Experimental quantum information processing exploiting combination of single-photon and two-photon interference

M. Mičuda,¹ M. Miková,¹ M. Sedlák,^{1,2} I. Straka,¹ M. Zíman,^{2,3} M. Dušek,¹ M. Ježek,¹ and J. Fiurášek¹

¹Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic ²Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava, Slovakia ³Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic

Outline of the talk

- 1. Linear optical quantum CCZ/Toffoli gate
- 2. Perfect orthogonalization of partly unknown quantum states
- 3. Optimal entanglement assisted discrimination of projective quantum measurements

All three experiments combine polarization and spatial encoding of quantum information into states of single photons and involve bulk-optics or fiber-based interferometers.

Linear optical quantum CZ/CNOT gate

R. Okamoto, H.F. Hofmann, S. Takeuchi, and K. Sasaki, Phys. Rev. Lett. 95, 210506 (2005)

- N. K. Langford, T.J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. OBrien, G. J. Pryde, and A. G. White, Phys. Rev. Lett. 95, 210504 (2005)
- N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, Phys. Rev. Lett. 95, 210505 (2005)

Linear optical quantum CCZ/Toffoli gate

M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013)

Linear optical quantum CCZ/Toffoli gate

 $CCZ = I - 2 |111\rangle \langle 111| \qquad CCZ |jkl\rangle = (-1)^{jkl} |jkl\rangle$

qubit 1: spatial degree of freedom of the first photonqubit 2: polarization degree of freedom of the first photonqubit 3: polarization degree of freedom of the second photon

M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013)

Linear optical CCZ gate – experimental setup

Comparison with Lanyon et al. scheme

 $P_{s} = 1/9$

M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013).

B.P. Lanyon, M. Barbieri, M.P. Almeida, T. Jennewein, T.C. Ralph, K.J. Resch, G.J. Pryde, J.L. O'Brien, A. Gilchrist, and A.G. White, Nature Phys. 5, 134 (2009).

Encoding each qubit in a seprate photon – four-photon coincident detection required which results in low coincidence rates.

Measured truth tables for three product-state bases

Truth tables of three Toffoli gates, where the target qubit is the first, the second or the third qubit, respectively.

Generalized Hoffmann bound on gate fidelity

 $F_1 = 0.928(1)$ $F_2 = 0.947(1)$ $F_3 = 0.955(1)$

Average state fidelities F_k – weighted averages with weights given by success probabilities of the gate for each input state.

H.F. Hofmann, Phys. Rev. Lett. 94,160504 (2005).

M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013).

Generalized Hoffmann bound on gate fidelity

 $F_1 = 0.928(1)$ $F_2 = 0.947(1)$ $F_3 = 0.955(1)$

Average state fidelities F_k – weighted averages with weights given by success probabilities of the gate for each input state.

Lower bound on gate fidelity in terms of average state fidelities:

$$F_{CCZ} \ge F_1 + F_2 + F_3 - 2$$
 $F_{CCZ} > 0.830(2)$

H.F. Hofmann, Phys. Rev. Lett. 94,160504 (2005).

M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013).

Further characterization of gate fidelity

Original Hofmann bound

$$F_A + F_B - 1 \le F_{CCZ} \le \min(F_A, F_B)$$

 F_A and F_B denote average state fidelities for two mutually unbiased bases

Requires measurement of fidelities of entangled output states – feasible with our setup due to encoding of two qubits into a single photon.

0.876(2)<F_{ccz}<0.921(1)

H.F. Hofmann, Phys. Rev. Lett. 94,160504 (2005).
S. T. Flammia and Y.-K. Liu, Phys. Rev. Lett. 106, 230501 (2011).
M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Phys. Rev. Lett. 107, 210404 (2011).

Further characterization of gate fidelity

Original Hofmann bound

$$F_A + F_B - 1 \le F_{CCZ} \le \min(F_A, F_B)$$

 F_A and F_B denote average state fidelities for two mutually unbiased bases

Requires measurement of fidelities of entangled output states – feasible with our setup due to encoding of two qubits into a single photon.

0.876(2)<F_{ccz}<0.921(1)

Monte Carlo sampling of gate fidelity

Unbiased linear estimator of F_{ccz}

Complete estimation of $\mathrm{F}_{\mathrm{CCZ}}$ requires 4032 combinations of three-qubit preparations and measurements

F_{ccz}=0.90

H.F. Hofmann, Phys. Rev. Lett. 94,160504 (2005).
S. T. Flammia and Y.-K. Liu, Phys. Rev. Lett. 106, 230501 (2011).
M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Phys. Rev. Lett. 107, 210404 (2011).

