Removing an incidence from a formal context

Martin Kauer and Michal Krupka

Palacký University
Olomouc
Czech Republic
7. 10. 2014

Motivation

- Computing a concept lattice is computationally hard.
- Slight change in input data \rightarrow recomputing the concept lattice.
- Better to use an incremental algorithm.
- Several incremental algorithms available.
- Most of them work at object/attribute level.
- We are trying different approach - working at incidence level.

Why removing an incidence?

- In a sense, it can be considered a basic problem.
- A "full" row in a table - no change in the structure of the concept lattice.
- Remove unwanted incidences afterwards.
- Start with a "full" context and by removing incidences acquire any context.
- Analysis of structural differences after the smallest change is interesting from theoretical point of view.
- Might lead to an efficient way of computing lattices of two similar contexts.

Problem statement

- Let $\langle X, Y, I\rangle$ (old) and $\langle X, Y, J\rangle$ (new) be formal contexts such that:
- J results from I by removing exactly one incidence;
- the removed incidence corresponds to object x_{0} and attribute y_{0}.
- Denote respective concept lattices $\mathcal{B}(I)$ (old) and $\mathcal{B}(J)$ (new).

	$\boldsymbol{y}_{\mathbf{0}}$	y_{1}	y_{2}
$\boldsymbol{x}_{\mathbf{0}}$	\times	\times	
x_{1}	\times	\times	
x_{2}			\times

	$\boldsymbol{y}_{\mathbf{0}}$	y_{1}	y_{2}
$\boldsymbol{x}_{\mathbf{0}}$		\times	
x_{1}	\times	\times	
x_{2}			\times

Question: Can we transform $\mathcal{B}(I)$ to $\mathcal{B}(J)$ without computing $\mathcal{B}(J)$ from scratch?

What is in the paper?

- Analysis of concept changes and structural changes upon removal of an incidence.
- Two basic algorithms based on this analysis.

We use the following four operators:
For concepts $c=\langle A, B\rangle \in \mathcal{B}(I), d=\langle C, D\rangle \in \mathcal{B}(J)$ we set

$$
\begin{array}{lll}
c^{\square}=\left\langle A^{\square}, B^{\square}\right\rangle=\left\langle A^{\uparrow_{J} \downarrow_{J}}, A^{\uparrow_{J}}\right\rangle, & & c_{\square}=\left\langle A_{\square}, B_{\square}\right\rangle=\left\langle B^{\downarrow_{J}}, B^{\downarrow_{J} \uparrow_{J}}\right\rangle, \\
d^{\boxtimes}=\left\langle C^{\boxtimes}, D^{\boxtimes}\right\rangle=\left\langle D^{\downarrow_{I}}, D^{\downarrow_{I} \uparrow_{I}}\right\rangle, & & d_{\boxtimes}=\left\langle C_{\boxtimes}, D_{\boxtimes}\right\rangle=\left\langle C^{\uparrow_{I} \downarrow_{I}}, C^{\uparrow_{I}}\right\rangle .
\end{array}
$$

- Obviously $c^{\square}, c_{\square} \in \mathcal{B}(J)$ and $d^{\boxtimes}, d_{\boxtimes} \in \mathcal{B}(I)$. c^{\square} (resp. c_{\square}) is called the upper (resp. lower) child of c in $\mathcal{B}(J)$.
- In this case, $d^{\boxtimes}=d_{\boxtimes}$ and it is the (unique) concept from $\mathcal{B}(I)$, containing, as a rectangle, the rectangle represented by d.

Children

Proposition (child operators)

The mappings $c \mapsto c^{\square}, c \mapsto c \square$, and $d \mapsto d^{\boxtimes}, d \mapsto d \boxtimes$ are isotone and satisfy
$c \leq c^{\square \boxtimes}$,
$d \leq d^{\boxtimes \square}$,
$c^{\square \boxtimes \square}=c^{\square}$,
$d^{\boxtimes \square \boxtimes}=d^{\boxtimes}$,
$c \geq c_{\square \boxtimes}, \quad d \geq d_{\boxtimes \square}$,
$c_{\square \square \square}=c_{\square}$,
$d_{\boxtimes \square \boxtimes}=d_{\boxtimes}$.

- Shows basic properties of proposed operators.
- Compositions $\square \boxtimes,{ }^{\boxed{ }} \square$ are closure operators.
- Compositions $\square \otimes, \otimes \square$ are interior operators.

Stable concepts

Definition (stable concepts)

Formal concepts from the intersection $\mathcal{B}(I) \cap \mathcal{B}(J)$ are called stable.

