixtures of Gaussian states

Set G of ll states of the form

$$\rho = \int P(\lambda) \rho_G(\lambda) \mathrm{d} \lambda$$

$$\int P(\lambda) \mathrm{d} \lambda = 1 \qquad P(\lambda) \ge 0$$

 $\rho_{_{G}}(\lambda)$... Gaussian state parameterized by λ

G is a convex set

Quantum non-Gaussian states

 \bullet Defined as states that do not belong to ${\boldsymbol{G}}$

R. Filip and L. Mišta, Jr., Phys. Rev. Lett. 106, 200401 (2011).

Quantum non-Gaussian states

 \bullet Defined as states that do not belong to G

• Quantum non-Gaussian states cannot be generated from vacuum by passive linear optics, squeezing, and classical mixing

- Some higher-order nonlinearity must be involved in their generation
- Quantum non-Gaussian states can exhibit positive Wigner function

R. Filip and L. Mišta, Jr., Phys. Rev. Lett. 106, 200401 (2011).

- Based on probabilities of vacuum and single-photon states
- If p_1 exceeds certain bound for fixed p_0 then the state is quantum non-Gaussian

R. Filip and L. Mišta, Jr., Phys. Rev. Lett. 106, 200401 (2011).
M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, Phys. Rev. Lett. 107, 213602 (2011).

Analytical parametric description of the Gaussian boundary

- obtained by maximization of p_1 for a fixed p_0 over pure squeezed coherent states

$$p_0 = \frac{e^{-d^2[1-\tanh(r)]}}{\cosh(r)} \qquad p_1 = \frac{d^2 e^{-d^2[1-\tanh(r)]}}{\cosh^3(r)} \qquad d^2 = \frac{e^{4r}-1}{4}$$

The state is quantum non-Gaussian if $W > W_G$

The state is quantum non-Gaussian if $W > W_G$

This witness can detect quantum non-Gaussian states with positive Wigner function, e.g.:

$$\rho = (1-p)|0\rangle\langle 0|+p|1\rangle\langle 1|$$

Heralded single photon state

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, Phys. Rev. Lett. 107, 213602 (2011).

Estimation of p_0 and p_1 from coincidence rates

R0 - rate of trigger detector TR

- R1-two-fold coincindence rate TR&SA+TR&SB
- $R2-three-fold\ coincidence\ rate\ TR\&SA\&SB$

$$p_0 = 1 - \frac{R_1 + R_2}{R_0}$$

$$p_1 = \frac{R_1}{R_0} - \frac{T^2 + (1 - T^2)}{2T(1 - T)} \frac{R_2}{R_0}$$

This estimator provides a lower bound on p₁

Experimental results

TABLE I: Estimated probabilities p_0 and p_1 , and the corresponding witness ΔW are shown for several different pump powers P and IF widths w (– denotes no filter).

$P\left[\mathrm{mW}\right]$	$w[{ m nm}]$	p_0	p_1	$\Delta W \left[\times 10^{-6} \right]$
50	2	0.9124	0.0875	412 ± 1
50	10	0.8589	0.1410	1666 ± 3
20	10	0.8425	0.1574	2370 ± 2
50	_	0.7095	0.2901	14252 ± 17
5	—	0.7296	0.2704	11825 ± 15

 $\Delta W = W - W_G$

Quantum non-Gaussianity certified by many standard deviations

M. Ježek, I. Straka, M. Mičuda, M. Dušek, J. Fiurášek, and R. Filip, Phys. Rev. Lett. 107, 213602 (2011).

Photon subtracted squeezed vacuum state

- The state is prepared by conditionally subtracting a single photon from picosecond pulsed squeezed vacuum state
- The state is then probed by homodyne detection

A. Tipsmark, R. Dong, A. Laghaout, P. Marek, M. Ježek, and U.L. Andersen, Phys. Rev. A 84, 050301(R) (2011).M. Ježek, A. Tipsmark, R. Dong, J. Fiurášek, L. Mišta, Jr. R. Filip, and U.L. Andersen, arXiv:1206.7057 (2012).

Estimation of p_n from homodyne data

Measured quadrature distributions

 $w(x_{\theta};\theta)$

U. Leonhardt, H. Paul, and G.M. DAriano, Phys. Rev. A 52, 4899 (1995).
U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M.G. Raymer, Opt. Commun. 127, 144 (1995).
Th. Richter, Phys. Rev. A 61, 063819 (2000).

Estimation of p_n from homodyne data

U. Leonhardt, H. Paul, and G.M. DAriano, Phys. Rev. A 52, 4899 (1995).
U. Leonhardt, M. Munroe, T. Kiss, Th. Richter, and M.G. Raymer, Opt. Commun. 127, 144 (1995).
Th. Richter, Phys. Rev. A 61, 063819 (2000).

Generalized witness

Based on probabilities of squeezed vacuum and single photon states

$$W(s) = ap_0(s) + p_1(s) \qquad p_n(s) = \langle n | S(s) \rho S^{\dagger}(s) | n \rangle$$

Generalized witness

Based on probabilities of squeezed vacuum and single photon states

 $W(s) = ap_0(s) + p_1(s)$

$$p_n(s) = \langle n | S(s) \rho S^{\otimes}(s) | n \rangle$$

More powerful than the original witness

Squeezing transformation:

$$x \to x e^{-s}$$
$$p \to p e^{s}$$

Generalized witness

Based on probabilities of squeezed vacuum and single photon states

 $W(s) = ap_0(s) + p_1(s)$

$$p_n(s) = \langle n | S(s) \rho S^{\dagger}(s) | n \rangle$$

More powerful than the original witness

Pattern functions for $p_n(s)$

$$f_n(x_\theta;\theta;s) = \frac{1}{g^2} f_n\left(\frac{x_\theta}{g}\right)$$

$$g = \sqrt{e^{2s} \cos^2(\theta)} + e^{-2s} \sin^2(\theta)$$

Results

Results

$$\Delta W(s_{opt}) = 0.024 \pm 0.010$$

Thank you for your attention!