System for Identification of Mutations using Mass Spectrometry of Proteome

Miroslav Hruška, Jiří Voller, Petr Džubák, Marián Hajdúch

Outline

- Motivation
- Peptide identification

Mutation identification

- Dymka
- Enumeration Algorithm
- Peptide Alteration Cracker

ヘロト 人間 ト 人 ヨ ト 人

ENBIK 2014

Motivation Peptide identification

ENBIK 2014

イロト イポト イヨト イヨト

Outline

Motivation

Peptide identification

2 Mutation identification

- Oymka
- Enumeration Algorithm
- Peptide Alteration Cracker

Motivation Peptide identification

Diseases and alterations

- typical cancer cell carry alterations in up to hundreds of genes
- knowledge of mutation profile helps us to understand which biological processes are altered and select therapy accordingly
- alteration screening is—in high-throughput manner—done at nucleic acid level by SNP chips and NGS sequencing
- our interest: utilization of mass spectrometry for mutation screening

Motivation Peptide identification

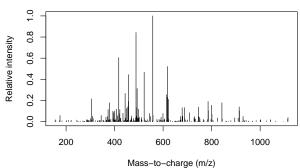
ENBIK 2014

イロト イポト イヨト イヨト

ъ

Outline

- Motivation
- Peptide identification


2 Mutation identification

- Oymka
- Enumeration Algorithm
- Peptide Alteration Cracker

Motivation Peptide identification

MS² spectrum

The task: Given MS^2 spectrum, determine the molecule, which produced it.¹

 $^{1}MS^{2}$ spectrum shows fragment ion abundance and depends on fragmentation method.

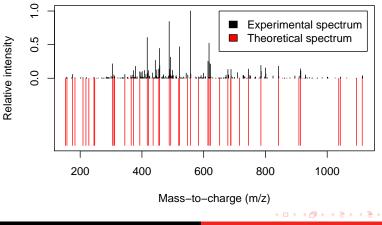
Spectrum for VGAHAGEYGAEALER/3

ъ

Motivation Peptide identification

Peptide database search

Ioad protein sequences


- Create theoretical spectrum for candidate peptides²
- evaluate similarity between theoretical and experimental spectrum

Advantages & Disadvantages

- + straightforward to use with any set of proteins
- does not take naturally into account intensity of peaks

Experimental and theoretical spectrum

Spectrum for VGAHAGEYGAEALER/3

ENBIK 2014

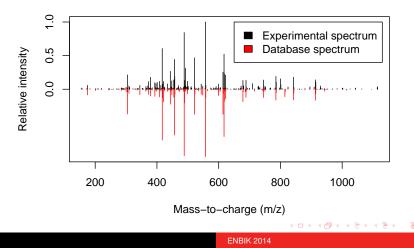
ъ

Motivation Peptide identification

Spectral database search

- Ioad database of confirmed peptide spectra
- evaluate similarity between experimental and database spectrum

Advantages & Disadvantages


- + naturally takes into consideration intensity of peaks
- + faster than peptide database search
- only known spectra

ヘロト 人間 ト 人 ヨ ト 人

-∃->

Experimental and database spectrum

Spectrum for VGAHAGEYGAEALER/3

Motivation Peptide identification

De-novo sequencing approach

- start from observed peaks
- explain *m/z* differences for peaks
- complete fragmentation and data of very high quality essential
- used mainly for extraction of tags³ from spectrum

Advantages & Disadvantages

- + in idealized form: database not needed
- + orthogonal approach with respect to database search
- incomplete fragmentation is very common

³Short, fixed-length chains of amino-acids.

イロン イボン イヨン イヨン

Mutation identification methods for proteomics

Available methods:

- de-novo peptide tagging and peptide reconstruction⁴
- error-tolerant peptide database search⁵

Our method:

• peptide database search using recreated proteome⁶

Other possible methods:

• spectral database search with update of corresponding fragment ions⁷

⁴With or without reference database guidance.

⁵Available in MASCOT, X!Tandem.

⁶Actually peptidome.

⁷Potentially coupled with prediction of intensity update.