Generation of three-qubit GHZ state

GHZ state purity 95%, fidelity 95%

M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013)

Outline of the talk

- 1. Linear optical quantum CCZ/Toffoli gate
- 2. Perfect orthogonalization of partly unknown quantum states
- 3. Optimal entanglement assisted discrimination of projective quantum measurements

Quantum universal NOT gate

Perfect quantum U-NOT gate is forbidden by the laws of quantum physics:

 $|\psi
angle
eq |\psi_{\perp}
angle, \ \langle\psi_{\perp}|\psi
angle = \mathbf{0}$

Optimal deterministic approximate U-NOT gate:

$$\mathcal{G}_{\rm NOT}(\rho) = \left(dI - \rho\right) / \left(d^2 - 1\right)$$

Minimum achievable average overlap between input and output states:

$$F_{\perp}(d) = \frac{1}{d+1}$$

V. Bužek, M. Hillery, and R.F. Werner, Phys. Rev. A 60, 2626(R) (1999).
P. Rungta, V. Buzek, C.M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A 64, 042315 (2001).
F. De Martini, V. Bužek, F. Sciarrino, and C. Sias, Nature 419, 815 (2002).
J. Fiurášek, Phys. Rev. A 70, 032308 (2004).

Perfect orthogonalization of partly unknown quantum states

Required prior information: a mean value *a* of some operator *A*:

 $a = \langle \psi | A | \psi \rangle$

Conditional orthogonalization by quantum filtration:

$$|\psi_{\perp}\rangle \propto (A - aI) |\psi\rangle \qquad \langle \psi_{\perp}|\psi\rangle = \mathbf{0}$$

M. R. Vanner, M. Aspelmeyer, and M. S. Kim, Phys. Rev. Lett. **110**, 010504 (2013). M. Ježek, M. Mičuda, I. Straka, M. Miková, M. Dušek, J. Fiurášek, Phys. Rev. A **89**, 042316 (2014).

Perfect orthogonalization of partly unknown quantum states

Required prior information: a mean value *a* of some operator *A*:

 $a = \langle \psi | A | \psi \rangle$

Conditional orthogonalization by quantum filtration:

$$|\psi_{\perp}\rangle \propto (A - aI) |\psi\rangle \qquad \langle \psi_{\perp}|\psi\rangle = \mathbf{0}$$

This orthogonalization procedure is perfect but probabilistic:

$$p_{\perp} \le \lambda^{-2} \langle \Delta A^{\dagger} \Delta A \rangle, \qquad \Delta A = A - aI$$

 λ denotes the maximum singular value of ΔA .

M. R. Vanner, M. Aspelmeyer, and M. S. Kim, Phys. Rev. Lett. **110**, 010504 (2013). M. Ježek, M. Mičuda, I. Straka, M. Miková, M. Dušek, J. Fiurášek, Phys. Rev. A **89**, 042316 (2014).

Orthogonalization of single-qubit states

Bloch sphere parametrization:

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$

Prior knowledge – mean value of σ_z :

Quantum filter:

 $\sigma_Z = |0\rangle \langle 0| - |1\rangle \langle 1|$

Experimental setup

M. Ježek, M. Mičuda, I. Straka, M. Miková, M. Dušek, J. Fiurášek, Phys. Rev. A **89**, 042316 (2014). M. Mičuda et al., Phys. Rev. Lett. **111**, 160407 (2013); Phys. Rev. A 89, 042304 (2014).

Experimental results

$$\Gamma = \left[\text{Tr} \sqrt{\rho_1^{1/2} \rho_2 \rho_1^{1/2}} \right]^2$$

Overlap between input and orthogonalized states

Minimum overlap achievable by deterministic operations

Experimental results

 $F = \left| \text{Tr} \sqrt{\rho_1^{1/2} \rho_2 \rho_1^{1/2}} \right|^2$

Overlap between input and orthogonalized states

Success probability

Minimum overlap achievable by deterministic operations

Orthogonalization of entangled two-qubit states

Consider pure bipartite state

 $|\Psi\rangle_{12}$

Prior information – knowledge of mean value of an operator A acting on subsystem 1:

 $a = \langle \Psi | A_1 \otimes I_2 | \Psi \rangle$

Orthogonalization by local filtering on a single subsystem:

$$|\Psi_{\perp}\rangle_{12} \propto (A - aI)_1 \otimes I_2 |\Psi\rangle_{12}$$

In our experiment, we prepare various entangled two-qubit two-photon states using a linear optical quantum CZ gate.

M. Ježek, M. Mičuda, I. Straka, M. Miková, M. Dušek, J. Fiurášek, Phys. Rev. A 89, 042316 (2014).

Experimental setup and results

Experimental setup and results

θ_1	ϕ_1	θ_2	ϕ_2	F	\mathcal{P}_{I}	$\mathcal{P}_{\mathcal{O}}$
45°	0°	90°	0°	0.040	0.964	0.890
67.5°	0°	90°	0°	0.031	0.961	0.891
45°	0°	45°	0°	0.021	0.936	0.944
67.5°	0°	45°	0°	0.008	0.975	0.952
67.5°	90°	45°	90°	0.041	0.971	0.946

Outline of the talk

- 1. Linear optical quantum CCZ/Toffoli gate
- 2. Perfect orthogonalization of partly unknown quantum states
- 3. Optimal entanglement assisted discrimination of projective quantum measurements

Discrimination of quantum measurements

The task is to discriminate between two single-qubit projective measurements M and N when the measurement can be performed only once.

