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Outline of the talk 

1. Linear optical quantum CCZ/Toffoli gate 

2. Perfect orthogonalization of partly unknown quantum states 

3. Optimal entanglement assisted discrimination of projective quantum measurements 

All three experiments combine polarization and spatial encoding of quantum information 
into states of single photons and involve bulk-optics or fiber-based interferometers. 



Linear optical quantum CZ/CNOT gate 
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Linear optical quantum CCZ/Toffoli gate 



Linear optical CCZ gate – experimental setup 



Comparison with Lanyon et al. scheme 

B.P. Lanyon, M. Barbieri, M.P. Almeida, T. Jennewein, T.C. 
Ralph, K.J. Resch, G.J. Pryde, J.L. O'Brien, A. Gilchrist, and 
A.G. White, Nature Phys. 5, 134 (2009). 

M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. 
Ježek, J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013). 

 

Encoding each qubit in a seprate photon – four-photon coincident detection required 
which results in low coincidence rates. 

PS=1/9 PS=1/72 



Measured truth tables for three product-state bases 

Truth tables of three Toffoli gates, where the target qubit is the first, the second or the third 
qubit, respectively. 



Generalized Hoffmann bound on gate fidelity 

Average state fidelities  Fk – weighted averages with weights given by success probabilities 
of the gate for each input  state.  

  F1=0.928(1)        F2=0.947(1)             F3=0.955(1) 

H.F. Hofmann, Phys. Rev. Lett. 94,160504 (2005). 
 

M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013). 



Generalized Hoffmann bound on gate fidelity 

Lower bound on gate fidelity in terms of average state fidelities: 

Average state fidelities  Fk – weighted averages with weights given by success probabilities 
of the gate for each input  state.  

  F1=0.928(1)        F2=0.947(1)             F3=0.955(1) 

H.F. Hofmann, Phys. Rev. Lett. 94,160504 (2005). 
 

M. Mičuda, M. Sedlák, I. Straka, M. Miková, M. Dušek, M. Ježek, J. Fiurášek, Phys. Rev. Lett. 111, 160407 (2013). 

FCCZ>0.830(2) 



Further characterization of gate fidelity 

H.F. Hofmann, Phys. Rev. Lett. 94,160504 (2005). 
S. T. Flammia and Y.-K. Liu, Phys. Rev. Lett. 106, 230501 (2011). 
M. P. da Silva, O. Landon-Cardinal, and D. Poulin, Phys. Rev. Lett. 107, 210404 (2011). 

Original Hofmann bound 

FA and FB denote average state fidelities for two mutually unbiased bases 
 

Requires measurement of fidelities of entangled output states – feasible with our setup 
due to encoding of two qubits into a single photon. 

0.876(2)<FCCZ<0.921(1) 
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Monte Carlo sampling of gate fidelity 

Unbiased linear estimator of FCCZ  
 

Complete estimation of FCCZ  requires 4032 combinations of three-qubit preparations 
and measurements 

FCCZ=0.90 

Original Hofmann bound 

FA and FB denote average state fidelities for two mutually unbiased bases 
 

Requires measurement of fidelities of entangled output states – feasible with our setup 
due to encoding of two qubits into a single photon. 

0.876(2)<FCCZ<0.921(1) 



Generation of three-qubit GHZ state 
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Quantum universal NOT gate 

Perfect quantum U-NOT gate is forbidden by the laws of quantum physics: 

Optimal deterministic approximate U-NOT gate: 

Minimum achievable average overlap between input and output states: 

V. Bužek, M. Hillery, and R.F. Werner, Phys. Rev. A 60, 2626(R) (1999). 

P. Rungta, V. Buzek, C.M. Caves, M. Hillery, and G. J. Milburn, Phys. Rev. A 64, 042315 (2001). 

F. De Martini, V. Bužek, F. Sciarrino, and C. Sias, Nature 419, 815 (2002). 

J. Fiurášek, Phys. Rev. A 70, 032308 (2004). 



Perfect orthogonalization of partly unknown quantum states 

Required prior information: a mean value a of some operator A: 

Conditional orthogonalization by quantum filtration: 

M. R. Vanner, M. Aspelmeyer, and M. S. Kim, Phys. Rev. Lett. 110, 010504 (2013). 

M. Ježek, M. Mičuda, I. Straka, M. Miková, M. Dušek, J. Fiurášek, Phys. Rev. A 89, 042316 (2014). 



Perfect orthogonalization of partly unknown quantum states 

Required prior information: a mean value a of some operator A: 

Conditional orthogonalization by quantum filtration: 

This orthogonalization procedure is perfect but probabilistic: 

M. R. Vanner, M. Aspelmeyer, and M. S. Kim, Phys. Rev. Lett. 110, 010504 (2013). 

M. Ježek, M. Mičuda, I. Straka, M. Miková, M. Dušek, J. Fiurášek, Phys. Rev. A 89, 042316 (2014). 

l denotes the maximum singular value of DA. 