Dymka Enumeration Algorithm Peptide Alteration Cracker

Outline

Introduction

- Motivation
- Peptide identification

2 Mutation identification

Oymka

- Enumeration Algorithm
- Peptide Alteration Cracker

Dymka—reliable identification system

Motto: "Reliable identification of peptides from MS² spectra."

Integrated with:

- 5 peptide database search engines⁸
- 2 spectral database search engines⁹
- 3 de-novo systems¹⁰

Other properties:

- cluster-enabled, deployed at IMTM (250+ cores)
- statistical evaluation based on target-decoy approach.

⁹Pepitome, SpectraST

 $\exists \rightarrow$

⁸crux (Sequest), MASCOT, MyriMatch, OMSSA, X!Tandem

¹⁰CompNovoCID, DirecTag, PepNovo

Dymka Enumeration Algorithm Peptide Alteration Cracker

Rationale

- peptide identification systems use different algorithms of evaluation
- crucial property—evaluation of false discovery rate for search systems is possible
- addition of a search engine could not make things worse, i.e.: could not bias results—potential of algorithm for confident identification is evaluated using target-decoy approach

ヘロト 人間 ト 人 ヨ ト 人

Dymka Enumeration Algorithm Peptide Alteration Cracker

Target-decoy approach

- for use with database systems
- search engines are given decoyed databases
- databases consist of two equal-sized parts
 - target—what we are searching for
 - decoy—what, we know, is not in the analyzed sample
- then each match to decoy part is incorrect
- each score, say s, is associated with q-value
 - the proportion of decoy matches with score $\geq s$

Example of conflicting information

 reliability of match could be established and the conflicting information can be analyzed

Example of conflicting information

consider a candidate peptide for a spectrum

	scan numb 12311		e ptide NATQALGR	charge 2	MZ 674.8461	RT 3192.8735		
its s	• its scores and associated q-values across search engines							
score q-value	SpectraST 0.683 0.0	Pepitome 148.642 0.0	MyriMatch 21.521 0.7139	OMSSA NA NA	X!Tandem NA NA	crux 723.587 0.0	Mascot 19.42 0.02877	

search engine	q-value	interpretation
crux, Pepitome, SpectraST	≤ 0.01	confident match
MASCOT, MyriMatch	> 0.01	non-confident match
OMSSA, XITandem	NA	no report for match

Dymka Enumeration Algorithm Peptide Alteration Cracker

Outline

Introduction

- Motivation
- Peptide identification

2 Mutation identification

- Oymka
- Enumeration Algorithm
- Peptide Alteration Cracker

Recreating proteome/peptidome

- to use peptide database search for identification of mutations, we need to generate proteome
- we are not interested in completely mutated proteins, but in a series of proteins as a result of various combinations of alterations
- proteins are not identified as a whole—they're inferred from identified peptides¹¹
- we do not have to generate variously altered proteome, which becomes infeasible¹²
- we are actually interested in altered peptidome

¹²It can be considered infeasible when number of alterations \gtrsim 20. It is common to have \geq 50 alterations per protein.

¹¹By means of proteolytic digests.

Naïve, combinatorial algorithm

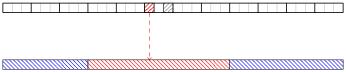
• main use-just for clarification what needs to be solved

Algorithm 1 Naïve enumeration algorithm

- 1: procedure NAÏVE-ENUMERATE(alts, mRNA)
- 2: $combs \leftarrow COMBINATIONS(alts)$
- 3: for $c \in combs$ do
- 4: $protein \leftarrow TRANSLATE(UPDATE(mRNA, c))$
- 5: $peptides \leftarrow DIGEST(protein)$
- 6: APPEND-OUTPUT(peptides)
- 7: end for
- 8: end procedure
 - as was said in previous slide, this algorithm becomes infeasible quickly

