Removing an incidence from a formal context

Martin Kauer and Michal Krupka

Palacký University Olomouc Czech Republic

7. 10. 2014

Motivation

- Computing a concept lattice is computationally hard.
- Slight change in input data \rightarrow recomputing the concept lattice.
- Better to use an incremental algorithm.
- Several incremental algorithms available.
- Most of them work at object/attribute level.
- We are trying different approach working at incidence level.

Why removing an incidence?

- In a sense, it can be considered a basic problem.
- A "full" row in a table no change in the structure of the concept lattice.
- Remove unwanted incidences afterwards.
- Start with a "full" context and by removing incidences acquire any context.
- Analysis of structural differences after the smallest change is interesting from theoretical point of view.
- Might lead to an efficient way of computing lattices of two similar contexts.

Problem statement

• Let $\langle X,Y,I\rangle$ (old) and $\langle X,Y,J\rangle$ (new) be formal contexts such that:

- J results from I by removing exactly one incidence;
- the removed incidence corresponds to object x_0 and attribute y_0 .
- Denote respective concept lattices $\mathcal{B}(I)$ (old) and $\mathcal{B}(J)$ (new).

	y_0	y_1	y_2		y_0	y_1	y_2
$ x_0 $	×	×		x_0		×	
x_1	×	×		x_1	×	×	
x_2			×	x_2			×

Question: Can we transform $\mathcal{B}(I)$ to $\mathcal{B}(J)$ without computing $\mathcal{B}(J)$ from scratch?

What is in the paper?

- Analysis of concept changes and structural changes upon removal of an incidence.
- Two basic algorithms based on this analysis.

We use the following four operators: For concepts $c = \langle A, B \rangle \in \mathcal{B}(I), d = \langle C, D \rangle \in \mathcal{B}(J)$ we set

$$c^{\Box} = \langle A^{\Box}, B^{\Box} \rangle = \langle A^{\uparrow_J \downarrow_J}, A^{\uparrow_J} \rangle, \qquad c_{\Box} = \langle A_{\Box}, B_{\Box} \rangle = \langle B^{\downarrow_J}, B^{\downarrow_J \uparrow_J} \rangle, d^{\boxtimes} = \langle C^{\boxtimes}, D^{\boxtimes} \rangle = \langle D^{\downarrow_I}, D^{\downarrow_I \uparrow_I} \rangle, \qquad d_{\boxtimes} = \langle C_{\boxtimes}, D_{\boxtimes} \rangle = \langle C^{\uparrow_I \downarrow_I}, C^{\uparrow_I} \rangle.$$

- Obviously $c^{\Box}, c_{\Box} \in \mathcal{B}(J)$ and $d^{\boxtimes}, d_{\boxtimes} \in \mathcal{B}(I)$. c^{\Box} (resp. c_{\Box}) is called *the upper* (resp. *lower*) *child of* c in $\mathcal{B}(J)$.
- In this case, $d^{\boxtimes} = d_{\boxtimes}$ and it is the (unique) concept from $\mathcal{B}(I)$, containing, as a rectangle, the rectangle represented by d.

Children

Proposition (child operators)

The mappings $c \mapsto c^{\Box}$, $c \mapsto c_{\Box}$, and $d \mapsto d^{\boxtimes}, d \mapsto d_{\boxtimes}$ are isotone and satisfy

$c \le c^{\Box \boxtimes},$	$d \le d^{\boxtimes \Box},$	$c^{\Box\boxtimes\Box} = c^{\Box},$	$d^{\boxtimes \Box \boxtimes} = d^{\boxtimes},$
$c \ge c_{\Box\boxtimes},$	$d\geq d_{\boxtimes\square},$	$c_{\Box\boxtimes\Box}=c_{\Box},$	$d_{\boxtimes \Box \boxtimes} = d_{\boxtimes}.$

- Shows basic properties of proposed operators.
- Compositions $\square \boxtimes, \boxtimes \square$ are closure operators.
- Compositions $\square \boxtimes, \boxtimes \square$ are interior operators.

Stable concepts

Definition (stable concepts)

Formal concepts from the intersection $\mathcal{B}(I) \cap \mathcal{B}(J)$ are called *stable*.

- Not influenced by removal of the incidence $\langle x_0, y_0 \rangle$ from *I*.
- Do not have to be recomputed.
- A set of their neighbors might change.

- Non-stable concepts play major role.
- By identifying non-stable concepts we also identify stable ones.
- They form an interval in $\mathcal{B}(I)$.

