Representing Fuzzy Attribute Implications by Fuzzy Logic Programs

Tomáš Kühr

tomas.kuhr@upol.cz

International Center for Information and Uncertainty Palacky University, Olomouc

INVESTMENTS IN EDUCATION DEVELOPMENT

Tomáš Kühr Representing FAIs by FLPs

< 🗇 🕨

Outline

- Structure of Truth Degrees
 - Complete residuated lattice
 - Fuzzy set and relation
 - Truth-stressing hedge
- 2 Fuzzy Attribute Logic
 - Fuzzy data
 - Fuzzy attribute implication
 - Semantics
- 3 Fuzzy Logic Programming
 - Syntax
 - Declarative semantics
 - Procedural semantics
 - Soundness and completeness
 - 4 Representing FAIs by FLPs

・ 同 ト ・ ヨ ト ・ ヨ ト

Complete residuated lattice Fuzzy set and relation Truth-stressing hedge

Structure of Truth Degrees

- Complete residuated lattice
- Fuzzy set and relation
- Truth-stressing hedge
- 2 Fuzzy Attribute Logic
 - Fuzzy data
 - Fuzzy attribute implication
 - Semantics
- 3 Fuzzy Logic Programming
 - Syntax
 - Declarative semantics
 - Procedural semantics
 - Soundness and completeness
- 4 Representing FAIs by FLPs

イロト イポト イヨト イヨト

Complete residuated lattice Fuzzy set and relation Truth-stressing hedge

Complete residuated lattice

We use complete residuated lattices as structures of truth degrees.

Definition

A complete residuated lattice is an algebra

- $\mathbf{L} = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$ such that
 - $\langle L, \wedge, \vee, 0, 1 \rangle$ is a complete lattice,
 - $\langle L, \otimes, 1 \rangle$ is a commutative monoid,
 - \otimes and \rightarrow satisfies $a \otimes b \leq c$ iff $a \leq b \rightarrow c$, for all $a, b, c \in L$.

イロト 不得 とくほ とくほ とう

Complete residuated lattice Fuzzy set and relation Truth-stressing hedge

Complete residuated lattices on unit interval

Example

Łukasiewicz connectives: $a \otimes_L b = \max(0, a + b - 1)$ $a \rightarrow_L b = \min(1, 1 - a + b)$

Gödel connectives: $a \otimes_G b = \min(a, b)$ $a \rightarrow_G b = b$ for a > b and $a \rightarrow_G b = 1$ for $a \le b$

Goguen (product) connectives: $a \otimes_P b = a \cdot b$ $a \rightarrow_P b = \frac{b}{a}$ for a > b and $a \rightarrow_P b = 1$ for $a \le b$

ヘロト ヘアト ヘビト ヘビト

э

Complete residuated lattice Fuzzy set and relation Truth-stressing hedge

Fuzzy set and subsethood

Definition

An **L**-set A in universe U is a map A: $U \rightarrow L$. A(u) is interpreted as "the degree to which u belongs to A".

 L^U denotes the collection of all **L**-sets in U.

Definition

For L-sets $A, B \in L^U$, we define a *subsethood* degree of A in B by $S(A, B) = \bigwedge_{u \in U} (A(u) \to B(u))$.

In addition, we write $A \subseteq B$ iff S(A, B) = 1.

ヘロト ヘワト ヘリト ヘリト

Complete residuated lattice Fuzzy set and relation Truth-stressing hedge

Truth-stressing hedge

Sometime we equip the structue of truth degrees with an unary operation, which can be seen as a truth function of a logical connective "very true".

Definition

A *truth-stressing hedge* * is an additional unary operation on *L* satisfying the following conditions:

•
$$a^* \leq a_*$$

•
$$(a \rightarrow b)^* \leq a^* \rightarrow b^*$$
, and

•
$$a^{**} = a^*$$
 for all $a, b \in L$.

