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The concept of basic algebra was introduced as a common
generalization of an MV-algebra and an orthomodular lattice.
Remember that MV-algebras serve as an algebraic axiomatization of
the so-called Łukasiewicz many-valued logics and orthomodular
lattices form an algebraic counterpart of the logic of quantum
mechanics. Hence, basic algebras form a common algebraic
axiomatization of both logics mentioned above.

Recall that a basic algebra is an algebra A = (A;⊕,¬,0) of type
(2,1,0) satisfying the following identities

(B1) x ⊕0 = x

(B2) ¬¬x = x

(B3) ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

(B4) ¬(¬(¬(x ⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1, where 1 = ¬0.



Every basic algebra has its second face, namely A = (A;⊕,¬,0) can
be organized into a bounded lattice (A;∨,∧), where

x ∨y = ¬(¬x ⊕ y)⊕ y and x ∧y = ¬(¬x ∨¬y),

whose order is given by

x ≤ y if and only if ¬x ⊕ y = 1.

Of course, 0 ≤ x ≤ 1 for each x ∈ A. Moreover, this lattice (A;∨,∧) is
endowed by a set (a)a∈A of so-called section antitone involutions ,
i.e. for each a ∈ A there exists a mapping x 7→ xa of the interval [a,1]
(called section ) into itself such that

xaa = x and x ≤ y ⇒ ya ≤ xa for all x ,y ∈ [a,1].

This system L (A ) = (L;∨,∧,(a)a∈L,0,1) is called a lattice with
section antitone involutions assigned to A = (A;⊕,¬,0). Also
conversely, having a bounded lattice with section antitone involutions
L = (L;∨,∧,(a)a∈L,0,1), one can convert it into a basic algebra
A (L ) = (L;⊕,¬,0), where

¬x = x0 and x ⊕ y = (¬x ∨y)y
.

Moreover, the assignments A → L (A ) and L → A (L ) are
one-to-one correspondences, i.e. A (L (A )) = A and
L (A (L )) = L .



For MV-algebras, the underlying lattice can be induced in the same
way as for basic algebras and for each element a, a mapping
x 7→ ¬x ⊕a = xa is a section antitone involution again.

For an orthomodular lattice L = (L;∨,∧,⊥ ,0,1) and an arbitrary
element a ∈ L, the mapping x 7→ xa = x⊥∨a is an antitone involution
in the section [a,1] which is, moreover, a section complementation.

This motivated us to investigate a more general case. Consider e.g. a
bounded modular lattice L = (L;∨,∧,0,1) with a complementation
x 7→ x ′. Let a ∈ L and x ∈ [a,1]. It is well-known that x ′∨a is a
complement of x in section [a,1]. Hence, complemented modular
lattices can be also considered as lattices with section involutions and
we can consider a logic induced by them. However, there is an
essential difference from the above mentioned cases, see the
following.



Example 1 (1/2)

Let L = (L;∨,∧,0,1) be the modular lattice depicted in Fig. 1:
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It is evident that L is isomorphic to the direct product of M4 and a
two-element chain C2. Although every possible complementation in
M4 is antitone as well as the unique complementation in C2, there
exists a complementation in L which is not antitone (and hence it is
not a direct product of any complementations in M4 and C2). We can
get e.g. the following:



Example 1 (2/2)
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t 0 a b c d x y z v p q 1
t ′ 1 y z v x d a b c q p 0

One can easily check that the complementation t 7→ t ′ is really an
involution in L but it is not antitone:

a ≤ x but a′ = y ‖ d = x ′
.

Hence, although L is a complemented modular lattice, it is not
orthocomplemented (with respect to the complementation by our
choice).



It means that for complemented modular lattices we can study
section involutions similarly as for basic algebras, MV-algebras and
orthomodular lattices but we cannot assume that these involutions
are antitone. Hence, for a conversion of complemented modular
lattices into algebras similar to basic algebras, we have to consider
lattices (or semilattices) whose section involutions need not be
antitone but only switching the endpoints of the section.
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Consider a section [a,1] of an ordered set with greatest element 1. A
mapping x 7→ xa of [a,1] into itself is called a section switching
involution if xaa = x for each x ∈ [a,1] and aa = 1,1a = a. In general,
we do not ask that this involution should be antitone; it only switches
the endpoints of the section.

Now, we can consider a bounded lattice with section switching
involutions L = (L;∨,∧,(a)a∈L,0,1) and study what an algebra can
be obtained by using a similar construction as that for basic algebras.
For our purposes, we will consider only a semilattice since the
operation meet is not applied in the construction of the operations of
the new algebra.



Theorem 1

Let S = (S;∨,(a)a∈S ,0,1) be a bounded semilattice with section
switching involutions. Define ¬x = x0 and x ⊕ y = (x0 ∨y)y . Then the
algebra A (S ) = (S;⊕,¬,0) assigned to S satisfies the following
identities:

(P1) ¬x ⊕ x = 1

(P2) x ⊕0 = x

(P3) ¬(¬(x ⊕ y)⊕ y)⊕ y = x ⊕ y

(P4) ¬(¬(¬(¬x ⊕ y)⊕ y)⊕ z)⊕ z = ¬(¬(¬(¬y ⊕ z)⊕ z)⊕ x)⊕ x .