We consider a general discrimination strategy that can involve certain fraction of inconclusive outcomes.

M. Miková, M. Sedlák, I. Straka, M. Mičuda, M. Ziman, M. Ježek, M. Dušek, and J. Fiurášek (2014).

Measurement bases

$$M_0 = |\phi\rangle\langle\phi|, \qquad M_1 = |\phi^{\perp}\rangle\langle\phi^{\perp}|, N_0 = |\psi\rangle\langle\psi|, \qquad N_1 = |\psi^{\perp}\rangle\langle\psi^{\perp}|,$$

$$\begin{aligned} |\phi\rangle &= \cos\theta |0\rangle + \sin\theta |1\rangle, \quad |\phi^{\perp}\rangle &= \sin\theta |0\rangle - \cos\theta |1\rangle, \\ |\psi\rangle &= \cos\theta |0\rangle - \sin\theta |1\rangle, \quad |\psi^{\perp}\rangle &= \sin\theta |0\rangle + \cos\theta |1\rangle, \end{aligned}$$

Prepare an entangled state of qubits A and B.

Perform the measurement M/N on qubit A.

Measure qubit B in a basis determined by the outcome of measurement on qubit A.

Guess M, N, or declare an inconclusive outcome depending on the measurement outcomes.

Prepare an entangled state of qubits A and B.

Perform the measurement M/N on qubit A.

Measure qubit B in a basis determined by the outcome of measurement on qubit A.

Guess M, N, or declare an inconclusive outcome depending on the measurement outcomes.

We assume equal a-priori probabilities of M and N. In this case it is optimal to employ a maximally entangled probe state:

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

Outcome of measurement on A	State of qubit B if the measurement was M	State of qubit B if the measurement was N
0	$ \phi^{\perp}\rangle$	$ \psi^{\perp} angle$
1	$ \phi angle$	$ \psi angle$

We apply unitary σ_{γ} operation if the measurement outcome is 0. Discrimination of quantum measurements is thus reduced to discrimination of quantum states ϕ and ψ .

$$\begin{aligned} |\phi\rangle &= \cos\theta |0\rangle + \sin\theta |1\rangle, \\ |\psi\rangle &= \cos\theta |0\rangle - \sin\theta |1\rangle, \end{aligned}$$

General discrimination strategy with a three-component POVM – we allow for a tunable probability of inconclusive outcomes P₁.

Maximum probability of a successful guess for a fixed P₁:

$$P_S = \frac{1}{2} \left(1 - P_I + \sin(2\theta) \sqrt{1 - \frac{P_I}{\cos^2 \theta}} \right)$$

Optimality of this procedure can be proved using the formalism of process POVM.

A. Chefles and S.M. Barnett, J. Mod. Opt. 45, 1295 (1998).

C.W. Zhang, C.F. Li, and G.C. Guo, Phys. Lett. A 261, 25 (1999).

M. Miková, M. Sedlák, I. Straka, M. Mičuda, M. Ziman, M. Ježek, M. Dušek, and J. Fiurášek (2014).

Single-qubit probe

Pure probe state

$$|\vartheta\rangle = |+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$|\vartheta\rangle = \cos\vartheta|0\rangle + \sin\vartheta|1\rangle$$

$$P_S = \frac{1}{2} [1 + \sin(2\theta)] \qquad P_I = 0$$

Single-qubit probe

Pure probe state

$$\vartheta = \cos \vartheta |0\rangle + \sin \vartheta |1\rangle$$

Unambiguous discrimination:

$$|\vartheta\rangle = |\psi^{\perp}\rangle$$

$$P_S = \frac{1}{2}\sin^2(2\theta)$$
 $P_I = 1 - P_S$

The optimal entanglement-assisted unambiguous discrimination achieves:

$$P_{S,\text{ent}} = 1 - \cos(2\theta) > P_S$$

In fact, one can prove that entanglement helps for any $P_1>0$.

Experimental setup

Qubits encoded into polarization states of single photons.

Two-qubit entangled state is conditionally generated by interference on a BS.

The conditional unitary on qubit B is applied using a real-time electronic feed-forward loop.

The POVM on qubit B is determined by the transmittance of VRC.

Characterization of entangled probe state

purity 98%, fidelity 99%, concurrence 98%, ent. of formation 97%

Experimental results I

Dependence of relative success probability \tilde{P}_S on probability of inconclusive results P_l for 7 values of $\theta_j = j\pi/30$, j = 1, ..., 7

Circles – experiment | Solid lines – theory entangled probe | Dashed lines – theory single-qubit probe

Experimental results II

FIG. 4: Unambiguous discrimination of quantum measurements. The probabilities P_S (blue circles), P_I (red squares), and P_E (black crosses) are plotted as functions of the VRC splitting ratio T. The lines represent theoretical predictions.

Thank you for your attention!

optics.upol.cz www.opticsolomouc.org