イロト イポト イヨト イヨト

Fuzzy data Fuzzy attribute implication Semantics

Structure of Truth Degrees

- Complete residuated lattice
- Fuzzy set and relation
- Truth-stressing hedge
- 2 Fuzzy Attribute Logic
 - Fuzzy data
 - Fuzzy attribute implication
 - Semantics
- 3 Fuzzy Logic Programming
 - Syntax
 - Declarative semantics
 - Procedural semantics
 - Soundness and completeness
- 4 Representing FAIs by FLPs

くロト (得) (目) (日)

э

Fuzzy data Fuzzy attribute implication Semantics

Classical data table

Car	Age	Mileage	Fuel Economy	
Audi A3	2 years	43.215 miles	24 MpG	
Aston Martin	7 years	163.547 miles	13 MpG	
BMW Z3	12 years	214.845 miles	20 MpG	
Acura RDX	0.5 years	4.257 miles	22 MpG	

Tomáš Kühr Representing FAIs by FLPs

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Fuzzy data Fuzzy attribute implication Semantics

Fuzzy data table

Car	IA	IM	hAT	hFE	hP
Audi A3	0.9	0.8	1	0.9	0.7
Aston Martin	0.2	0.1	0	0.1	0.3
BMW Z3	0	0	1	0.8	0.2
Acura RDX	1	1	1	0.9	0.8

Attributes abbreviations:

- Low Age IA
- Low Mileage IM
- Has Automatic Transmission hAT
- High Fuel Economy hFE
- High Price hP

・ロト ・ 雪 ト ・ ヨ ト ・

E DQC

Fuzzy data Fuzzy attribute implication Semantics

Fuzzy attribute implication

Definition

Let *Y* be a nonempty set of *attributes*. A *fuzzy attribute implication* (or shortly a FAI) is an expression $A \Rightarrow B$, where $A, B \in L^{Y}$.

Example

Given $Y = \{IA, IM, hAT, hFE, hP\}$ and **L** being Łukasiewicz structure. $\{{}^{0.7}/IA, {}^{0.9}/IM\} \Rightarrow \{{}^{0.6}/hFE, {}^{0.9}/hP\}$ is an attribute implication saying that cars with low age (at least to degree 0.7) and low mileage (at least to 0.9) have also high fuel economy (at least to 0.6) and high price (at least to 0.9).

・ロ と く 聞 と く 思 と く 思 と

э

Fuzzy data Fuzzy attribute implication Semantics

Semantics of FAIs

Definition

For an **L**-set $M \in L^Y$ of attributes, we define a degree $||A \Rightarrow B||_M \in L$ to which $A \Rightarrow B$ is true in M by $||A \Rightarrow B||_M = S(A, M)^* \rightarrow S(B, M)$.

Definition

Let *T* be an **L**-set *T* of FAIs (theory). *M* is a *model* of *T* if $T(A \Rightarrow B) \leq ||A \Rightarrow B||_M$ for all $A, B \in L^Y$. The set of all models of *T* is denoted by Mod(*T*).

Definition

We define a degree $||A \Rightarrow B||_T$ to which $A \Rightarrow B$ semantically follows from T by $||A \Rightarrow B||_T = \bigwedge_{M \in Mod(T)} ||A \Rightarrow B||_M$.

Fuzzy data Fuzzy attribute implication Semantics

Example

Example

- Let L = {0, 0.5, 1} with Łukasiewicz connectives and * being identity and Y = {a, b, c}.
- Let $T = \{\frac{1}{\{0.5/a\}} \Rightarrow \{\frac{0.5}{b}, \frac{1}{c}\}, \frac{1}{\{0.5/c\}} \Rightarrow \{\frac{1}{a}\}\}.$
- Cardinalities: $|L^{Y}| = 3^{3} = 27$, |Mod(T)| = 5.
- Mod(T) = { \emptyset , {^{0.5}/*b*}, {¹/*b*}, {¹/*a*, ^{0.5}/*b*, ¹/*c*}, {¹/*a*, ¹/*b*, ¹/*c*}}
- Computation of $||\{1/c\} \Rightarrow \{1/b\}||_T$: $||\{1/c\} \Rightarrow \{1/b\}||_T = \bigwedge_{M \in Mod(T)} ||\{1/c\} \Rightarrow \{1/b\}||_M = \bigwedge_{M \in Mod(T)} \{1, 1, 1, 0.5, 1\} = 0.5$

The computation of a degree to which a FAI follows from a theory is demanding. On the other hand, there is more suitable notion of provability of an implication from a theory.

