
Models for Implicitly Parallel Execution

Petr Krajča

Department of Computer Science,
Palacky University, Olomouc, Czech Republic

Krajča P. (Palacky University) 1 / 29



Programming Languages in Multi-core Era

Paradigm shifts

hardware (8+ cores)

software (hoped for)

Explicit Parallelism

well-established methods and tools

support from programming languages, operating systems

still not get what we want

Implicit Parallelism

partial success (loop parallelization, instruction level parallelism)

functional programming: great expectations Krajˇca P. (Palacky University) SIS 

2014 2 / 29



Schemik: Introduction

implicitly parallel dialect of Scheme

testbed for our research

parallel execution of programs is done independently of the
programmer

returns always the same results

roots in functional programming

handles side-effects correctly using Software Transactional Memory

supports various features (higher-order functions, macros,
continuations as first-class elements, etc.)

transfer of experience to similar programming languages (e.g.,
JavaScript)

Krajča P. (Palacky University) 3 / 29



Schemik

implicitly parallel dialect and interpreter of Scheme (R5RS)

lexically scoped, tail-calls, macros (lispish), continuations, compatible
standard library

S-expressions, prefix notation

e.g., 1 + 2 × 3 =⇒ (+ 1 (* 2 3))

stack-based model of evaluation

Krajča P. (Palacky University) 4 / 29



Evaluation Model (Outline)

evaluation is described by pushdown automaton having two stacks:

execution stack – contains operation to be done
result stack – stores objects playing the role of intermediate results and
operands

operation is a tuple 〈operation-name, arg, E , flag〉

transitions of an automaton are made according to the operation on
the top of the execution stack

for instance, we consider the following stack operations:

EVAL – initiates evaluation of given (sub)expression
INSPECT – controls the order of evaluation of arguments
FUNCALL – performs function application
SET – redefines binding of lexical variable
FEVAL – initiates evaluation in a parallel branch

Krajča P. (Palacky University) 5 / 29



Evaluation Model: An Example (1 of 3)

1 E: 〈EVAL 42〉 K
R: K

2 E: K
R: 42 K

1 E: 〈EVAL *〉 K
R: K

2 E: K
R: primitive func. * K

Krajča P. (Palacky University) 6 / 29



Evaluation Model: An Example (1 of 3)

1 E: 〈EVAL 42〉 K
R: K

2 E: K
R: 42 K

1 E: 〈EVAL *〉 K
R: K

2 E: K
R: primitive func. * K

Krajča P. (Palacky University) 6 / 29



Evaluation Model: An Example (1 of 3)

1 E: 〈EVAL 42〉 K
R: K

2 E: K
R: 42 K

1 E: 〈EVAL *〉 K
R: K

2 E: K
R: primitive func. * K

Krajča P. (Palacky University) 6 / 29



Evaluation Model: An Example (1 of 3)

1 E: 〈EVAL 42〉 K
R: K

2 E: K
R: 42 K

1 E: 〈EVAL *〉 K
R: K

2 E: K
R: primitive func. * K

Krajča P. (Palacky University) 6 / 29



Evaluation Model: An Example (2 of 3)

1 E: 〈EVAL (* 2 3)〉 K
R: K

2 E: 〈EVAL *〉 〈INSPECT (2 3)〉 K
R: K

3 E: 〈INSPECT (2 3)〉 K
R: primitive func. * K

4 E: 〈EVAL 2〉 〈EVAL 3〉 〈FUNCALL 2〉 K
R: primitive func. * K

5 E: 〈EVAL 3〉 〈FUNCALL 2〉 K
R: 2 primitive func. * K

6 E: 〈FUNCALL 2〉 K
R: 3 2 primitive func. * K

7 E: K
R: 6 K

Krajča P. (Palacky University) 7 / 29



Evaluation Model: An Example (2 of 3)

