Kvantové zpracování informace s jednotlivými fotony

Miroslav Ježek

Katedra optiky Přírodovědecká fakulta Univerzita Palackého v Olomouci

Slezská Univerzita v Opavě, 20. 6. 2013

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Miroslav Ježek

Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Laboratoř kvantové optiky a informatiky v Olomouci

Michal Mičuda postdoc

Martina Miková doktorandka

Ivo Straka doktorand

Miloslav Dušek profesor

Radim Filip docent

Jaromír Fiurášek docent

Miroslav Ježek

Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Počítače... a fyzika mikrosvěta

- Charles Babbage (1791-1871)
- 32 nm technologie (2006-2010), Intel Core iX a další
- Výraznému zmenšení struktur brání kvantové jevy
- Dalším krokem je přímo využít kvantové efekty

• • • • • • • • • • • •

Nový koncept zpracování informace

- Využití zákonů kvantové fyziky
- Informace uložena do stavů kvantových systémů

Nový koncept zpracování informace

- Využití zákonů kvantové fyziky
- Informace uložena do stavů kvantových systémů

klasický bit: 0, 1

Nový koncept zpracování informace

- Využití zákonů kvantové fyziky
- Informace uložena do stavů kvantových systémů

kvantový bit: $|0\rangle, |1\rangle$

• Princip superpozice \rightarrow kvantový paralelismus

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Obsah

Kvantové počítače

- Kvantové bity
- Kvantové logické obvody
- Kvantové algoritmy
- Architektura a fyzikální realizace

Kvantové optické procesory s jednotlivými fotony

- Architektura optického kvantového počítače
- Optické kódování kvantových bitů
- Interference a interakce
- Optická realizace logických kvantových obvodů

Obsah

Kvantové počítače

- Kvantové bity
- Kvantové logické obvody
- Kvantové algoritmy
- Architektura a fyzikální realizace

Kvantové optické procesory s jednotlivými fotony

- Architektura optického kvantového počítače
- Optické kódování kvantových bitů
- Interference a interakce
- Optická realizace logických kvantových obvodů

3 Závěr

< □ > < 同 > < 回 > < 回

Kvantové bity

- Dvouhladinový kvantový systém
- Bázové stavy: $0 \rightarrow |0\rangle, 1 \rightarrow |1\rangle$

イロト イヨト イヨト イヨト

Kvantové bity

- Dvouhladinový kvantový systém
- Bázové stavy: 0 \rightarrow $|0\rangle$, 1 \rightarrow $|1\rangle$

• Superpozice bázových stavů: $\alpha |0\rangle + \beta |1\rangle \in \mathbb{C}^2$ $\alpha = \cos \theta, \ \beta = e^{i\varphi} \sin \theta, \ |\alpha|^2 + |\beta|^2 = 1$

< ロ > < 同 > < 回 > < 回 >

Kvantové bity

- Dvouhladinový kvantový systém
- Bázové stavy: 0 \rightarrow $|0\rangle$, 1 \rightarrow $|1\rangle$

- Superpozice bázových stavů: $\alpha |0\rangle + \beta |1\rangle \in \mathbb{C}^2$ $\alpha = \cos \theta, \ \beta = e^{i\varphi} \sin \theta, \ |\alpha|^2 + |\beta|^2 = 1$
- Realizace kvantového bitu:
 - dvě hladiny atomu, spin elektronu, jaderný spin

Qubity Hradla Algoritmy Architektura

Systémy s více kvantovými bity

Dva klasické bity: 00, 01, 10, 11 – dva parametry

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Systémy s více kvantovými bity

- Dva klasické bity: 00, 01, 10, 11 dva parametry
- Dva kvantové bity: čtyři komplexní parametry $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \in \mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$

< □ > < 同 > < 回 > < 回

Systémy s více kvantovými bity

- Dva klasické bity: 00, 01, 10, 11 dva parametry
- Dva kvantové bity: čtyři komplexní parametry $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \in \mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$
- Entanglované stavy: $|\psi\rangle \neq |\psi_A\rangle \otimes |\psi_B\rangle$