Syntax Declarative semantics Procedural semantics Soundness and completeness

Structure of Truth Degrees

- Complete residuated lattice
- Fuzzy set and relation
- Truth-stressing hedge
- 2 Fuzzy Attribute Logic
 - Fuzzy data
 - Fuzzy attribute implication
 - Semantics
- 3 Fuzzy Logic Programming
 - Syntax
 - Declarative semantics
 - Procedural semantics
 - Soundness and completeness
 - 4 Representing FAIs by FLPs

くロト (得) (目) (日)

э

Syntax Declarative semantics Procedural semantics Soundness and completeness

Language

Definition

Language of a fuzzy logic program (FLP) is given by

- a finite nonempty set \mathcal{R} of *relation symbols*,
- a finite set \mathcal{F} of function symbols,
- arities of these symbols,
- a denumerable set \mathcal{V} of *variables*,
- symbols for binary logical connectives
 - $\&_1, \&_2, \dots$ (fuzzy conjunctions),
 - \vee_1, \vee_2, \ldots (fuzzy disjunctions),
 - $\leftarrow_1, \leftarrow_2, \dots$ (fuzzy implications),
- \bullet and symbols for aggregations $@_1, @_2, \ldots \\$

◆□ > ◆□ > ◆豆 > ◆豆 > →

æ

Syntax Declarative semantics Procedural semantics Soundness and completeness

Term and formula

Definition

For given language of FLP, term is defined recursively:

- Each variable $\mathbb{X} \in \mathcal{V}$ is a term.
- If t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is term for each functor $f \in \mathcal{F}$.

Definition

For given language of FLP, *formula* is defined as follows:

• If t_1, \ldots, t_n are terms, then $p(t_1, \ldots, t_n)$ is an *atomic formula* for each predicate $p \in \mathcal{P}$.

• If f_1, \ldots, f_n are formulas, then $(f_1 \&_i f_2)$, $(f_1 \lor_i f_2)$, $(f_1 \leftarrow_i f_2)$, $@_i(f_1, \ldots, f_n)$ are formulas.

ヘロン ヘロン ヘモン ヘモン

Syntax Declarative semantics Procedural semantics Soundness and completeness

Multi-adjoint lattice

Definition

A complete multi-adjoint lattice is an algebra

 $\langle L, \wedge, \vee, \otimes_1, \leftarrow_1, \dots, \otimes_n, \leftarrow_n, 0, 1 \rangle$, where

- $\langle L, \wedge, \vee, 0, 1 \rangle$ is a complete lattice,
- $\langle L, \otimes_i, 1 \rangle$ is a commutative monoid for each $i \in \{1, \ldots, n\}$,
- each adjoint pair ⟨⊗_i, ←_i⟩ satisfies a ⊗_i b ≤ c iff a ≤ c ←_i b for all a, b, c ∈ L.

<ロ> (四) (四) (三) (三) (三)

Syntax Declarative semantics Procedural semantics Soundness and completeness

Fuzzy logic program

Definition

A *fuzzy logic program* for a given language with values from a given multi-adjoint lattice is a finite set *P* containing *rules* in the form of $\langle A \leftarrow_i B, \vartheta \rangle$ and *facts* in the form of $\langle A, \vartheta \rangle$, where

- the *head A* is an atomic formula,
- the tail B is a formula without any implication
- and $\vartheta \in L$.

イロト 不得 とくほ とくほ とう

э

Syntax Declarative semantics Procedural semantics Soundness and completeness

Herbrand universe and base

Definition

We define *Herbrand universe* as a set of all ground terms (with no free occurrences of variables), it is denoted by U_P .

Herbrand base is defined as a set of all atomic ground formulas and it is denoted by \mathcal{B}_{P} .