Orthogonalization of single-qubit states 

Bloch sphere parametrization: 

Prior knowledge – mean value of sZ: Quantum filter: 



Experimental setup 

M. Ježek, M. Mičuda, I. Straka, M. Miková, M. Dušek, J. Fiurášek, Phys. Rev. A 89, 042316 (2014). 

M. Mičuda et al., Phys. Rev. Lett. 111, 160407 (2013); Phys. Rev. A 89, 042304 (2014). 



Experimental results 

Overlap between input and orthogonalized states 

Minimum overlap achievable by deterministic operations 



Experimental results 

Overlap between input and orthogonalized states 

Minimum overlap achievable by deterministic operations 
Success probability 



Orthogonalization of entangled two-qubit states 

Consider  pure bipartite state 

Prior information – knowledge of mean value of an operator A acting on subsystem 1: 

Orthogonalization by local filtering on a single subsystem: 

M. Ježek, M. Mičuda, I. Straka, M. Miková, M. Dušek, J. Fiurášek, Phys. Rev. A 89, 042316 (2014). 

In our experiment, we prepare various entangled two-qubit two-photon states 
using a linear optical quantum CZ  gate. 



Experimental setup and results 

Signal: 

Idler: 
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Discrimination of quantum measurements 

The task is to discriminate between two single-qubit projective measurements M and N 
when the measurement can be performed only once.  
 
We consider a general discrimination strategy that can involve certain fraction of 
inconclusive outcomes. 

M. Miková, M. Sedlák, I. Straka, M. Mičuda, M. Ziman, M. Ježek, M. Dušek, and J. Fiurášek (2014). 



Measurement bases 



Entanglement-assisted discrimination procedure 

Prepare an entangled state of qubits A and B. 
 
Perform the measurement M/N on qubit A. 
 
Measure qubit B in a basis determined by the 
outcome of measurement on qubit A. 
 
Guess M, N, or declare an inconclusive outcome 
depending on the measurement outcomes.  



Entanglement-assisted discrimination procedure 

Prepare an entangled state of qubits A and B. 
 
Perform the measurement M/N on qubit A. 
 
Measure qubit B in a basis determined by the 
outcome of measurement on qubit A. 
 
Guess M, N, or declare an inconclusive outcome 
depending on the measurement outcomes.  

We assume equal a-priori probabilities of M and N. In this case it is optimal to 
employ a maximally entangled probe state: 



We apply unitary sY operation if the measurement outcome is 0. Discrimination of 
quantum measurements is thus reduced to discrimination of quantum states f and y. 

Entanglement-assisted discrimination procedure 

Outcome of 
measurement on A 

State of qubit B if the 
measurement was M 

State of qubit B if the 
measurement was N 

0 

1 



Entanglement-assisted discrimination procedure 

General discrimination strategy with a three-component POVM – we allow for a 
tunable probability of inconclusive outcomes PI. 

Maximum probability of a successful guess for a fixed PI: 

Optimality of this procedure can be proved using the formalism of process POVM. 

A. Chefles and S.M. Barnett, J. Mod. Opt. 45, 1295 (1998). 
C.W. Zhang, C.F. Li, and G.C. Guo, Phys. Lett. A 261, 25 (1999). 
M. Miková, M. Sedlák, I. Straka, M. Mičuda, M. Ziman, M. Ježek, M. Dušek, and J. Fiurášek (2014). 



Single-qubit probe 

Pure probe state 

Minimum error discrimination: 

Globally optimal strategy. Entanglement is not 
needed for minimum error discrimination. 



Single-qubit probe 

Pure probe state 

Unambiguous discrimination: 

The optimal entanglement-assisted 
unambiguous discrimination achieves: 

In fact, one can prove that entanglement helps for any PI>0. 



Qubits encoded into polarization states of single photons. 
 

Two-qubit entangled state is conditionally generated by interference on a BS. 
 

The  conditional unitary on qubit B is applied using  a real-time electronic feed-forward loop. 
 

The POVM on qubit B is determined by the transmittance of VRC. 

Experimental setup 



Characterization of entangled probe state 

Target singlet state: 



Experimental results I 

Circles – experiment | Solid lines – theory entangled probe | Dashed lines – theory single-qubit probe 



Experimental results II 



Thank you for your attention! 