< □ > < 同 > < 回 > < 回

Systémy s více kvantovými bity

- Dva klasické bity: 00, 01, 10, 11 dva parametry
- Dva kvantové bity: čtyři komplexní parametry $|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \in \mathbb{C}^4 = \mathbb{C}^2 \otimes \mathbb{C}^2$
- Entanglované stavy: $|\psi\rangle \neq |\psi_A\rangle \otimes |\psi_B\rangle$
- *n* kvantových bitů: $|\psi\rangle = \sum_x \alpha_x |x\rangle \in \mathbb{C}^{2^n}$ exponenciální růst

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kvantové počítače Optické procesory Závěr

• Unitární vývoj kvantového stavu transformuje 2^{*n*} parametrů $|\psi\rangle_{out} = U|\psi\rangle_{in} = \sum_{\{x\}} \alpha_{\{x\}} (U_{\{y\}} \otimes I_{\{z\}})|x_1, x_2, \dots, x_n\rangle$

Qubity Hradla Algoritmy Architektura

Kvantové počítače Optické procesory Závěr

• Unitární vývoj kvantového stavu transformuje 2^{*n*} parametrů $|\psi\rangle_{out} = U|\psi\rangle_{in} = \sum_{\{x\}} \alpha_{\{x\}} (U_{\{y\}} \otimes I_{\{z\}})|x_1, x_2, \dots, x_n\rangle$

Qubity Hradla Algoritmy Architektura

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

< 同 > < 三 >

Kvantové počítače Optické procesory Závěr

• Unitární vývoj kvantového stavu transformuje 2^{*n*} parametrů $|\psi\rangle_{out} = U|\psi\rangle_{in} = \sum_{\{x\}} \alpha_{\{x\}} (U_{\{y\}} \otimes I_{\{z\}})|x_1, x_2, \dots, x_n\rangle$

Qubity Hradla Algoritmy Architektura

Klasická logická funkce f(x): f(0), f(1)
 Kvantová logická funkce f(x): f(α|0⟩ + β|1⟩) = αf(|0⟩) + βf(|1⟩)
 Paralelní výpočet hodnoty funkce pro obě hodnoty argumentu

• • • • • • • • • • • •

Kvantové počítače Optické procesory Závěr

• Unitární vývoj kvantového stavu transformuje 2^{*n*} parametrů $|\psi\rangle_{out} = U|\psi\rangle_{in} = \sum_{\{x\}} \alpha_{\{x\}} (U_{\{y\}} \otimes I_{\{z\}})|x_1, x_2, \dots, x_n\rangle$

Qubity Hradla Algoritmy Architektura

- Klasická logická funkce f(x): f(0), f(1)
 Kvantová logická funkce f(x): f(α|0⟩ + β|1⟩) = αf(|0⟩) + βf(|1⟩)
 Paralelní výpočet hodnoty funkce pro obě hodnoty argumentu
- Výsledkem měření: stav |x₁, x₂,..., x_n⟩ s pravděpodobností |α_{{x},out}|²

Kvantová logická hradla – jednogubitová

• Bit-flip X, sign-flip Z

$$-X - X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$- \boxed{Z} -$$
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

イロン イ団 とく ヨン ト ヨン

Qubity Hradla Algoritmy Architektura

Kvantová logická hradla – jednoqubitová

• Bit-flip X, sign-flip Z

Hadamardovo hradlo – změna výpočetní a znaménkové báze

< ロ > < 同 > < 三 > < 三 > -

Kvantová logická hradla – vícequbitová

Unitární vývoj dvou kvantových bitů

$$\begin{split} \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \boxed{U} \quad \alpha'_{00}|00\rangle + \alpha'_{01}|01\rangle + \alpha'_{10}|10\rangle + \alpha'_{11}|11\rangle \\ UU^{\dagger} = U^{\dagger}U = I \end{split}$$

イロト イヨト イヨト ・ ヨトー

Kvantová logická hradla – vícequbitová

Unitární vývoj dvou kvantových bitů

$$\begin{split} \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \underbrace{\qquad U}_{\qquad \alpha_{00}'|00\rangle} \alpha_{01}'|01\rangle + \alpha_{10}'|10\rangle + \alpha_{11}'|11\rangle \\ UU^{\dagger} = U^{\dagger}U = I \end{split}$$