ヘロト 人間 とくほとう ほとう

æ

Syntax Declarative semantics Procedural semantics Soundness and completeness

Structure for FLP

- A structure for FLP P is any L-set in \mathcal{B}_P .
- If *M* is a structure for *P*, *M*(φ) is interpreted as a degree to which the atomic ground formula φ is true under M.
- This notion can be extended to all formulas. First, lets define M[♯] as an L-set of all ground formulas by
 - $M^{\sharp}(\varphi) = M(\varphi)$ if φ is a ground atomic formula,
 - *M*[#](φ&_iψ) = *M*[#](φ) ⊗_j *M*[#](ψ) where both φ and ψ are ground and ⊗_j is a truth function interpreting &_i,
 - analogously for the other binary connectives and aggregators.
- Then, we define M_{\forall}^{\sharp} to extend the notion to all formulas by $M_{\forall}^{\sharp}(\varphi) = \bigwedge \{ M^{\sharp}(\varphi \theta) \mid \theta \text{ is a substitution and } \varphi \theta \text{ is ground} \}.$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Syntax Declarative semantics Procedural semantics Soundness and completeness

Model and correct answer

Definition

Structure *M* is called a *model* for program *P* if $P(\chi) \le M_{\forall}^{\sharp}(\chi)$ for each formula χ where $P(\chi) = a$ if $\langle \chi, a \rangle \in P$ and $P(\chi) = 0$ otherwise. The collection of all models of *P* will be denoted by Mod(*P*).

Definition

A pair $\langle a, \theta \rangle$ consisting of $a \in L$ and a substitution θ is a *correct* answer for a definite program P and an atomic formula φ (called a query) if $M_{\forall}^{\sharp}(\varphi\theta) \geq a$ for each $M \in Mod(P)$.

・ロ と く 聞 と く 思 と く 思 と

Syntax Declarative semantics Procedural semantics Soundness and completeness

Admissible rules

A computation for program *P* and query φ starts with $\langle \varphi, \emptyset \rangle$. Then, following rules can be used.

- Overwrite $\langle \alpha A\beta, \Theta \rangle$ to $\langle \alpha (B\Theta' \otimes_i \vartheta)\beta, \Theta \circ \Theta' \rangle$, when
 - A is an atomic formula,
 - Θ' is the most general unifier of A and A',
 - there is a rule $\langle A' \leftarrow_i B, \vartheta \rangle$ in *P*.
- 2 Overwrite $\langle \alpha A\beta, \Theta \rangle$ to $\langle \alpha \vartheta \beta, \Theta \circ \Theta' \rangle$, when
 - A is an atomic formula,
 - Θ' is the most general unifier of A and A',
 - there is a fact $\langle A', \vartheta \rangle$.
- Overwrite (αAβ, Θ) to (α0β, Θ), when A is an atomic formula.
- Compute the truth value of formula and let substitution remain the same.

Syntax Declarative semantics Procedural semantics Soundness and completeness

Computed answer

Definition

A pair $\langle a, \Theta \rangle$, where Θ is a substitution and $a \in L$, is called a *computed answer* for query φ and program *P*, if there is a sequence G_0, \ldots, G_n such that

•
$$G_0 = \langle \varphi, \emptyset \rangle$$
,

• each G_{i+1} we get from G_i by one of the admissible rules,

•
$$G_n = \langle a, \Theta' \rangle$$
,

• Θ is Θ' restricted to variables which occur in φ .

ヘロト 人間 とくほとう ほとう

Syntax Declarative semantics Procedural semantics Soundness and completeness

Soundness and completeness

Theorem (Soundness)

Each computed answer for fuzzy logic program P and query φ is a correct answer for the same program and query.

Theorem (Completeness)

For every correct answer $\langle a, \Theta \rangle$ for program P and query φ , there exist a sequence of elements $a_i \in L$ such that

- $a \leq \bigvee_i a_i$
- and for an arbitrary i₀ there exists a computed answer ⟨b, Θ⟩ such that a_{i0} ≤ b.

イロト イポト イヨト イヨト

Structure of Truth Degrees

- Complete residuated lattice
- Fuzzy set and relation
- Truth-stressing hedge
- 2 Fuzzy Attribute Logic
 - Fuzzy data
 - Fuzzy attribute implication
 - Semantics

3 Fuzzy Logic Programming

- Syntax
- Declarative semantics
- Procedural semantics
- Soundness and completeness
- 4 Representing FAIs by FLPs

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Main results

Theorem

For each set T of FAIs and $A \Rightarrow B$ there is a definite program P such that $||A \Rightarrow B||_T = a$ iff for each attribute y such that B(y) > 0, the pair $\langle a \otimes B(y), \emptyset \rangle$ is a correct answer for the program P and y.

