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Complete residuated lattice

We use complete residuated lattices as structures of truth

degrees.

Definition

A complete residuated lattice is an algebra

L = 〈L,∧,∨,⊗,→, 0, 1〉 such that

〈L,∧,∨, 0, 1〉 is a complete lattice,

〈L,⊗, 1〉 is a commutative monoid,

⊗ and → satisfies a⊗ b ≤ c iff a ≤ b → c, for all a, b, c ∈ L.
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Complete residuated lattices on unit interval

Example

Łukasiewicz connectives:

a⊗L b =max(0, a + b − 1)
a →L b = min(1, 1− a + b)

Gödel connectives:

a⊗G b = min(a, b)
a →G b = b for a > b and a →G b = 1 for a ≤ b

Goguen (product) connectives:

a⊗P b = a · b
a →P b = b

a for a > b and a →P b = 1 for a ≤ b
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Fuzzy set and subsethood

Definition

An L-set A in universe U is a map A : U → L. A(u) is interpreted

as “the degree to which u belongs to A”.

LU denotes the collection of all L-sets in U.

Definition

For L-sets A,B ∈ LU , we define a subsethood degree of A in B

by S(A,B) =
∧

u∈U

(

A(u)→ B(u)
)

.

In addition, we write A ⊆ B iff S(A,B) = 1.
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Truth-stressing hedge

Sometime we equip the structue of truth degrees with an unary

operation, which can be seen as a truth function of a logical

connective “very true”.

Definition

A truth-stressing hedge ∗ is an additional unary operation on L

satisfying the following conditions:

1∗ = 1,

a∗ ≤ a,

(a → b)∗ ≤ a∗ → b∗, and

a∗∗ = a∗ for all a, b ∈ L.
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Classical data table

Car Age Mileage Fuel Economy . . .

Audi A3 2 years 43.215 miles 24 MpG . . .

Aston Martin 7 years 163.547 miles 13 MpG . . .

BMW Z3 12 years 214.845 miles 20 MpG . . .

Acura RDX 0.5 years 4.257 miles 22 MpG . . .
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Fuzzy data table

Car lA lM hAT hFE hP

Audi A3 0.9 0.8 1 0.9 0.7

Aston Martin 0.2 0.1 0 0.1 0.3

BMW Z3 0 0 1 0.8 0.2

Acura RDX 1 1 1 0.9 0.8

Attributes abbreviations:

Low Age – lA

Low Mileage – lM

Has Automatic Transmission – hAT

High Fuel Economy – hFE

High Price – hP
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Fuzzy attribute implication

Definition

Let Y be a nonempty set of attributes. A fuzzy attribute

implication (or shortly a FAI) is an expression A ⇒ B, where

A,B ∈ LY .

Example

Given Y = {lA, lM, hAT , hFE , hP} and L being Łukasiewicz

structure.
{

0.7/lA, 0.9/lM
}

⇒
{

0.6/hFE , 0.9/hP
}

is an attribute implication

saying that cars with low age (at least to degree 0.7) and low

mileage (at least to 0.9) have also high fuel economy (at least

to 0.6) and high price (at least to 0.9).
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Semantics of FAIs

Definition

For an L-set M ∈ LY of attributes, we define a degree

||A ⇒ B||M ∈ L to which A ⇒ B is true in M by

||A ⇒ B||M = S(A,M)∗ → S(B,M).

Definition

Let T be an L-set T of FAIs (theory). M is a model of T if

T (A ⇒ B) ≤ ||A ⇒ B||M for all A,B ∈ LY .

The set of all models of T is denoted by Mod(T ).

Definition

We define a degree ||A ⇒ B||T to which A ⇒ B semantically

follows from T by ||A ⇒ B||T =
∧

M∈Mod(T ) ||A ⇒ B||M .
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Example

Let L = {0, 0.5, 1} with Łukasiewicz connectives and ∗

being identity and Y = {a, b, c}.

Let T =
{

1/
{

0.5/a
}

⇒
{

0.5/b, 1/c
}

, 1/
{

0.5/c
}

⇒
{

1/a
}}

.

Cardinalities: |LY | = 33 = 27, |Mod(T )| = 5.

Mod(T ) =
{

∅, {0.5/b}, {1/b}, {1/a, 0.5/b, 1/c}, {1/a, 1/b, 1/c}
}

Computation of ||
{

1/c
}

⇒
{

1/b
}

||T :

||
{

1/c
}

⇒
{

1/b
}

||T =
∧

M∈Mod(T ) ||
{

1/c
}

⇒
{

1/b
}

||M =
∧

M∈Mod(T )

{

1, 1, 1, 0.5, 1
}

= 0.5

The computation of a degree to which a FAI follows from a

theory is demanding. On the other hand, there is more suitable

notion of provability of an implication from a theory.
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Language

Definition

Language of a fuzzy logic program (FLP) is given by

a finite nonempty set R of relation symbols,

a finite set F of function symbols,

arities of these symbols,

a denumerable set V of variables,

symbols for binary logical connectives

&1,&2, . . . (fuzzy conjunctions),

∨1,∨2, . . . (fuzzy disjunctions),

←1,←2, . . . (fuzzy implications),

and symbols for aggregations @1,@2, . . .
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Term and formula

Definition

For given language of FLP, term is defined recursively:

Each variable X ∈ V is a term.