If, moreover, the involution x 7→ x0 is antitone, then A (S ) satisfies
the identity

(PA) (¬(x ⊕ y)⊕ y)⊕ x = 1.



Remark 1 (1/2)

(a) Every bounded semilattice S = (S;∨,0,1) can be considered as
a semilattice with section switching involutions. Namely, for each
a ∈ S one can define a switching involution on [a,1] as follows:
aa = 1,1a = a and xa = x for each x ∈ [a,1],a 6= x 6= 1.

(b) If the involution x 7→ x0 is antitone, then S = (S;∨,0,1) is in fact
a lattice due to the DeMorgan laws because

x ∧y = (x0 ∨y0)0
.

(c) There exist bounded semilattices with section switching
involutions which are not lattices.



Remark 1 (2/2)

Such a semilattice K , call a “kite” is visualized in Fig. 2:
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1

It is an ordinal sum of an infinite chain C with the least element 0 and
without a greatest element and a three element semilattice {a,b,1},
i.e. p ≤ a,b for each p ∈ C. Then K is a ∨-semilattice which is not a
lattice since inf{a,b} does not exists. Moreover, for each c ∈ K we
define cc = 1,1c = c and xc = x for x ∈ [c,1], c 6= x 6= 1.



Outline

1 Motivation

2 Basic concepts

3 Assigned algebras

4 Strict and commutative pseudo basic algebras

5 Congruence properties and section algebras



We have shown that to every bounded semilattice S with section
switching involutions we can assign an algebra A (S ) = (S;⊕,¬,0)
satisfying (P1)–(P4). We are going to show that algebras satisfying
(P1)–(P4) are interesting for their own sake.

Definition 1

An algebra A = (A;⊕,¬,0) of type (2,1,0) satisfying the identities
(P1)–(P4) will be called a pseudo basic algebra . If, moreover, A

satisfies also the identity (PA), it will be called a strict pseudo basic
algebra .

Since both pseudo basic algebras and strict pseudo basic algebras
are determined by identities, their classes are in fact varieties.



Lemma 1

Every pseudo basic algebra satisfies the following identities:

(i) 0⊕ x = x

(ii) ¬¬x = x

(iii) ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

(iv) ¬x ⊕ (y ⊕ x) = 1, where 1 = ¬0

(v) x ⊕¬x = 1

(vi) 1⊕ x = 1 = x ⊕1.

Theorem 2

The axioms (P1)–(P4) are independent.



Our next task is to show that also conversely, every pseudo basic
algebra can be organized into a bounded semilattice with section
switching involutions.

Theorem 3

Let A = (A;⊕,¬,0) be a pseudo basic algebra. Define 1 = ¬0,
x ∨y = ¬(¬x ⊕ y)⊕ y and for any a ∈ A, let xa = ¬x ⊕a. Then

(a) (A;∨) is a join-semilattice with least element 0 and greatest
element 1

(b) x ≤ y if and only if ¬x ⊕ y = 1 is the induced order of the
semilattice (A;∨)

(c) for each a ∈ A and x ∈ [a,1], the mapping x 7→ xa = ¬x ⊕a is a
section switching involution on the section [a,1].

If, moreover, A is a strict pseudo basic algebra, then (A;∨) is a lattice
where x ∧y = ¬(¬x ∨¬y).



We can show that the assignment between pseudo basic algebras
and bounded semilattices with section switching involutions is a
one-to-one correspondence.

Theorem 4

Let A = (A;⊕,¬,0) be a pseudo basic algebra, S (A ) its assigned
semilattice with section switching involutions. Then A (S (A )) = A .
Let S = (S;∨,(a)a∈S ,0,1) be a bounded semilattice with section
switching involutions, A (S ) its assigned pseudo basic algebra. Then
S (A (S )) = S .
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In this section, we reveal several interesting properties of strict and/or
commutative pseudo basic algebras.

Lemma 2

Let A = (A;⊕,¬,0) be a pseudo basic algebra and S (A ) its
assigned semilattice. Then ¬a∨a = 1 in S (A ) if and only if a⊕a = a
in A .

As mentioned in (b) of Remark 1, if a pseudo basic algebra A is
strict, then the assigned semilattice S (A ) is a lattice (A;∨,∧) where
x ∧y = ¬(¬x ∨¬y). In what follows, we will use this fact and S (A )
will be called an assigned lattice .

Theorem 5

Let A = (A;⊕,¬,0) be a strict pseudo basic algebra. Then ¬ is a
complementation in the induced lattice (A;∨,∧,0,1) if and only if A

satisfies the identity x ⊕ x = x .



A pseudo basic algebra A = (A;⊕,¬,0) is called commutative if it
satisfies the identity x ⊕ y = y ⊕ x and A is called associative if it
satisfies the identity x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z.
An interesting connection is given by the following.

Theorem 6

(a) Every commutative pseudo basic algebra is strict.

(b) A pseudo basic algebra is an MV-algebra if and only if it is
associative.