1 E: 〈EVAL (* 2 3)〉 K
R: K

2 E: 〈EVAL *〉 〈INSPECT (2 3)〉 K
R: K

3 E: 〈INSPECT (2 3)〉 K
R: primitive func. * K

4 E: 〈EVAL 2〉 〈EVAL 3〉 〈FUNCALL 2〉 K
R: primitive func. * K

5 E: 〈EVAL 3〉 〈FUNCALL 2〉 K
R: 2 primitive func. * K

6 E: 〈FUNCALL 2〉 K
R: 3 2 primitive func. * K

7 E: K
R: 6 K

Krajča P. (Palacky University) 7 / 29



Evaluation Model: An Example (2 of 3)

1 E: 〈EVAL (* 2 3)〉 K
R: K

2 E: 〈EVAL *〉 〈INSPECT (2 3)〉 K
R: K

3 E: 〈INSPECT (2 3)〉 K
R: primitive func. * K

4 E: 〈EVAL 2〉 〈EVAL 3〉 〈FUNCALL 2〉 K
R: primitive func. * K

5 E: 〈EVAL 3〉 〈FUNCALL 2〉 K
R: 2 primitive func. * K

6 E: 〈FUNCALL 2〉 K
R: 3 2 primitive func. * K

7 E: K
R: 6 K

Krajča P. (Palacky University) 7 / 29



Evaluation Model: An Example (2 of 3)

1 E: 〈EVAL (* 2 3)〉 K
R: K

2 E: 〈EVAL *〉 〈INSPECT (2 3)〉 K
R: K

3 E: 〈INSPECT (2 3)〉 K
R: primitive func. * K

4 E: 〈EVAL 2〉 〈EVAL 3〉 〈FUNCALL 2〉 K
R: primitive func. * K

5 E: 〈EVAL 3〉 〈FUNCALL 2〉 K
R: 2 primitive func. * K

6 E: 〈FUNCALL 2〉 K
R: 3 2 primitive func. * K

7 E: K
R: 6 K

Krajča P. (Palacky University) 7 / 29



Evaluation Model: An Example (2 of 3)

1 E: 〈EVAL (* 2 3)〉 K
R: K

2 E: 〈EVAL *〉 〈INSPECT (2 3)〉 K
R: K

3 E: 〈INSPECT (2 3)〉 K
R: primitive func. * K

4 E: 〈EVAL 2〉 〈EVAL 3〉 〈FUNCALL 2〉 K
R: primitive func. * K

5 E: 〈EVAL 3〉 〈FUNCALL 2〉 K
R: 2 primitive func. * K

6 E: 〈FUNCALL 2〉 K
R: 3 2 primitive func. * K

7 E: K
R: 6 K

Krajča P. (Palacky University) 7 / 29



Evaluation Model: An Example (2 of 3)

1 E: 〈EVAL (* 2 3)〉 K
R: K

2 E: 〈EVAL *〉 〈INSPECT (2 3)〉 K
R: K

3 E: 〈INSPECT (2 3)〉 K
R: primitive func. * K

4 E: 〈EVAL 2〉 〈EVAL 3〉 〈FUNCALL 2〉 K
R: primitive func. * K

5 E: 〈EVAL 3〉 〈FUNCALL 2〉 K
R: 2 primitive func. * K

6 E: 〈FUNCALL 2〉 K
R: 3 2 primitive func. * K

7 E: K
R: 6 K

Krajča P. (Palacky University) 7 / 29



Parallelization

each operation EVAL may be performed in an independent evaluator
each evaluator has an external entity scheduler acting as deus ex
machina and converting EVAL operations into the new evaluators and
the FEVAL operations

EV1: E: · · · 〈EVAL object〉 · · · K
R: · · · K

⇓
EV1: E: · · · 〈FEVAL 〈EV2, object〉〉 · · · K

R: · · · K
EV2: E: 〈EVAL object〉 K

R: K

an invocation of FEVAL represents merging of two branches of the
execution (stacks from the referenced evaluator are appended to the
corresponding stacks of the evaluator processing the FEVAL
operation)
evaluators form a tree (hierarchy)

