Fuzzy logic and knowledge structures

Michal Krupka

Palacký University, Olomouc, Czech Republic

Purpose of the talk

Purpose of the talk

• introduce fuzzy logic [2,3]

Purpose of the talk

- introduce fuzzy logic [2,3]
- show a possibility of using it in knowledge structures [1]

Approaches to uncertainty

• Probability

Approaches to uncertainty

• Probability (lack of information)

- Probability (lack of information)
- Fuzzy logic

- Probability (lack of information)
- Fuzzy logic (vague concepts in human language)

- Probability (lack of information)
- Fuzzy logic (vague concepts in human language)
- ...others

- Tall man
- Low temperature
- Good student

- Tall man
- Low temperature
- Good student

These concepts do not have sharp boundaries.

- Tall man
- Low temperature
- Good student

These concepts do not have sharp boundaries.

We assign to each individual *the degree* to which the concept applies to him/her/it. The degree is usually from [0, 1]. We obtain a *fuzzy set*.

- Tall man
- Low temperature
- Good student

These concepts do not have sharp boundaries.

We assign to each individual *the degree* to which the concept applies to him/her/it. The degree is usually from [0, 1]. We obtain a *fuzzy set*.

Remarks

Remarks

• Inexact concepts are good.

- Inexact concepts are good.
- Exact shapes of fuzzy sets come from an expert. (However, they do not matter.)

- Inexact concepts are good.
- Exact shapes of fuzzy sets come from an expert. (However, they do not matter.)
- Differences between fuzziness and probability!

Residuated lattices

Definition

A complete residuated lattice: algebra $\mathbf{L} = \langle L, \wedge, \vee, \otimes, \rightarrow, 0, 1 \rangle$

- $\textcircled{0} \quad \langle L, \wedge, \vee, 0, 1 \rangle \text{ is a complete lattice}$
- 2 $\langle L, \otimes, 1 \rangle$ is a commutative monoid
- **3** \otimes and \rightarrow satisfy adjointness property: $a \otimes b \leq c$ iff $a \leq b \rightarrow c$.

Examples on $\left[0,1\right]$ and its subsets

$$\mathbf{L} = \langle [0,1], \min, \max, \otimes,
ightarrow, 0, 1
angle$$
 ,

- Łukasiewicz: $a \otimes b = \max(a+b-1,0)$, $a \to b = \min(1-a+b,1)$.
- Gödel (minimum): $a \otimes b = \min(a, b)$, $a \to b = \begin{cases} 1 & \text{if } a \leq b, \\ b & \text{otherwise.} \end{cases}$

- Goguen (product): $a \otimes b = a \cdot b$, $a \to b = \begin{cases} 1 & \text{if } a \leq b, \\ \frac{b}{a} & \text{otherwise.} \end{cases}$

Fuzzy sets (L-sets)

An L-set A in a universe X: mapping $A: X \to L$ A(x): the degree to which x is in A.

Fuzzy sets (L-sets)

An L-set A in a universe X: mapping $A: X \to L$ A(x): the degree to which x is in A.

Operations with L-sets

- Intersection: an L-set $A\cap B$ such that $(A\cap B)(x)=A(x)\wedge B(x)$ for each $x\in X$
- Union: an L-set $A \cup B$ such that $(A \cup B)(x) = A(x) \vee B(x)$ for each $x \in X$

Fuzzy sets (L-sets)

An L-set A in a universe X: mapping $A: X \to L$ A(x): the degree to which x is in A.

Operations with L-sets

- Intersection: an L-set $A\cap B$ such that $(A\cap B)(x)=A(x)\wedge B(x)$ for each $x\in X$
- Union: an L-set $A \cup B$ such that $(A \cup B)(x) = A(x) \vee B(x)$ for each $x \in X$

Subsethood relation

- $A \subseteq B$ if $A(x) \leq B(x)$ for each x
- More generally: *subsethood degree*

$$S(A,B) = \bigwedge_{x \in X} A(x) \to B(x)$$

Example

- A(x): x understands German.
- B(x): x understands Dresden dialect.

	A(x)	B(x)	$A(x) \wedge B(x)$	$A(x) \lor B(x)$	$A(x) \otimes B(x)$	$A(x) \to B(x)$
x_1	0.1	0.2	0.1	0.2	0.0	1.0
x_2	1.0	0.8	0.8	1.0	0.8	0.8
x_2	0.6	0.5	0.5	0.6	0.1	0.9

In particular, we have

$$S(A,B) = \bigwedge_{x \in X} A(x) \to B(x) = 0.8$$

They allow intermediate degrees (levels) of mastering an item.

They allow intermediate degrees (levels) of mastering an item.

- Johannes Guttenberg invented the printing press in 1440. Is 1441 a correct answer?
- Quantitative results: high jump.
- Ability to write poems, sing, understand a foreign language...

They allow intermediate degrees (levels) of mastering an item.

- Johannes Guttenberg invented the printing press in 1440. Is 1441 a correct answer?
- Quantitative results: high jump.
- Ability to write poems, sing, understand a foreign language...

They allow fuzzy reasoning about items, knowledge states, skills...

- If a student cannot use past tense then he cannot use irregular verbs as well.

Graded knowledge structures

Definition

Graded knowledge state on Y is graded (fuzzy) set K in Y. Graded knowledge structure on Y is any family $\mathcal{K} \subseteq \mathbf{L}^Y$ of graded knowledge states which contains \emptyset and Y.

- $\bullet~Y$. . . set of problems/questions/items
- $\bullet \ K(y) \in {\bf L}$. . . the degree to which an individual in knowledge state K has mastered problem y

Definition

Graded knowledge space on Y is graded (fuzzy) knowledge structure \mathcal{K} satisfying: (i) if $K_i \in \mathcal{K}$, $i \in I$, then $\bigcup_{i \in I} K_i \in \mathcal{K}$ (closed under union), (ii) if $K \in \mathcal{K}$ and $a \in L$, then $a^* \otimes K \in \mathcal{K}$ (closed under \otimes -multiplication).

First results on graded knowledge structures and graded knowledge spaces can be found in [1].

Michal Krupka (Palacký University)

References

- [1] Bartl E., Belohlavek R.: Knowledge spaces with graded knowledge states. Information Sciences 181(8)(2011), 1426-1439.
- [2] Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers, Norwell, USA, 2002.
- [3] Klir G. J., Yuan B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. PrenticeHall, Upper Saddle River, NJ, 1995.