CNOT hradlo

$$\begin{array}{ccc} & & c & & \\ t & & & \\ t & & \\ \end{array} \begin{array}{ccc} & & c & \\ t & & \\ \end{array} \begin{array}{ccc} & c & \\ t & & \\ \end{array} \begin{array}{ccc} & c & \\ c & n & \\ \end{array} \begin{array}{ccc} & c & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & c & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & c & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \end{array} \begin{array}{ccc} & & & \\ c & n & n \\ \end{array} \end{array}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Qubity Hradla Algoritmy Architektura

Kvantová logická hradla – vícequbitová

• Unitární vývoj dvou kvantových bitů

$$\begin{split} \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle \underbrace{\qquad U}_{\qquad \alpha_{00}'|00\rangle} \alpha_{01}'|01\rangle + \alpha_{10}'|10\rangle + \alpha_{11}'|11\rangle \\ UU^{\dagger} = U^{\dagger}U = I \end{split}$$

CNOT hradlo

$$\operatorname{CZ} = (I_{\mathrm{c}} \otimes H_{\mathrm{t}}) \cdot \operatorname{CNOT} \cdot (I_{\mathrm{c}} \otimes H_{\mathrm{t}})$$

Qubity Hradla Algoritmy Architektura

Kvantová logická hradla – vícequbitová

- Tříqubitová hradla
- Toffoliho hradlo (CCNOT)

Fredkinovo hradlo (CSWAP)

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Qubity Hradla Algoritmy Architektura

Kvantové logické obvody

Univerzální sada hradel

[klasické procesory: NAND hradlo je univerzální]

– CNOT, H,
$$\frac{\pi}{8}$$

Toffoli

イロン イロン イヨン イヨン

Qubity Hradla Algoritmy Architektura

Kvantové logické obvody

Univerzální sada hradel

[klasické procesory: NAND hradlo je univerzální]

– CNOT, H,
$$\frac{\pi}{8}$$

- Toffoli
- Příklad kvantového obvodu: Hadamard + CNOT

Qubity Hradla Algoritmy Architektura

Kvantové logické obvody

Univerzální sada hradel

[klasické procesory: NAND hradlo je univerzální]

– CNOT, H,
$$\frac{\pi}{8}$$

- Toffoli
- Příklad kvantového obvodu: Hadamard + CNOT

 Příprava a analýza Bellových stavů Unitární vývoj => vratný výpočet

< □ > < 同 > < 回 > < 回

Vratnost výpočtu

Klasické logické obvody nevyžadují vratnost, např. AND hradlo

$$a - AND - a \wedge b$$
 $a - AND' - a \wedge b$
 $b - AND' - ?$

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

イロン イロン イヨン イヨン

Vratnost výpočtu

Klasické logické obvody nevyžadují vratnost, např. AND hradlo

$$a - AND - a \land b$$
 $a - AND' - a \land b$

 Omezuje kvantová mechanika možnosti výpočtu? Lze klasický výpočet realizovat vratně?

[R.Landauer (1961), C.Bennett (1973), T.Toffoli (1980), R.Feynman (1983-86)]

Vratnost výpočtu

• Klasické logické obvody nevyžadují vratnost, např. AND hradlo

$$a - AND - a \wedge b$$
 $a - AND' - a \wedge b$

 Omezuje kvantová mechanika možnosti výpočtu? Lze klasický výpočet realizovat vratně?