- Not influenced by removal of the incidence $\left\langle x_{0}, y_{0}\right\rangle$ from I.
- Do not have to be recomputed.
- A set of their neighbors might change.

Non-stable concepts

- Non-stable concepts play major role.
- By identifying non-stable concepts we also identify stable ones.
- They form an interval in $\mathcal{B}(I)$.

Proposition

A concept $c \in \mathcal{B}(I)$ is not stable iff $c \in\left[\gamma_{I}\left(x_{0}\right), \mu_{I}\left(y_{0}\right)\right]$.

Characterization of stable concepts

Proposition (stable concepts in $\mathcal{B}(I)$)

The following assertions are equivalent for a concept $c \in \mathcal{B}(I)$:
(1) c is stable,
(c) $c \notin\left[\gamma_{I}\left(x_{0}\right), \mu_{I}\left(y_{0}\right)\right]$,

- $c=c^{\square}$,
- $c=c_{\square}$,
- $c^{\square}=c_{\square}$.

Proposition (stable concepts in $\mathcal{B}(J)$)

The following assertions are equivalent for a concept $d \in \mathcal{B}(J)$:
(1) d is stable,
(1) $d=d^{\boxtimes}$,
(0) d^{\boxtimes} is stable.

The role of child concepts

Recall that for $c \in \mathcal{B}(I) c^{\square}$ (resp. c_{\square}) is called the upper (resp. lower) child of c in $\mathcal{B}(J)$.

Proposition

A non-stable concept $d \in \mathcal{B}(J)$ is a (upper or lower) child of exactly one concept $c \in \mathcal{B}(I)$. This concept is non-stable and satisfies $c=d^{\boxtimes}=d_{\boxtimes}$.

- Shows importance of child concepts.
- Relation between non-stable concepts form $\mathcal{B}(J)$ and $\mathcal{B}(I)$.

Transforming concepts

The previous leads to the following simple way of constructing $\mathcal{B}(J)$ from $\mathcal{B}(I)$.

For each $c \in \mathcal{B}(I)$ the following has to be done:
(1) If c is stable, then it has to be added to $\mathcal{B}(J)$.
(2) If c is not stable, then each its non-stable child (i.e., each non-stable element of $\left\{c^{\square}, c_{\square}\right\}$) has to be added to $\mathcal{B}(J)$.

- All proper concepts are added exactly once.
- None will be omitted.

Transforming the structure

- Transforming concepts has been shown to be easy.
- Transforming the structure of concept lattice is more difficult.
- For this, more insight into structural properties of ${ }^{\square \boxtimes}$, $\square \boxtimes$ is required.
- The main role of operators ${ }^{\square \boxtimes}$, $\square \boxtimes$.

Proposition

Each stable concept is a fixpoint of both ${ }^{\square \boxtimes}$ and $\square \boxtimes$.

Transforming the structure

Recall the following:

- $\square \boxtimes$ is an interior operator on $\mathcal{B}(I)$;
- ${ }^{\square}$ is a closure operator on $\mathcal{B}(I)$;
- also $c \in \mathcal{B}(I), c_{\square \boxtimes} \leq c \leq c^{\square \boxtimes}$;

Thus, we can consider the interval $\left[c_{\square \boxtimes}, c^{\square \boxtimes}\right] \subseteq \mathcal{B}(I)$.

Proposition

For any $c \in \mathcal{B}(I)$, each concept from $\left[c \square \boxtimes, c^{\square \boxtimes}\right] \backslash\{c\}$ is stable.

Transforming the structure

Another important structural property:

Proposition

Let $c \in \mathcal{B}(I)$ be a non-stable concept. If c is a fixpoint of ${ }^{\square \boxtimes}$, then each $c^{\prime} \leq c$ is also a fixpoint of ${ }^{\square \boxtimes}$. If c is a fixpoint of $\square \boxtimes$, then each $c^{\prime} \geq c$ is also a fixpoint of $\square \boxtimes$.

- Premise of non-stability is necessary.
- Gives us restrictions on possible neighbors.

Selected consequences

- Using previous we obtain restriction of neighborhood relationship w.r.t. proposed operators.