Krajča P. (Palacky University) 8 / 29



Parallelization

each operation EVAL may be performed in an independent evaluator
each evaluator has an external entity scheduler acting as deus ex
machina and converting EVAL operations into the new evaluators and
the FEVAL operations

EV1: E: · · · 〈EVAL object〉 · · · K
R: · · · K

⇓
EV1: E: · · · 〈FEVAL 〈EV2, object〉〉 · · · K

R: · · · K
EV2: E: 〈EVAL object〉 K

R: K

an invocation of FEVAL represents merging of two branches of the
execution (stacks from the referenced evaluator are appended to the
corresponding stacks of the evaluator processing the FEVAL
operation)
evaluators form a tree (hierarchy)

Krajča P. (Palacky University) 8 / 29



Parallelization

each operation EVAL may be performed in an independent evaluator
each evaluator has an external entity scheduler acting as deus ex
machina and converting EVAL operations into the new evaluators and
the FEVAL operations

EV1: E: · · · 〈EVAL object〉 · · · K
R: · · · K

⇓
EV1: E: · · · 〈FEVAL 〈EV2, object〉〉 · · · K

R: · · · K
EV2: E: 〈EVAL object〉 K

R: K

an invocation of FEVAL represents merging of two branches of the
execution (stacks from the referenced evaluator are appended to the
corresponding stacks of the evaluator processing the FEVAL
operation)
evaluators form a tree (hierarchy)

Krajča P. (Palacky University) 8 / 29



Parallelization

each operation EVAL may be performed in an independent evaluator
each evaluator has an external entity scheduler acting as deus ex
machina and converting EVAL operations into the new evaluators and
the FEVAL operations

EV1: E: · · · 〈EVAL object〉 · · · K
R: · · · K

⇓
EV1: E: · · · 〈FEVAL 〈EV2, object〉〉 · · · K

R: · · · K
EV2: E: 〈EVAL object〉 K

R: K

an invocation of FEVAL represents merging of two branches of the
execution (stacks from the referenced evaluator are appended to the
corresponding stacks of the evaluator processing the FEVAL
operation)
evaluators form a tree (hierarchy)

8 / 29



Hierarchy of Evaluators

Figure : Structure of the interpreter

Krajča P. (Palacky University) 9 / 29



Issues

inherently sequential algorithms

destructive object mutations (software transactional memory)

expressions worth parallelizing (heuristics)

performance

Krajča P. (Palacky University) 10 / 29



Just-in-Time Compilation

many transitions of the automaton (even for simple expressions)
→ opportunity for compilation

automatic parallelization relies on knowledge of the program
execution structure (execution stack)
→ compilation ruins this feature

Solution

compile only expressions insignificant for parallelization

Krajča P. (Palacky University) 11 / 29



Just-in-Time Compilation

many transitions of the automaton (even for simple expressions)
→ opportunity for compilation

automatic parallelization relies on knowledge of the program
execution structure (execution stack)
→ compilation ruins this feature

Solution

compile only expressions insignificant for parallelization

Krajča P. (Palacky University) 11 / 29



Compilable Expression

Definition

Expression E is compilable if

(1) E is either an atom (number, symbol, etc.),

(2) or E is and expression of a form (E1 E2 ...En) where E1 is primitive
function or special operator and E2, . . . ,En are compilable expressions.

Examples: (+ 1 a), (car (cdr a))

Recursive nature of the definition is used to incrementally compile
expressions.

How to resolve that E1 is a primitive function?

Krajča P. (Palacky University) 12 / 29



Compilation (1 of 3): Picking Candidates

1 reader (parser) marks all lists consisting solely of atoms as candidates
for compilation

2 operation EVAL checks if its argument

has associated machine code that can be executed,

or, is candidate for compilation and can be enqueued into a queue of
expressions waiting for compilation;

if no machine code is available, operation EVAL proceeds as usually

3 compiler tries to compile each expression in its queue and if it
succeeds

it attaches machine code to the expression (+ its high-level
intermediate representation)

marks parent expression as a candidate for compilation

Krajča P. (Palacky University) 13 / 29



Compilation (2 of 3): Intermediate Representations

High-level Intermediate Representation (HIR)

similar to three-address code

instructions, registers, constants, blocks

template (registers may be shifted by offset)

instruction examples:

set Ri , value
eval-symbol Ri , symbol
car Ri , Rj

add Ri , Rj , value
putarg i , source
funcall Ri , function
. . .

allows traditional optimizations (copy propagation, constant folding,
etc.)