It was proved by M. Botur and R. Halaš that every finite commutative
basic algebra is in fact an MV-algebra. Hence, it is a natural question
if there really exist commutative pseudo basic algebras which are not
basic algebras. The answer is positive also for a finite pseudo basic
algebra.



Example 2 (1/2)

Consider the commutative pseudo basic algebra
A = ({0,a,b,c,d ,e,1};⊕,¬,0), where the operations ¬ and ⊕ are
given by the tables

x 0 a b c d e 1
¬x 1 c b a e d 0

⊕ 0 a b c d e 1
0 0 a b c d e 1
a a c d 1 d b 1
b b d 1 1 1 c 1
c c 1 1 1 1 c 1
d d d 1 1 1 1 1
e e b c c 1 d 1
1 1 1 1 1 1 1 1

By Theorem 6 (a), A is strict and its induced lattice is visualized in
Fig. 3.



Example 2 (2/2)

Fig. 3:
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The section switching involutions are as follows:
In [0,1], x0 = ¬x .
In [e,1] it is: ee = 1, be = c, ce = b, de = d , 1e = e.
In [a,1] it is: aa = 1, ba = d , da = b, ca = c, 1a = a.
In [b,1] it is: bb = 1, cb = d , db = c and 1b = b.
In [c,1], [d ,1] and [1,1] it is determined uniquely. One can easily
check that x 7→ xe and x 7→ xa are not antitone since e.g.

b ≤ d but be = c ‖ d = de
.

Hence, A cannot be a basic algebra.
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Now we turn our attention to congruence properties of pseudo basic
algebras. Recall that an algebra A with a constant 1 is weakly
regular if for any two congruences Θ,Φ ∈ ConA we have

[1]Θ = [1]Φ implies Θ=Φ,

i.e. each congruence on A is uniquely determined by its 1-class. An
algebra A is called congruence regular if for any two congruence
Θ,Φ ∈ ConA and any element a ∈ A we have

[a]Θ = [a]Φ implies Θ=Φ,

i.e. every congruence A is uniquely determined by each class.
A variety V is called weakly regular or congruence regular if every
A ∈ V has this property.

Theorem 7

The variety of pseudo basic algebras is weakly regular. The variety of
strict pseudo basic algebras is congruence regular.



An algebra A is arithmetical if its congruence lattice ConA is
distributive and Θ ◦Φ= Φ◦Θ for each two congruences Θ,Φ ∈ ConA

(i.e. congruences are permutable). A variety V is arithmetical if each
A ∈ V has this property.

Theorem 8

The variety of strict pseudo basic algebras is arithmetical.



Section algebras

As shown above, pseudo basic algebras are equivalent to bounded
join-semilattices with section switching involutions. However, every
section is a semilattice, i.e. it is again a bounded semilattice with
section switching involutions. Hence, it can be converted into a
pseudo basic algebra. How to organize its operations is shown in the
following.

Theorem 9

Let A = (A;⊕,¬,0) be a pseudo basic algebra, let ≤ be its induced
order and p ∈ A. The section [p,1] can be organized into a pseudo
basic algebra ([p,1];⊕p,¬p,p) as follows:

¬px = ¬x ⊕p and x ⊕p y = ¬(¬x ⊕p)⊕ y

for x ,y ∈ [p,1].



Appendix

Now, we show the number of non-isomorhic models of a given
algebras of a given number of elements. Specifically, we focus on the
MV-algebras, basic algebras (BA), pseudo basic algebras (PBA),
commutative PBA and strict PBA. The numerical values in the
following table were calculated using the program Prover9 and
Mace4, see http://www.cs.unm.edu/~mccune/mace4/. The values
in the fields marked with “–” values are not known, due to excessive
computational complexity (time and/or memory).

2 3 4 5 6 7 8 9 10
MV-algebras 1 1 2 1 2 1 3 2 2

BA 1 1 3 4 11 15 53 81 305
PBA 1 1 4 23 330 11516 – – –

com. PBA 1 1 2 1 2 2 5 3 5
strict PBA 1 1 3 5 25 164 4698 – –

The table columns correspond to sizes of a given algebras (number
of their elements). The first row contains the numbers of
non-isomorphic MV-algebras. The second row contains the numbers
of non-isomorphic basic algebras, . . .

http://www.cs.unm.edu/~mccune/mace4/


Appendix

We can see from the table, for instance, that:

there exists a 4-element basic algebra which is not an
MV-algebra and that there exists a 4-element pseudo basic
algebra which is not a basic algebra. It is 4-element chain, where
0 < a < b < 1, ¬0 = 1, ¬a = a, ¬b = b and ¬1 = 0, whence the
corresponding involution is switching, but not antitone.

there are 11516 non-isomorphic 7-element pseudo basic
algebras, but only 164 of them are strict, and only two of them
are commutative. Moreover, one of this two commutative pseudo
basic algebras is not an MV-algebra (see Fig. 3).
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Chajda, I., Halaš, R., Kühr, J. (2005). Distributive lattices with
sectionally antitone involutions. Acta Sci. Math. 71, 19–23.
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Thank you for your attention.
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