Corollary

For each set T of FAIs and $A \Rightarrow B$ there is a definite program P such that $||A \Rightarrow B||_T$ is the supremum of all degrees $a \in L$ for which $\langle a \otimes B(y), \emptyset \rangle$ is a correct answer for P and all y satisfying B(y) > 0.

ヘロト 人間 とくほ とくほ とう

э

Sketch of the proof 1/2

- Consider a language (of FLP) without functors and with only nullary relation symbols R = {y₁, y₂,..., y_k} that correspond to attributes which appear in FAIs from T to a nonzero degree.
- Clealy, *R* is a finite set and Herbrand base of any program is equal to *R*.
- Moreover, we consider the following logical connectives:
 - implication \leftarrow (interpreted by the residuum \rightarrow),
 - conjunction & (interpreted by the infimum ∧),
 - a unary aggregation *ts* (interpreted by the hedge *, i.e. $M(ts(\varphi)) = M(\varphi)^*$),
 - for each rational $a \in (0, 1]$ a unary aggregation sh_a called an *a*-shift aggregation (interpreted by $M(sh_a(\varphi)) = a \rightarrow M(\varphi)$).

Sketch of the proof 2/2

For any C ⇒ D ∈ T and y ∈ Y such that D(y) > 0 and all attributes z ∈ Y satisfying C(z) > 0 being exactly z₁,..., z_n, consider a rule

$$\langle y \leftarrow ts(sh_{A(z_1)}(z_1) \& \cdots \& sh_{A(z_n)}(z_n)), D(y) \rangle.$$

- The fuzzy logic program P_T generated by T consists only all these rules.
- The proof then continues by observing that $||A \Rightarrow B||_T = a > 0$ iff $||A \Rightarrow a \otimes B||_T = 1$ iff $||\emptyset \Rightarrow a \otimes B||_{T \cup \{\emptyset \Rightarrow A\}} = 1$ iff $a \otimes B(y) \le ||\emptyset \Rightarrow \{1/y\}||_{T \cup \{\emptyset \Rightarrow A\}}$ for all $y \in Y$ such that B(y) > 0.
- The latter is true iff for each y ∈ Y such that B(y) > 0, the pair (a ⊗ B(y), Ø) is a correct answer for the program P_{T∪{Ø⇒A}} and query y.

Example 1/3

- Let L be the standard Łukasievicz structure of truth degrees with * being the identity.
- Consider a set of attributes $Y = \{IA, IM, hAT, hFE, hP\}$.
- Let *T* being a set containing the following FAIs over *Y*:

•
$$\{{}^{0.7}\!/I\!A, {}^{0.9}\!/I\!M, {}^{0.4}\!/h\!AT\} \Rightarrow \{{}^{0.6}\!/h\!F\!E, {}^{0.9}\!/h\!P\},$$

•
$$\left\{ \frac{0.8}{IA} \right\} \Rightarrow \left\{ \frac{0.7}{IM} \right\}.$$

- Using the presented Theorem, we can find a FLP P_T that corresponds to FAIs from T:
 - $hFE \stackrel{0.6}{\Leftarrow} ts(sh_{0.7}(IA)\&sh_{0.9}(IM)\&sh_{0.4}(hAT)),$
 - $hP \stackrel{0.9}{\Leftarrow} ts(sh_{0.7}(IA)\&sh_{0.9}(IM)\&sh_{0.4}(hAT)),$
 - $IM \stackrel{0.7}{\leftarrow} ts(sh_{0.8}(IA)).$
- Obviously, the aggregator ts interpreted by identity can be omitted.