Low-level Intermediate Representation (LIR)

optional, RISC-like instruction set

Krajča P. (Palacky University) 14 / 29



Compilation (3 of 3): Sketch of the Algorithm

expression is not compiled directly

function generating HIR is created instead

serves as a template

allows for incremental compilation

Sketch of the algorithm . . .

Krajča P. (Palacky University) 15 / 29



CompileHIR(E , base):

return procedure HIR(i) such that:
if E is a constant (e.g., number) then

emit operation set Rbase+i , E

if E is a symbol then
emit operation eval-symbol Rbase+i , E

if E has attached HIR code then
invoke HIR(base + i)

if E is an expression (fun E2 ... En) where fun is a primitive function then
for all Ej where j ∈ {2, . . . , n} do

invoke CompileHIR(Ej , base + i + j − 1)

if fun is primitive function + then
invoke CompileAddition(base + i , n)

else
invoke CompileFuncall(base + i , n, fun)

if E is expression (if Econd E1 E2) and Econd is compilable then
invoke CompileIf(base + i , Econd , E1, E2)

if E is quotation (quote val) then
emit operation set Rbase+i , val

otherwise abort compilation



Example

CompileHIR((foo (+ a 1)), 10):

Procedure HIR(i):

emit operations:

eval-symbol R12+i , a
set R13+i , 1
add R11+i , R12+i , R13+i

prepare 1
putarg 1, R11+i

funcall R10+i , foo

Krajča P. (Palacky University) 17 / 29



Conditionals

Operator if

(if (< a 0) (- a) a)

(if (< a 0) (- a) (foo a))

allowed to directly manipulate with stacks

Krajča P. (Palacky University) 18 / 29



Compiling conditions
if Econd has attached HIR code without the exct-push operation then

invoke HIR(i)
else

abort compilation
end if
for all Ej where j ∈ {1, 2} do

// create code block Branchj such that:
if Ej has attached HIR code then

Branchj ← HIR(i)
else

Branchj ← operation exct-push Ej

end if
end for
if E1 has attached HIR code and Branch2 contains exct-push then

append to Branch1 operation rslt-push R1.
end if
if E2 has attached HIR code and Branch1 contains exct-push then

append to Branch2 operation rslt-push R2

end if
emit operation if Ri , Branch1, Branch2



Implementation

compiler is implemented in Schemik itself

significant reduction in code size

can run in parallel

tends to compile itself first

MyJIT library emits machine code

emits machine code for i386, AMD64, SPARC processors
intermediate language ⇒ RISC-like ISA
written in ANSI C
thread-safe
easy to use and easy to extend design (future optimizations)
GNU LGPL v.3
http://myjit.sourceforge.net

HIR and machine code attached to expressions (lists) in a form similar
to p-list (meta-data)

Krajča P. (Palacky University) 20 / 29



Additional Optimizations

Inlining

function consisting merely of an expression which is compilable

(define (cadr a) (car (cdr)))

directly inlined

Specialization

dynamically typed programming language
tagged unions
typedef struct scm_value {

scm_type type;

union {

int integer;

char *symbol;

} value;

} scm_value;

and tagged pointers representing objects

#define scm_new_int(__val) ((scm_value *)(1 | ((__val) << 1)))

#define SCM_INT(x) (int)((long)x >> 1)

Krajča P. (Palacky University) 21 / 29



Specilization (cntd.)

lots of boxing and unboxing (testing, allocations, shifting)

often unnecessary, e.g.,

(define (fib n)

(if (< n 3) n

(+ (fib (- n 1)) (fib (- n 2)))))