Proposition

A concept $c \in \mathcal{B}(I)$ is not stable iff $c \in [\gamma_I(x_0), \mu_I(y_0)]$.

Characterization of stable concepts

Proposition (stable concepts in $\mathcal{B}(I)$)

The following assertions are equivalent for a concept $c \in \mathcal{B}(I)$:

- c is stable,
- **2** $c \notin [\gamma_I(x_0), \mu_I(y_0)],$
- $c = c^{\Box},$
- $0 c = c_{\Box},$

Proposition (stable concepts in $\mathcal{B}(J)$)

The following assertions are equivalent for a concept $d \in \mathcal{B}(J)$:

- d is stable,
- $\ \ \, 0 \ \ \, d = d^{\boxtimes},$
- **3** d^{\boxtimes} is stable.

The role of child concepts

Recall that for $c \in \mathcal{B}(I)$ c^{\Box} (resp. c_{\Box}) is called *the upper* (resp. *lower*) *child of* c in $\mathcal{B}(J)$.

Proposition

A non-stable concept $d \in \mathcal{B}(J)$ is a (upper or lower) child of exactly one concept $c \in \mathcal{B}(I)$. This concept is non-stable and satisfies $c = d^{\boxtimes} = d_{\boxtimes}$.

- Shows importance of child concepts.
- Relation between non-stable concepts form $\mathcal{B}(J)$ and $\mathcal{B}(I)$.

Transforming concepts

The previous leads to the following simple way of constructing $\mathcal{B}(J)$ from $\mathcal{B}(I)$.

For each $c \in \mathcal{B}(I)$ the following has to be done:

- **(**) If c is stable, then it has to be added to $\mathcal{B}(J)$.
- If c is not stable, then each its non-stable child (i.e., each non-stable element of {c[□], c_□}) has to be added to B(J).

- All proper concepts are added exactly once.
- None will be omitted.

Transforming the structure

- Transforming concepts has been shown to be easy.
- Transforming the structure of concept lattice is more difficult.
- For this, more insight into structural properties of $\Box \boxtimes$, $\Box \boxtimes$ is required.
- The main role of operators $\Box \boxtimes, \Box \boxtimes$.

Proposition

Each stable concept is a fixpoint of both $\square \boxtimes$ and $\square \boxtimes$.

Transforming the structure

Recall the following:

- $\square \boxtimes$ is an interior operator on $\mathcal{B}(I)$;
- $\square \boxtimes$ is a closure operator on $\mathcal{B}(I)$;
- also $c \in \mathcal{B}(I)$, $c_{\Box \boxtimes} \leq c \leq c^{\Box \boxtimes}$;

Thus, we can consider the interval $[c_{\Box\boxtimes}, c^{\Box\boxtimes}] \subseteq \mathcal{B}(I)$.

Proposition

For any $c \in \mathcal{B}(I)$, each concept from $[c_{\Box\boxtimes}, c^{\Box\boxtimes}] \setminus \{c\}$ is stable.

Transforming the structure

Another important structural property:

Proposition

Let $c \in \mathcal{B}(I)$ be a non-stable concept. If c is a fixpoint of $\Box \boxtimes$, then each $c' \leq c$ is also a fixpoint of $\Box \boxtimes$. If c is a fixpoint of $\Box \boxtimes$, then each $c' \geq c$ is also a fixpoint of $\Box \boxtimes$.

- Premise of non-stability is necessary.
- Gives us restrictions on possible neighbors.

Selected consequences

• Using previous we obtain restriction of neighborhood relationship w.r.t. proposed operators.

Table: Possible neighborhood relationship in $\mathcal{B}(I)$.

concept / neighbors	$c' = c'^{\Box\boxtimes},$ $c' = c'_{\Box\boxtimes}$	$\begin{array}{l} c' \neq {c'}^{\Box\boxtimes},\\ c' = {c'}_{\Box\boxtimes} \end{array}$	$\begin{array}{l} c' = c'^{\Box\boxtimes},\\ c' \neq c'_{\Box\boxtimes} \end{array}$	$\begin{array}{c} c' \neq c'^{\Box\boxtimes}, \\ c' \neq c'_{\Box\boxtimes} \end{array}$
$c = c^{\Box \boxtimes}, c = c_{\Box \boxtimes}$	7./	7	\checkmark	
$c \neq c^{\Box \boxtimes}, c = c_{\Box \boxtimes}$	\checkmark	\nearrow	\checkmark	\checkmark
$c = c^{\Box\boxtimes}, c \neq c_{\Box\boxtimes}$	7	\nearrow	\nearrow	7
$c \neq c^{\Box\boxtimes}, c \neq c_{\Box\boxtimes}$		\nearrow	\checkmark	\nearrow