Example 2/3

- All aggregation interpreting sh_a(y) as well as the function
 ∧ interpreting conjunctor & are left-semicontinuous in this
 case. Thus, we can characterize ||A ⇒ B||_T using
 computed answers for program P_{T∪{Ø⇒A}} and queries
 y ∈ Y with B(y) > 0.
- For example, someone can ask "How much expensive are quite new cars with automatic transmission?", i.e., more precisely "To which degree *a* ∈ *L*, is the FAI {^{0.6}/*IA*, ¹/*hAT*} ⇒ {^a/*hP*} true in *T*?".
- First, expand P_T to $P_{T \cup \{\emptyset \Rightarrow A\}}$ by adding facts:

•
$$IA \stackrel{0.6}{\Leftarrow},$$

• $hAT \stackrel{1}{\Leftarrow}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example 3/3

• Then, we can compute an answer to query *hP* using the usual admissible rules of FLPs:

$$\begin{split} &\langle hP, \emptyset \rangle \\ &\langle 0.9 \otimes \big(sh_{0.7}(\textit{IA}) \& sh_{0.9}(\textit{IM}) \& sh_{0.4}(\textit{hAT}) \big), \emptyset \rangle, \\ &\langle 0.9 \otimes \big(sh_{0.7}(\textit{IA}) \& sh_{0.9}(0.7 \otimes sh_{0.8}(\textit{IA})) \& sh_{0.4}(\textit{hAT}) \big), \emptyset \rangle, \\ &\langle 0.9 \otimes \big(sh_{0.7}(0.6) \& sh_{0.9}(0.7 \otimes sh_{0.8}(0.6)) \& sh_{0.4}(1) \big), \emptyset \rangle, \\ &\langle 0.9 \otimes \big(0.7 \to 0.6 \land 0.9 \to (0.7 \otimes (0.8 \to 0.6)) \land 0.4 \to 1 \big), \emptyset \rangle, \\ &\langle 0.5, \emptyset \rangle. \end{split}$$

• Using this computed answer $(0.5, \emptyset)$, we immediately get $||\{^{0.6}/IA, ^1/hAT\} \Rightarrow \{^{1}/hP\}||_T = 0.5$, i.e., $||\{^{0.6}/IA, ^1/hAT\} \Rightarrow \{^{0.5}/hP\}||_T = 1.$

References to fuzzy relational systems

- R. Bělohlávek: *Fuzzy Relational Systems: Foundations and Principles*. Kluwer Academic Publishers, 2002.
- R. Bělohlávek, V. Vychodil: *Fuzzy Equational Logic*. Studies in Fuzziness and Soft Computing, 186, 2005.
- J. A. Goguen: The logic of inexact concepts. *Synthese*, 19, 1979.
- P. Hájek: *Metamathematics of Fuzzy Logic*. Kluwer Academic Publishers, 1998.
- P. Hájek: On very true. Fuzzy Sets and Systems, 124(3), 2001.
- J.Pavelka: On fuzzy logic I, II, III. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 25, 1979.

ロトス回アメヨアメ

References to fuzzy attribute logic

- R. Bělohlávek, V. Vychodil: Data tables with similarity relations: Functional dependencies, complete rules and non-redundant bases. *Database Systems for Advanced Applications*, 3882, Springer, 2006.
- R. Bělohlávek, V. Vychodil: Fuzzy attribute logic over complete residuated lattices. *Journal of Experimental & Theoretical Articial Intelligence*, 18(4), 2006.
- R. Bělohlávek, V. Vychodil, V.: Query systems in similarity-based databases: logical foundations, expressive power, and completeness. ACM Symposium on Applied Computing, ACM, 2010.

イロト イポト イヨト イヨト

References to fuzzy logic programming

- J. W. Lloyd: Foundations of logic programming. Springer, 1987.
- P. Vojtáš: Fuzzy logic programming. Fuzzy Sets and Systems, 124, 2001.
- S. Krajči, R. Lencses, J. Medina, M. Ojeda-Aciego, A, Valverde, and P. Vojtáš: Non-Commutativity and Expressive Deductive Logic Databases. *Logics in Artificial Intelligence, JELIA'02*, 2002.
- U. Nilsson, J. Maluszynski: Logic, Programming, and PROLOG. John Wiley & Sons, 1995.
- J. Medina, M. Ojeda-Aciego, and P. Vojtáš: Similarity-based unification: a multi-adjoint approach. *Fuzzy Sets and Systems*, 146(1), 2004.

ヘロト 人間 ト ヘヨト ヘヨト