Quantum Information:

Manipulating light photon by photon

Petr Marek

1

What is Quantum Information?

- Quantum systems exhibit some very strange features
 - Superpositions
 - Uncertainty relations
 - Entanglement
- Instead of working around them, let's use them!

Some examples?

- Quantum computation
 - Exponential speedup over classical protocols
 - Why? Superpositions allow evaluating multiple states at once!

- Quantum cryptography
 - Unconditionally secure key distribution
 - Why? Measurements always affect the state of the system

Quantum Optics

- Light is excellent for communication
- Light is excellent for testing of fundamental principles

Why?

- It travels fast
- It can be easily manipulated...
- It is robust against decoherence

Brief introduction to quantum optics

Light = single mode of electromagnetic field

= Harmonic oscillator

State of light

specific superposition of various photon numbers

$$|\psi\rangle = \sum_{n=0}^{\infty} c_n |n\rangle$$

- Can be also represented by a real function
 - Wigner function $W_{\psi}(x,p)$

Quantum information processing

- Preparation of arbitrary states
- Arbitrary manipulation of the states
- Arbitrary measurement of the states

Manipulating light: Gaussian transformations

Preserve Gaussian nature of Gaussian states

 $W_{\psi}(x,p) \to W_{\psi}(x',p')$

- The basic set of operations
 - Hamiltonians of the second order
 - Phase shift
 - Displacement
 - Squeezing

squeezing

Squeezing

 Degenerate spontaneous parametric downconversion

$$\hat{H} = \omega(\hat{x}^2 - \hat{p}^2)$$
$$\hat{x} \to g\hat{x} \qquad \hat{p} \to \frac{1}{g}\hat{p}$$

- Can not be performed in single pass (gain too low)
- Needs resonator
 - Possible to generate squeezed vacuum
 - Difficult to squeeze other states due to incoupling and outcoupling losses

Squeezing, tricky way

- An unknown state is mixed with a squeezed vacuum
- The vacuum is measured
- Feed-forward is performed

27.5.2014

Experimental squeezing of single photon

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, submitted

27.5.2014

Experimental squeezing of a single photon

Y. Miwa, J. Yoshikawa, N. Iwata, M. Endo, P. Marek, R. Filip, P. van Loock, and A. Furusawa, submitted

Unsqueezing of a squeezed photon

Ο

0 90

0.1

0.0

-0.1

-0.2

0.8

0.6

0.4

0.2

0

1

p

x

180 270

-4 -4

0123456

2345678

Photon Number

Phase (degree)

360

0.8

0.6

0.4

0.2

360

Squeezing of a photon

High order Hamiltonians

- Necessary for fully universal manipulation
 - And for quantum computation and other fun applications

$$\hat{H} = \sum \omega_{jk} \hat{x}^j \hat{p}^k$$

- Not available naturally
 - Too weak,
 - Too noisy
 - Too weak and too noisy and covered by interactions with lower order

Cubic operation

 $\hat{H}_3 = \omega_3 \hat{x}^3$

 Can be in principle used to implement any operation of higher order

$$-H_{\rm n}H_{\rm m}H_{\rm n}^{\dagger}H_{\rm m}^{\dagger} \rightarrow -H_{\rm m+n-2} \rightarrow$$

How can cubic nonlinearity be performed?

- Naturally appearing cubic interactions are too weak
- Way around it:
 - Ancilla-and-measurement-and-feedforward:

How can cubic state be generated?

- $|\gamma\rangle = \int e^{i\chi x^3} |x\rangle dx$ Unphysical: infinite energy
- $e^{i\chi\hat{x}^{3}}\hat{S}|0
 angle = \hat{S}e^{i\chi'\hat{x}^{3}}|0
 angle$ Finite energy approximation

 $(1+i\chi\hat{x}^3)|0\rangle$

– Squeezing can be disregarded, for the moment

Weak cubic nonlinearity approximation

 $|0
angle + i \frac{\chi\sqrt{3}}{2\sqrt{2}} \left(\sqrt{3}|1
angle + \sqrt{2}|3
angle
ight)$ • Can be engineered on the single photon level

Emulating Quantum Cubic Nonlinearity

Mitsuyoshi Yukawa, Kazunori Miyata, Hidehiro Yonezawa, Petr Marek, Radim Filip, and Akira Furusawa, Phys. Rev. A 88, 053816.

The experimentally generated state

$$|0\rangle + i\frac{\chi\sqrt{3}}{2\sqrt{2}}\left(\sqrt{3}|1\rangle + \sqrt{2}|3\rangle\right) \qquad \begin{array}{l} F = 0.89\\ F_{|0\rangle} = 0.98\end{array}$$

Single photon subtraction on data

Analysis of cubic behavior

- The state is non-classical
 - It could correspond to the ideal state + noise
 - But does it posses cubic nonlinearity?
- Fidelity is of no use
- We need to look for alternative figures of merit

Inducing cubic operation

• Virtual application of the gate

 $\psi_{\text{out}}(x) \approx \psi_{\text{in}}(x)\psi_{\text{ancilla}}(x)$ $\hat{x} \rightarrow \hat{x} \quad \hat{p} \rightarrow \hat{p} + 3\chi\hat{x}^2$

• For a set of coherent states $|\alpha\rangle$:

$$\langle p \rangle \rightarrow \langle p \rangle + 3\chi (2\alpha^2 + 1/2)$$

Inducing nonlinearity

Inducing nonlinearity

Observing cubic nonlinearity directly

Density matrix in position representation

$$\rho(x, x') = \langle x | \hat{\rho} | x \rangle$$

• Looking at the main anti-diagonal:

$$\rho_{id}(x, -x) = \langle x | (1 + i\chi \hat{x}^3) | 0 \rangle \langle 0 | (1 - i\chi \hat{x}^3) | -x \rangle$$
$$= e^{-x^2} (1 - \chi^2 x^6 + 2i\chi x^3)$$

- Cubic nonlinearity is visible in the imaginary part

Density matrix in position representation

Density matrix in position representation

- Quantum operation can be implemented in a measurement induced way
- Highly nontrivial states, needed for these operations, can be constructed from individual photons

Thank you for the attention!

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