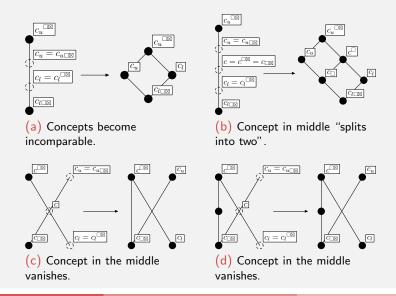
Structure of the transformation algorithm

Algorithm 1 Transforming $\mathcal{B}(I)$ with structural information into $\mathcal{B}(J)$.

procedure TRANSFORMCONCEPTLATTICE($\mathcal{B}(I)$) for all $c = \langle A, B \rangle \in [\gamma_I(x_0), \mu_I(y_0)]$ from least to largest w.r.t. \sqsubseteq do if $c = c^{\Box \boxtimes}$ and $c = c_{\Box \boxtimes}$ then \triangleright Concept will split. $\mathcal{B}(I) \leftarrow \mathcal{B}(I) \setminus \{c\};$ $\mathcal{B}(I) \leftarrow \mathcal{B}(I) \cup SplitConcept(c);$ else if $c \neq c^{\Box \boxtimes}$ and $c = c_{\Box \boxtimes}$ then ▷ Extent will be smaller. $A \leftarrow A \setminus \{x_0\};$ else if $c = c^{\Box \boxtimes}$ and $c \neq c_{\Box \boxtimes}$ then \triangleright Intent will be smaller. RelinkReducedIntent(c); $B \leftarrow B \setminus \{y_0\};$ else if $c \neq c^{\Box \boxtimes}$ and $c \neq c_{\Box \boxtimes}$ then ▷ Concept will vanish. $\mathcal{B}(I) \leftarrow \mathcal{B}(I) \setminus \{c\};$ UnlinkVanishedConcept(c);end if end for end procedure

Example

Examples of transformations of non-stable concepts from $\mathcal{B}(I)$ into concepts of $\mathcal{B}(J)$.



Kauer, Krupka (Palacký University)

Consider following contexts:

	y_1	y_2	y_3	y_4	y_0
x_0		×		×	×
x_1			×	×	×
x_2				×	
x_3	×	×			×
x_4		×			

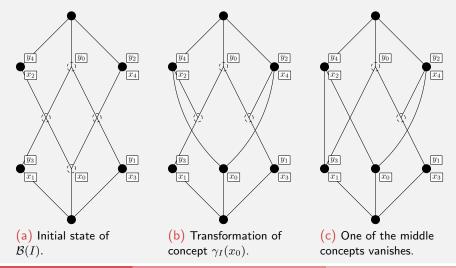
(a) The old context $\langle X, Y, I \rangle$.

	y_1	y_2	y_3	y_4	y_0
x_0		×		×	
x_1			×	×	×
x_2				×	
x_3	×	×			×
x_4		×			

(b) The new context $\langle X, Y, J \rangle$.

Example

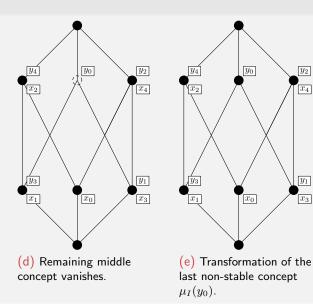
Each picture captures the state of the lattice after transformation of a non-stable concept. Non-stable concepts are drawn with dashed lines.



Kauer, Krupka (Palacký University)

Removing an incidence

Example



Conclusion

- We presented analysis of possible structural changes in a concept lattice upon removal of an incidence.
- Two algorithms based on this analysis.
- Proposed algorithms could be further optimized.
- We have a few results that could be used for optimization of proposed algorithms.
- Preliminary experiments show that usually there is considerably less non-stable concepts than stable ones cutting running time of proposed algorithms.

Remarks

- Updating a concept lattice after removal of an incidence seems to be, in a sense, easier.
- Removing an incidence seems more natural then adding it.
- By removing incidences we can generate all concept lattices.
- It came to our attention that R. Wille coined this "killing a cross" in the early days of FCA and considered it a important step to solve some theoretical problems.