Mutation induced difference in pattern

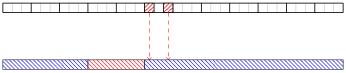
Reference proteolytic pattern


DNA/RNA

Mutation induced difference in pattern

Reference proteolytic pattern

DNA/RNA

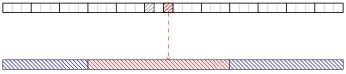


Alteration induced proteolytic pattern

Mutation induced difference in pattern

Reference proteolytic pattern

DNA/RNA


Alteration induced proteolytic pattern

ENBIK 2014

Mutation induced difference in pattern

Reference proteolytic pattern

DNA/RNA

Alteration induced proteolytic pattern

ENBIK 2014

Dymka Enumeration Algorithm Peptide Alteration Cracker

Enumeration algorithm

Definition

Any sequence of alterations which applied to given mRNA changes proteolytic digest pattern when translated is called Proteolytic-Digest Difference Introducer, shortened as PDDI.

Algorithm's main steps:

- identification of relevant PDDIs—these change digest
- If or each combination of non-overlapping PDDIs: digestion of protein into peptides
- then just combinations over alterations in scope of peptide—because digest pattern remains the same

Dymka Enumeration Algorithm Peptide Alteration Cracker

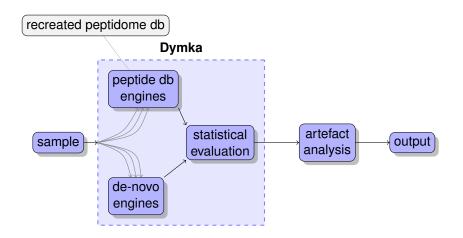
ENBIK 2014

イロト イポト イヨト イヨト

Outline

Introduction

- Motivation
- Peptide identification


2 Mutation identification

- Oymka
- Enumeration Algorithm
- Peptide Alteration Cracker

Introduction Dymk Mutation identification Conclusion Peptic

Dymka Enumeration Algorithm Peptide Alteration Cracker

System overview

ENBIK 2014

イロト 不得 とくほ とくほ とう

ъ

Dymka Enumeration Algorithm Peptide Alteration Cracker

Peptide Alteration Cracker

- identification of altered peptides using:
 - peptide database search and generated peptidome
 - de-novo approach and peptide reconstruction
- generation of peptidome based on user-provided genomic alterations
 - support for multiple formats-vcf, COSMIC, ICGC, raw csv
 - automatic detection of coordinate system, strand information inference¹³
 - support for different protein models¹⁴
- encapsulated in web interface

¹³Done by searching for maximum correlation of reference nucleotides (from alterations source) with genome.

14Currently, only ENSEMBL protein models are available.

Artefact analysis

Incomplete fragmentation artefacts:

- fragmentation prior to MS² is often incomplete process
 subchain of peptide can have no support from fragment ions
- however, the altered part of peptide should be supported by fragment ions to establish presence of alteration

Other artefacts:

- mass(alt. AA) \approx mass(ref. AA)¹⁵
- mass(alt. AA + variable PTM^{16}) \approx mass(ref. AA)

¹⁶Post-translational modification.

イロト 不得 とくほ とくほう

¹⁵Leucine/isoleucine as an example.

Transcriptomics-proteomics experiment

Experiment:

- transcriptome sequencing and mass spectrometry of proteome performed at IMTM
- cancer cell-line HCT116
- Expectations:
 - mass spectrometry is less sensitive than NGS—thus we would expect to identify higher ratio of more abundant alterations

Dymka Enumeration Algorithm Peptide Alteration Cracker

Results from experiment

 the table sums up the behavior with different thresholds of number of reads of alterations

Number of reads	\geq 500	\geq 1000	\geq 2000	\geq 4000
Alterations	1239	580	245	153
Identified ($q \le 0.1$)	100	93	91	58
Ratio	8.07 %	16 %	37.14 %	37.9 %
Identified ($q \le 0.01$)	61	56	54	42
Ratio	4.92 %	9.65 %	22.04 %	27.45 %

 we can identify about 20–30% of high-abundant alterations sequenced on the transcriptomics level

- mass spectrometry can be, in limited way, used for screening of high-abundant alterations
- mass spectrometers are continuously improving, so it is expected that their sensitivity will be higher as time progresses
- one advantage over genomic/transcriptomic sequencing is the ability to observe post-translational modifications

Thank you for your attention.