(fib 10)

(fib 10.0)

only two distinct code paths

for each compiled expression multiple versions are generated

generic code (fallback)

specialized code for specific types of values

type checking performed at the begining of the code block
if the specialized version is not available, the code is enqueued for
processing by the compiler, generic version is used
more optimizations – condition elimination (expensive operations),
dead code elimination
boxing and unboxing only on entry and on exit from the compiled code

Krajča P. (Palacky University) 22 / 29



Which expressions should be picked by scheduler?

assumption: compiled expressions are not suitable for parallelization

scheduler picks expressions which are not compilable

expressions near to the bottom tend to be more complex

Providing hints to the runtime environment

new calling convention call-by-future

(lambda (a b (future c)) ... )

called function creates a future (may be an independent thread)

there is no need for force operation

implicitly creates a transaction

called function controls execution (speculative execution)

allows to abort computation

23 / 29



Software Transactional Memory: Main Ideas (1 of 2)

inspiration from RDBMS

allows to split execution of the program into logical blocks
(transaction; ACI)

in our case STM is not a language construct

mean which allows to consistently access main memory and detect
collisions

each thread has its own image of the memory (transaction); hierarchy
of nested transaction

transaction only encapsulates access to the memory

transactions are committed in the logical order (left-to-right)

no contention manager; each transaction always commits

Krajča P. (Palacky University) 24 / 29



Software Transactional Memory: Main Ideas (2 of 2)

any object may be updated (no information in advance)

mutations are (should be) rare ⇒ functional programming

mutations should have minimal side-effects (loops, local assignments,
etc.)

“Think globally! Act within local variable scope!”

Krajča P. (Palacky University) 25 / 29



Software Transactional Memory: Main Ideas (2 of 2)

any object may be updated (no information in advance)

mutations are (should be) rare ⇒ functional programming

mutations should have minimal side-effects (loops, local assignments,
etc.)

“Think globally! Act within local variable scope!”

Krajča P. (Palacky University) 25 / 29



Call-by-future

allow to impose other convenient macros and functions
(parallel-let ((a foo) (b bar)) code) →
((lambda ((future a) (future b))

code)

foo bar)

(future a) → (lambda ((future x)) x)

(parallel-if cond then else) →
((lambda ((future t) (future e))

(if cond

(begin (abort e) t)

(begin (abort t) e))

then else)

additional functions for controlling transactions

abort – aborts transaction (future)

retry – retries transaction (future)

stalled? – waiting for an operation with side-effect

interrupted? – interrupted due to the collision

Krajča P. (Palacky University) 26 / 29



Evaluation

1 thread 8 threads
No JIT JIT No JIT JIT Guile

bubblesort 5.77 3.27 5.81 3.29 1.35
combinations 2.74 1.62 1.33 0.94 1.84
cpstak 8.77 5.19 2.08 1.40 2.79
fib30 1.23 0.49 0.43 0.30 0.31
fib33 5.24 2.03 1.69 0.87 1.27
fib35 13.62 5.19 4.49 2.42 3.32
mazefun 7.62 3.55 1.69 1.15 2.24
mergesort 6.53 3.70 2.99 1.69 0.14
nqueens 3.68 1.80 1.30 1.08 0.64
powerset 2.41 1.53 1.78 0.95 1.97
primes 8.65 3.63 4.11 3.48 1.86
quicksort 6.33 2.24 3.79 1.60 3.70
sum 8.08 2.78 3.33 2.84 2.31
tak 5.72 1.49 1.31 0.81 1.73

Krajča P. (Palacky University) 27 / 29



Scalability

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

S
p

ee
d

u
p

Threads (count)

cpstak (No JIT)
cpstak (JIT)
fib35 (No JIT)
fib35 (JIT)

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

S
p
ee
d
u
p

Threads (count)

mazefun (No JIT)
mazefun (JIT)
mergesort (No JIT)
mergesort (JIT)

Krajča P. (Palacky University) 28 / 29



Thank You!

Krajča P. (Palacky University) 29 / 29