[R.Landauer (1961), C.Bennett (1973), T.Toffoli (1980), R.Feynman (1983-86)]

Miroslay Ježek

Klasická vratná hradla, např. CSWAP

Qubity Hradla Algoritmy Architektura

Obecná konstrukce kvantového hradla

• Klasický obvod \longrightarrow klasický vratný obvod

Odstranění závislosti pomocných qubitů

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Kvantové algoritmy

Efektivní řešení specifických výpočetních úloh

- Exponenciální urychlení: Deutschův-Jozsův algoritmus (1992,1998) Simonův algoritmus (1994) Shorův algoritmus (1994,2007-) simulace kvantových systémů (1982,1997,2008-) první výpočet (H₂) na optickém kvantovém počítači [B.P. Lanyon et al., Nature Chemistry 2, 106 (2010)]
- Polynomiální urychlení: Groverův algoritmus (1996) problém jednoznačných položek v seznamu (2004.2007) identifikace elementů grafů (2007)

< ロ > < 同 > < 回 > < 回 >

Architektura kvantového procesoru

Architektura kvantového procesoru

Škálovatelnost? pravděpodobnost úspěchu Koherence? čisté stavy po celou dobu výpočtu

Architektura kvantového procesoru

Škálovatelnost? pravděpodobnost úspěchu Koherence? čisté stavy po celou dobu výpočtu

Vhodná fyzikální implementace?
Fyzikální realizace kvantového procesoru

DiVincenzova kritéria

[in Mesoscopic Electron Transport Vol.345 of NATO Adv. Study Inst. (1997)]

- Dobře definované kvantové bity
- Inicializace kvantových bitů v čistých stavech
- Dlouhá koherenční doba
- Univerzální sada kvantových hradel
- Měření na kvantových bitech s vysokou účinností

イロト イポト イヨト イヨト

Atomy a ionty v pasti

Miroslav Ježek

Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Optické kvantové počítače

Miroslav Ježek

Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Obsah

Kvantové počítače

- Kvantové bity
- Kvantové logické obvody
- Kvantové algoritmy
- Architektura a fyzikální realizace

2 Kvantové optické procesory s jednotlivými fotony

- Architektura optického kvantového počítače
- Optické kódování kvantových bitů
- Interference a interakce
- Optická realizace logických kvantových obvodů

3 Závěr

< □ > < 同 > < 回 > < 回 > < 回

- Jednotlivé fotony
- Lineární optické komponenty
- Interakce fotonů (více-qubitová hradla)
- Měření jednofotonovými detektory

イロト イロト イヨト イヨト

- Jednotlivé fotony
- Lineární optické komponenty
- Interakce fotonů (více-qubitová hradla)
- Měření jednofotonovými detektory
- Často pravděpodobnostní úspěch podmíněn výsledkem měření pravděpodobnost lze zvýšit užitím pomocných fotonů a komplexnějších schémat
- Škálovatelnost vyžaduje jistou minimální (neznámou) účinnost

- Jednotlivé fotony
- Lineární optické komponenty
- Interference více fotonů
- Měření jednofotonovými detektory
- Často pravděpodobnostní úspěch podmíněn výsledkem měření pravděpodobnost lze zvýšit užitím pomocných fotonů a komplexnějších schémat
- Škálovatelnost vyžaduje jistou minimální (neznámou) účinnost

Architektura Kódování Interakce Hradla

Zdroje jednotlivých fotonů

NV centra v diamantu

Kvantové tečky

< ロ > < 同 > < 回 > < 回 >

Frekvenční konverze

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Jednofotonové detektory

- Fotonásobič
 - detekční účinnost max 40%, <5% v NIR
 - lineární detektor
- Lavinová dioda v Geigerově režimu (SPAD)
 - detekční účinnost 50-70% Si, 10-20% InGaAs
 - pasivní vs. aktivní zhášení [S. Cova et al. Applied Optics 35, 1956 (1996)]
 - neschopnost rozlišit počet fotonů
 - jitter <300 ps, mrtvá doba 30 ns
- Supravodivý bolometr (TES), 100 mK
 - detekční účinnost 10-20% vis-NIR, až 95% pro 1550 nm
 - částečné rozlišení počtu fotonů
 - jitter 100 ns, mrtvá doba cca μ s

[R.H. Hadfield, Single-photon detectors for optical quantum information applications, Nature Photonics 3, 696 (2009)]

[M.D. Eisaman et al., Single-photon sources and detectors,

Review of Scientific Instruments 82, 071101 (2011)]

< □ > < 同 > < 回 > < 回 > .