If t1, . . . , tn are terms, then f (t1, . . . , tn) is term for each

functor f ∈ F .

Definition

For given language of FLP, formula is defined as follows:

If t1, . . . , tn are terms, then p(t1, . . . , tn) is an atomic formula

for each predicate p ∈ P.

If f1, . . . , fn are formulas, then (f1&i f2), (f1 ∨i f2), (f1 ←i f2),
@i(f1, . . . , fn) are formulas.
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Multi-adjoint lattice

Definition

A complete multi-adjoint lattice is an algebra

〈L,∧,∨,⊗1,←1, . . . ,⊗n,←n, 0, 1〉, where

〈L,∧,∨, 0, 1〉 is a complete lattice,

〈L,⊗i , 1〉 is a commutative monoid for each i ∈ {1, . . . , n},

each adjoint pair 〈⊗i ,←i〉 satisfies a⊗i b ≤ c iff a ≤ c ←i b

for all a, b, c ∈ L.
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Fuzzy logic program

Definition

A fuzzy logic program for a given language with values from a

given multi-adjoint lattice is a finite set P containing rules in the

form of 〈A ←i B, ϑ〉 and facts in the form of 〈A, ϑ〉, where

the head A is an atomic formula,

the tail B is a formula without any implication

and ϑ ∈ L.
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Herbrand universe and base

Definition

We define Herbrand universe as a set of all ground terms (with

no free occurrences of variables), it is denoted by UP .

Herbrand base is defined as a set of all atomic ground formulas

and it is denoted by BP .
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Structure for FLP

A structure for FLP P is any L-set in BP .

If M is a structure for P, M(ϕ) is interpreted as a degree to

which the atomic ground formula ϕ is true under M.

This notion can be extended to all formulas. First, lets
define M♯ as an L-set of all ground formulas by

M♯(ϕ) = M(ϕ) if ϕ is a ground atomic formula,

M♯(ϕ&iψ) = M♯(ϕ)⊗j M♯(ψ) where both ϕ and ψ are

ground and ⊗j is a truth function interpreting &i ,

analogously for the other binary connectives and

aggregators.

Then, we define M
♯
∀ to extend the notion to all formulas by

M
♯
∀(ϕ) =

∧

{M♯(ϕθ) | θ is a substitution and ϕθ is ground}.
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Model and correct answer

Definition

Structure M is called a model for program P if P(χ) ≤ M
♯
∀(χ) for

each formula χ where P(χ)= a if 〈χ, a〉 ∈ P and P(χ)= 0

otherwise.

The collection of all models of P will be denoted by Mod(P).

Definition

A pair 〈a, θ〉 consisting of a ∈ L and a substitution θ is a correct

answer for a definite program P and an atomic formula ϕ
(called a query) if M

♯
∀(ϕθ) ≥ a for each M ∈ Mod(P).
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Admissible rules

A computation for program P and query ϕ starts with 〈ϕ, ∅〉.
Then, following rules can be used.

1 Overwrite 〈αAβ,Θ〉 to 〈α(BΘ′ ⊗i ϑ)β,Θ ◦Θ
′〉, when

A is an atomic formula,

Θ′ is the most general unifier of A and A′,

there is a rule 〈A′ ←i B, ϑ〉 in P.

2 Overwrite 〈αAβ,Θ〉 to 〈αϑβ,Θ ◦Θ′〉, when

A is an atomic formula,

Θ′ is the most general unifier of A and A′,

there is a fact 〈A′, ϑ〉.

3 Overwrite 〈αAβ,Θ〉 to 〈α0β,Θ〉, when A is an atomic

formula.

4 Compute the truth value of formula and let substitution

remain the same.
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Computed answer

Definition

A pair 〈a, Θ〉, where Θ is a substitution and a ∈ L, is called a

computed answer for query ϕ and program P, if there is a

sequence G0, . . . ,Gn such that

G0 =〈ϕ, ∅〉,

each Gi+1 we get from Gi by one of the admissible rules,

Gn =〈a, Θ
′〉,

Θ is Θ′ restricted to variables which occur in ϕ.

Tomáš Kühr Representing FAIs by FLPs



Structure of Truth Degrees

Fuzzy Attribute Logic

Fuzzy Logic Programming

Representing FAIs by FLPs

Syntax

Declarative semantics

Procedural semantics

Soundness and completeness

Soundness and completeness

Theorem (Soundness)

Each computed answer for fuzzy logic program P and query ϕ
is a correct answer for the same program and query.