Table: Possible neighborhood relationship in $\mathcal{B}(I)$.

concept $/$ neighbors	$c^{\prime}=c^{\prime \square \boxtimes}$ $c^{\prime}=c^{\prime} \square \boxtimes$	$c^{\prime} \neq c^{\prime \square \boxtimes}$, $c^{\prime}=c^{\prime} \square \boxtimes$	$c^{\prime}=c^{\square \boxtimes}$ $c^{\prime} \neq c^{\prime} \square \boxtimes$	$c^{\prime} \neq c^{\prime \square \boxtimes}$ $c^{\prime} \neq c^{\prime} \square \boxtimes$
$c=c^{\square \boxtimes}, c=c_{\square \boxtimes}$	$\nearrow \swarrow$	\nearrow	\swarrow	
$c \neq c^{\square \boxtimes}, c=c_{\square \boxtimes}$	\swarrow	$\nearrow \swarrow$	\swarrow	\swarrow
$c=c^{\square \boxtimes}, c \neq c_{\square \boxtimes}$	\nearrow	\nearrow	$\nearrow \swarrow$	\nearrow
$c \neq c^{\square \boxtimes}, c \neq c_{\square \boxtimes}$		\nearrow	\swarrow	$\nearrow \swarrow$

Structure of the transformation algorithm

```
Algorithm 1 Transforming \(\mathcal{B}(I)\) with structural information into \(\mathcal{B}(J)\).
    procedure TransformConceptLattice \((\mathcal{B}(I))\)
        for all \(c=\langle A, B\rangle \in\left[\gamma_{I}\left(x_{0}\right), \mu_{I}\left(y_{0}\right)\right]\) from least to largest w.r.t. \(\sqsubseteq\) do
        if \(c=c^{\square \boxtimes}\) and \(c=c_{\square \boxtimes}\) then
            \(\mathcal{B}(I) \leftarrow \mathcal{B}(I) \backslash\{c\} ;\)
        \(\mathcal{B}(I) \leftarrow \mathcal{B}(I) \cup\) SplitConcept \((c) ;\)
        else if \(c \neq c^{\square \boxtimes}\) and \(c=c_{\square \boxtimes}\) then \(\quad \triangleright\) Extent will be smaller.
        \(A \leftarrow A \backslash\left\{x_{0}\right\} ;\)
        else if \(c=c^{\square \boxtimes}\) and \(c \neq c_{\square \boxtimes}\) then \(\triangleright\) Intent will be smaller.
        RelinkReducedIntent(c);
        \(B \leftarrow B \backslash\left\{y_{0}\right\} ;\)
        else if \(c \neq c^{\square \boxtimes}\) and \(c \neq c_{\square \boxtimes}\) then \(\triangleright\) Concept will vanish.
        \(\mathcal{B}(I) \leftarrow \mathcal{B}(I) \backslash\{c\} ;\)
        UnlinkVanishedConcept(c);
        end if
    end for
    end procedure
```


Example

Examples of transformations of non-stable concepts from $\mathcal{B}(I)$ into concepts of $\mathcal{B}(J)$.

(a) Concepts become incomparable.

(c) Concept in the middle vanishes.
(b) Concept in middle "splits into two".

(d) Concept in the middle vanishes.

Consider following contexts:

	y_{1}	y_{2}	y_{3}	y_{4}	$\boldsymbol{y}_{\mathbf{0}}$
$\boldsymbol{x}_{\mathbf{0}}$		\times		\times	\times
x_{1}			\times	\times	\times
x_{2}				\times	
x_{3}	\times	\times			\times
x_{4}		\times			

(a) The old context $\langle X, Y, I\rangle$.

	y_{1}	y_{2}	y_{3}	y_{4}	$\boldsymbol{y}_{\mathbf{0}}$
$\boldsymbol{x}_{\mathbf{0}}$		\times		\times	
x_{1}			\times	\times	\times
x_{2}				\times	
x_{3}	\times	\times			\times
x_{4}		\times			

(b) The new context $\langle X, Y, J\rangle$.

Example

Each picture captures the state of the lattice after transformation of a non-stable concept. Non-stable concepts are drawn with dashed lines.

(a) Initial state of $\mathcal{B}(I)$.

(b) Transformation of concept $\gamma_{I}\left(x_{0}\right)$.

(c) One of the middle concepts vanishes.

Example

(d) Remaining middle concept vanishes.

(e) Transformation of the last non-stable concept $\mu_{I}\left(y_{0}\right)$.

Conclusion

- We presented analysis of possible structural changes in a concept lattice upon removal of an incidence.
- Two algorithms based on this analysis.
- Proposed algorithms could be further optimized.
- We have a few results that could be used for optimization of proposed algorithms.
- Preliminary experiments show that usually there is considerably less non-stable concepts than stable ones - cutting running time of proposed algorithms.

Remarks

- Updating a concept lattice after removal of an incidence seems to be, in a sense, easier.
- Removing an incidence seems more natural then adding it.
- By removing incidences we can generate all concept lattices.
- It came to our attention that R. Wille coined this "killing a cross" in the early days of FCA and considered it a important step to solve some theoretical problems.