Jednofotonová interference

Machův-Zehnderův interferometr

イロト イ団ト イヨト イヨト

Jednofotonová interference

Machův-Zehnderův interferometr

• Foton se současně šíří oběma rameny interferometru

$$|\psi
angle = rac{1}{\sqrt{2}} \left(|u
angle + |d
angle
ight)$$

Jednofotonová interference

Machův-Zehnderův interferometr

• Foton se současně šíří oběma rameny interferometru

 $|\psi\rangle = \frac{1}{\sqrt{2}} \left(|u\rangle + \mathrm{e}^{\mathrm{i}\phi} |d\rangle \right)$

< ロ > < 同 > < 回 > < 回 >

Optické kódování kvantových bitů

Kódování do dráhy fotonu: dělič svazku a fázový posuv

Optické kódování kvantových bitů

Kódování do dráhy fotonu: dělič svazku a fázový posuv

 Kódování do polarizačního stavu fotonu: polarizátor, polarizační retardéry (půlvlnná a čtvrtvlnná deska)

• • • • • • • • • • • •

Hyper-kódování

• Současná kontrola polarizace a dráhy

イロト イ団ト イヨト イヨト

Hyper-kódování

• Současná kontrola polarizace a dráhy

• Inherentně stabilní interferometr: dvojlomné kalcitové hranoly

• • • • • • • • • • • • •

Architektura Kódování Interakce Hradla

Interference dvou fotonů

Architektura Kódování Interakce Hradla

Interference dvou fotonů

Shlukování fotonů na vyváženém děliči

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Interference dvou fotonů

• Superpozice všech možných kombinací drah na děliči 50:50

 $\begin{array}{ccccccc} |1,1\rangle & \rightarrow & |0,2\rangle & + & |1,1\rangle & - & |1,1\rangle & - & |2,0\rangle \end{array}$

イロト 不得 トイヨト イヨト 二日

Interference dvou fotonů

Superpozice všech možných kombinací drah na děliči 50:50

• Kolmo polarizované fotony na děliči 50:50 ightarrow ($|HV\rangle - |VH\rangle$) $/\sqrt{2}$

Miroslay Ježek

Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Interference dvou fotonů

 Dělič s odlišným dělícím poměrem pro H/V polarizaci koincidenční prostor: po jednom fotonu na obou výstupech

$$U_{\rm BS}(\tau_H,\tau_V) = \begin{pmatrix} 2\tau_H^2 - 1 & 0 & 0 & 0 \\ 0 & \tau_H \tau_V & -\sqrt{1 - \tau_H^2} \sqrt{1 - \tau_V^2} & 0 \\ 0 & -\sqrt{1 - \tau_H^2} \sqrt{1 - \tau_V^2} & \tau_H \tau_V & 0 \\ 0 & 0 & 0 & 2\tau_V^2 - 1 \end{pmatrix}$$

Interference dvou fotonů

Kvantové počítače Optické procesory Závěr

 Dělič s odlišným dělícím poměrem pro H/V polarizaci koincidenční prostor: po jednom fotonu na obou výstupech $U_{\rm BS}(\tau_H,\tau_V) = \begin{pmatrix} 2\tau_H^2 - 1 & 0 & 0 & 0 \\ 0 & \tau_H \tau_V & -\sqrt{1 - \tau_H^2} \sqrt{1 - \tau_V^2} & 0 \\ 0 & -\sqrt{1 - \tau_H^2} \sqrt{1 - \tau_V^2} & \tau_H \tau_V & 0 \\ 0 & 0 & 0 & 2\tau_V^2 - 1 \end{pmatrix}$ $U_{\rm BS}(\tau_{\rm H}=1,\tau_{\rm V}=1/\sqrt{3}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \sim {\rm CZ}$ $\tau_H = 1, \tau_V = 1/\sqrt{3}$ $\tau_H = 1/\sqrt{3}, \tau_V = 1$ $\tau_H = 1/\sqrt{3}, \tau_V = 1$ Η

Architektura Kódování Interakce

Hradla

Miroslav Ježek

Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Architektura Kódování Interakce Hradla