Theorem (Completeness)

For every correct answer 〈a, Θ〉 for program P and query ϕ,

there exist a sequence of elements ai ∈ L such that

a ≤
∨

i ai

and for an arbitrary i0 there exists a computed answer

〈b, Θ〉 such that ai0 ≤ b.
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Main results

Theorem

For each set T of FAIs and A ⇒ B there is a definite program P

such that ||A ⇒ B||T = a iff for each attribute y such that

B(y) > 0, the pair 〈a⊗ B(y), ∅〉 is a correct answer for the

program P and y.

Corollary

For each set T of FAIs and A ⇒ B there is a definite program P

such that ||A ⇒ B||T is the supremum of all degrees a ∈ L for

which 〈a⊗ B(y), ∅〉 is a correct answer for P and all y satisfying

B(y) > 0.
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Sketch of the proof 1/2

Consider a language (of FLP) without functors and with

only nullary relation symbols R = {y1, y2, . . . , yk} that

correspond to attributes which appear in FAIs from T to a

nonzero degree.

Clealy, R is a finite set and Herbrand base of any program

is equal to R.

Moreover, we consider the following logical connectives:
implication ⇐ (interpreted by the residuum →),

conjunction & (interpreted by the infimum ∧),

a unary aggregation ts (interpreted by the hedge ∗, i.e.

M(ts(ϕ)) = M(ϕ)∗),

for each rational a ∈ (0, 1] a unary aggregation sha called

an a-shift aggregation (interpreted by

M(sha(ϕ)) = a → M(ϕ)).
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For any C ⇒ D ∈ T and y ∈ Y such that D(y) > 0 and all

attributes z ∈ Y satisfying C(z) > 0 being exactly

z1, . . . , zn, consider a rule

〈y ⇐ ts
(

shA(z1)(z1)& · · ·&shA(zn)(zn)
)

,D(y)〉.

The fuzzy logic program PT generated by T consists only

all these rules.

The proof then continues by observing that

||A ⇒ B||T = a > 0 iff ||A ⇒ a⊗B||T = 1 iff

||∅ ⇒ a⊗B||T∪{∅⇒A} = 1 iff a⊗B(y) ≤ ||∅ ⇒ {1/y}||T∪{∅⇒A}

for all y ∈ Y such that B(y) > 0.

The latter is true iff for each y ∈ Y such that B(y) > 0, the

pair 〈a⊗ B(y), ∅〉 is a correct answer for the program

PT∪{∅⇒A} and query y .
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Example 1/3

Let L be the standard Łukasievicz structure of truth

degrees with ∗ being the identity.

Consider a set of attributes Y ={lA, lM, hAT , hFE , hP}.

Let T being a set containing the following FAIs over Y :
{

0.7/lA, 0.9/lM, 0.4/hAT
}

⇒
{

0.6/hFE , 0.9/hP
}

,
{

0.8/lA
}

⇒
{

0.7/lM
}

.

Using the presented Theorem, we can find a FLP PT that
corresponds to FAIs from T :

hFE
0.6
⇐ ts

(

sh0.7(lA)&sh0.9(lM)&sh0.4(hAT )
)

,

hP
0.9
⇐ ts

(

sh0.7(lA)&sh0.9(lM)&sh0.4(hAT )
)

,

lM
0.7
⇐ ts

(

sh0.8(lA)
)

.

Obviously, the aggregator ts interpreted by identity can be

omitted.
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All aggregation interpreting sha(y) as well as the function

∧ interpreting conjunctor & are left-semicontinuous in this

case. Thus, we can characterize ||A ⇒ B||T using

computed answers for program PT∪{∅⇒A} and queries

y ∈ Y with B(y) > 0.

For example, someone can ask “How much expensive are

quite new cars with automatic transmission?”, i.e., more

precisely “To which degree a ∈ L, is the FAI

{0.6/lA, 1/hAT} ⇒ {a/hP} true in T ?”.

First, expand PT to PT∪{∅⇒A} by adding facts:

lA
0.6
⇐,

hAT
1
⇐.
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Then, we can compute an answer to query hP using the

usual admissible rules of FLPs:

〈hP, ∅〉

〈0.9⊗
(

sh0.7(lA)&sh0.9(lM)&sh0.4(hAT )
)

, ∅〉,

〈0.9⊗
(

sh0.7(lA)&sh0.9(0.7⊗ sh0.8(lA))&sh0.4(hAT )
)

, ∅〉,

〈0.9⊗
(

sh0.7(0.6)&sh0.9(0.7⊗ sh0.8(0.6))&sh0.4(1)
)

, ∅〉,

〈0.9⊗
(

0.7 → 0.6 ∧ 0.9 → (0.7⊗ (0.8 → 0.6)) ∧ 0.4 → 1
)

, ∅〉,

〈0.5, ∅〉.

Using this computed answer 〈0.5, ∅〉, we immediately get

||{0.6/lA, 1/hAT} ⇒ {1/hP}||T = 0.5, i.e.,

||{0.6/lA, 1/hAT} ⇒ {0.5/hP}||T = 1.
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