Optická realizace logických kvantových obvodů

• Hadamardovo hradlo v polarizačním kódování – půlvlnná deska $|H\rangle \longrightarrow |D\rangle = (|H\rangle + |V\rangle)/\sqrt{2}$

Kvantové počítače Optické procesory Závěr Architektura Kódování Interakce Hradla

Optická realizace logických kvantových obvodů

• Hadamardovo hradlo v polarizačním kódování – půlvlnná deska $|H\rangle \longrightarrow |D\rangle = (|H\rangle + |V\rangle)/\sqrt{2}$

[R. Okamoto et al., Phys. Rev. Lett. 95, 210506 (2005); N. Kiesel et al., Phys. Rev. Lett.
 95, 210505 (2005); C. Schmid, New J. Phys. 11, 033008 (2009)]

Architektura Kódování Interakce Hradla

CNOT hradlo – 2 fotony, 2 polarizační qubity

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Kvantové počítače Optické procesory Závěr

Toffoliho hradlo – 4 fotony, $2 \times CNOT$

[B.P. Lanyon et al., Nature Physics 5, 134 (2009)]

< ロ > < 同 > < 回 > < 回 >

Architektura Kódování Interakce Hradla

Toffoliho hradlo (Olomouc) – 2 fotony, $1 \times CNOT$

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Architektura Kódování Interakce Hradla

Toffoliho hradlo (Olomouc) - schéma

[M. Mičuda et al., arXiv:1306.1141 (2013)]

Architektura Kódování Interakce Hradla

Toffoliho hradlo (Olomouc) – experimentální realizace

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

イロト イロト イヨト イヨト

Kvantové počítače Optické procesory Závěr

Architektura Kódování Interakce Hradla

Toffoliho hradlo (Olomouc) – fidelita hradla

- Pravdivostní tabulky
- Fidelita kvantového procesu F_χ ≥ F₁ + F₂ + F₃ − 2 F_χ ≥ 0,928 + 0,947 + 0,955 − 2 = 0.830(2) počet potřebných in/out měření: n2ⁿ vs. 2⁴ⁿ pro tomografii

< 🗇 🕨 < 🖃 🕨

Kvantové počítače Optické procesory Závěr

Architektura Kódování Interakce Hradla

Toffoliho hradlo (Olomouc) – fidelita hradla

- Pravdivostní tabulky
- Fidelita kvantového procesu F_χ ≥ F₁ + F₂ + F₃ − 2 F_χ ≥ 0,928 + 0,947 + 0,955 − 2 = 0.830(2) počet potřebných in/out měření: n2ⁿ vs. 2⁴ⁿ pro tomografii

• S projekcí na entanglované stavy: $F_{\chi} \ge 0.876(2)$ Fidelita kvantového procesu 87% $< F_{\chi} <$ 92% [M. Mičuda et al., arXiv:1306.1141 (2013)]

< D > < P > < E > <</pre>

Kvantové počítače Optické procesory Závěr Architektura Kódování Interakce Hradla

Toffoliho hradlo (Olomouc) – generace entanglementu

Fidelita 3-qubitových stavů F ≈ 96%

Miroslav Ježek

Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci

Obsah

Kvantové počítače

- Kvantové bity
- Kvantové logické obvody
- Kvantové algoritmy
- Architektura a fyzikální realizace

Kvantové optické procesory s jednotlivými fotony

- Architektura optického kvantového počítače
- Optické kódování kvantových bitů
- Interference a interakce
- Optická realizace logických kvantových obvodů

< □ > < 同 > < 回 > < 回

Shrnutí

- Kvantové bity a logická hradla Kvantové algoritmy nabízející exponenciální zrychlení
- Architektura optických kvantových počítačů
 Problém škálovatelnosti: pravděpodobnostní charakter
 Koherence a stabilita
- Optická realizace CNOT a Toffoliho hradla Efektivní odhad fidelity procesu (hradla) Generace entanglovaných stavů

Shrnutí

Děkuji Vám za pozornost!

optics.upol.cz

opticsolomouc.org

Miroslav Ježek Katedra optiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci