Relational Division in Rank-Aware Databases: An Overview, Issues, and New Directions

Ondrej Vaverka, Vilem Vychodil

Dept. Computer Science, Palacky University, Olomouc, Czech Republic

Rank-Aware Databases

- Rank-aware databases allow imperfect matches.
- Each tuple is annotated by a score a number quantifying how much a tuple matches the query.

Example

id	car	color	price
1	Honda Civic	blue	\$18.500
2	Mazda 323F	dark red	\$17.500
3	Toyota Celica	light blue	\$21.000
4	Toyota Corolla	blue	\$20.000

Intended query: Get all blue cars with price around \$20.000.

Rank-Aware Databases

- Rank-aware databases allow imperfect matches.
- Each tuple is annotated by a score a number quantifying how much a tuple matches the query.

Example

id	car	color	price
1	Honda Civic	blue	\$18.500
2	Mazda 323F	dark red	\$17.500
3	Toyota Celica	light blue	\$21.000
4	Toyota Corolla	blue	\$20.000

Query: Get all blue cars with price between \$19.000 and \$21.000.

Rank-Aware Databases

- Rank-aware databases allow imperfect matches.
- Each tuple is annotated by a score a number quantifying how much a tuple matches the query.

Example

score	id	car	color	price
1.00	4	Toyota Corolla	blue	\$20.000
0.85	1	Honda Civic	blue	\$18.500
0.80	3	Toyota Celica	light blue	\$21.000
0.15	2	Mazda 323F	dark red	\$17.500

Query: Get all blue cars with price around \$20.000.

Note: We call such table a "ranked data table" (RDT).

Approach Based on Residuated Lattices

- There are many approaches to rank-aware databases that differ in the treatment of the scores of tuples.
- ▶ In our model the tuple scores come from residuated lattices.
- Our model can be seen as a generalization of Codd's relational model of data.

Definition

Residuated lattice is a general algebra of the form

$$\mathbf{L}=\langle L,\wedge,\vee,\otimes,\rightarrow,\mathbf{0},\mathbf{1}\rangle$$

where

- $\langle L, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice,
- $\langle L, \otimes, 1
 angle$ is a commutative monoid,
- multiplication \otimes and residuum \rightarrow satisfy adjointness property.

Query Systems

Two basic types of query systems:

- 1. system based on evaluating predicate formulas,
- 2. system consisting of relational operations.

For convenience:

Abbreviation RS denotes relational schema $R \cup S$ with $R \cap S = \emptyset$.

Query Systems

Two basic types of query systems:

- 1. system based on evaluating predicate formulas,
- 2. system consisting of relational operations.

For convenience:

Abbreviation RS denotes relational schema $R \cup S$ with $R \cap S = \emptyset$.

Examples of relational operations in our model

► Natural Join of RDTs D₁ (on RS) and D₂ (on ST) is an RDT on RST given by

$$(\mathcal{D}_1 \bowtie \mathcal{D}_2)(\mathit{rst}) = \mathcal{D}_1(\mathit{rs}) \otimes \mathcal{D}_2(\mathit{st})$$

for all $r \in \text{Tupl}(R)$, $s \in \text{Tupl}(S)$, $t \in \text{Tupl}(T)$.

Query Systems

Two basic types of query systems:

- 1. system based on evaluating predicate formulas,
- 2. system consisting of relational operations.

For convenience:

Abbreviation RS denotes relational schema $R \cup S$ with $R \cap S = \emptyset$.

Examples of relational operations in our model

► Natural Join of RDTs D₁ (on RS) and D₂ (on ST) is an RDT on RST given by

$$(\mathcal{D}_1 \bowtie \mathcal{D}_2)(\mathit{rst}) = \mathcal{D}_1(\mathit{rs}) \otimes \mathcal{D}_2(\mathit{st})$$

for all $r \in \text{Tupl}(R)$, $s \in \text{Tupl}(S)$, $t \in \text{Tupl}(T)$.

▶ Projection of RDT D (on R) onto $S \subseteq R$ is defined by

$$(\pi_{\mathcal{S}}(\mathcal{D}))(s) = \bigvee_{t \in \mathsf{Tupl}(R \setminus S)} \mathcal{D}(st)$$

for all $s \in \text{Tupl}(S)$.

"Some φ Is ψ " Query

- Query: Some tuples from \mathcal{D}_1 are matching tuples in \mathcal{D}_2 .
- Such queries can be expressed using joins and projections.

Example

Employees		_	Teaching	g assignments	
	name			name	course
	Carolyn			Amy	Database systems
	Amy			Amy	Algorithms
	Jean			Jean	Compilers
	Elizabeth			Peter	Machine Learning

Query: Employees that teach some courses.

- $\pi_{\{name...\}}$ (Employees \bowtie Teaching assignments)
- Employees $\bowtie \pi_{\{name\}}$ (Teaching assignments)

"All φ Are ψ " Query

In the classical model this type of query is connected to relational division.

Example

Supplies

supplier	product			
Logitech	Keyboard			
Logitech	Microphone			
Logitech	Webcam			
IBM	Keyboard			
IBM	Webcam			

Required Products

product Keyboard Microphone Webcam

Query: Suppliers that supply all required products.

Supplies ÷ Required Products

"All φ Are ψ " Query

In the classical model this type of query is connected to relational division.

Example

Supplies

e appliee				
supplier	product			
Logitech	Keyboard			
Logitech	Microphone			
Logitech	Webcam			
IBM	Keyboard			
IBM	Webcam			

Required Products

product Keyboard Microphone Webcam

Query: Suppliers that supply all required products.

Supplies ÷ Required Products =

supplier Logitech

Codd-style Division

- The Codd-style division is an initial operation in the class of division-like operations.
- Its presence in the classical relational algebra is not necessary due to the fact that (∀x)φ ≡ ¬(∃x)¬φ.
- In the classical model we consider division as a derived operation expressed by the means of set difference and projection.

Definition

For relation \mathcal{D}_1 on RS and relation \mathcal{D}_2 on S, the Codd-style division may be introduced as

$$\mathcal{D}_1 \div_{\mathsf{Codd}} \mathcal{D}_2 = \pi_R(\mathcal{D}_1) \setminus \pi_R((\pi_R(\mathcal{D}_1) \bowtie \mathcal{D}_2) \setminus \mathcal{D}_1).$$

1. It is restricted to relations on particular schemes which makes the operation less general.

- 1. It is restricted to relations on particular schemes which makes the operation less general.
- 2. The meaning of the operation does not faithfully correspond to the categorical proposition "all φ are ψ ".

- 1. It is restricted to relations on particular schemes which makes the operation less general.
- 2. The meaning of the operation does not faithfully correspond to the categorical proposition "all φ are ψ ".

If φ is $s \in \mathcal{D}_2$ and ψ is $rs \in \mathcal{D}_1$, then

$$(\forall s)(s \in \mathcal{D}_2 \Rightarrow rs \in \mathcal{D}_1)$$

is true for all $r \in \text{Tupl}(R)$ if \mathcal{D}_2 is empty.

- 1. It is restricted to relations on particular schemes which makes the operation less general.
- 2. The meaning of the operation does not faithfully correspond to the categorical proposition "all φ are ψ ".

If φ is $s \in \mathcal{D}_2$ and ψ is $rs \in \mathcal{D}_1$, then

$$(\forall s)(s \in \mathcal{D}_2 \Rightarrow rs \in \mathcal{D}_1)$$

is true for all $r \in \text{Tupl}(R)$ if \mathcal{D}_2 is empty.

The result of Codd-style division is always a subset of $\pi_R(\mathcal{D}_1)$ and can be characterized as

$$\mathcal{D}_1 \div_{\mathsf{Codd}} \mathcal{D}_2 = \{ r \in \pi_R(\mathcal{D}_1) \mid \text{for all } s \in \mathcal{D}_2, \text{ we have } rs \in \mathcal{D}_1 \}.$$

Division in Rank-Aware Databases

 Most common approaches to rank-aware databases found in literature introduce the division by

$$(\mathcal{D}_1 \div \mathcal{D}_2)(r) = \bigwedge_{s \in \mathsf{Tupl}(S)} (\mathcal{D}_2(s) \to \mathcal{D}_1(rs))$$

for all $r \in \text{Tupl}(R)$, where \mathcal{D}_1 is on RS and \mathcal{D}_2 is on S.

- ▶ This definition solves the second issue of Codd-style division, but it is domain-dependent. If there is an attribute in *R*, that has an infinite domain, the result of division can be infinite.
- To overcome this issue, some approaches use this definition with additional assumption

$$(\pi_R(\mathcal{D}_1))(r)>0,$$

which introduces the second issue again.

Division – Our Approach

- In our setting, (∀x)φ ≡ ¬(∃x)¬φ does not hold in general. We need to consider the division as a fundamental operation.
- We have proposed domain-independent division, that suffices to establish relational completeness and does not suffer from the second issue of Codd-style division.

Definition

Let $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ be RDTs on R, S and RS. Division $\mathcal{D}_1 \div^{\mathcal{D}_3} \mathcal{D}_2$ of \mathcal{D}_1 by \mathcal{D}_2 which ranges over \mathcal{D}_3 is an RDT on R defined by

$$(\mathcal{D}_1 \div^{\mathcal{D}_3} \mathcal{D}_2)(r) = \bigwedge_{s \in \mathsf{Tupl}(S)} (\mathcal{D}_3(r) \otimes (\mathcal{D}_2(s) \to \mathcal{D}_1(rs)))$$

for each $r \in \text{Tupl}(R)$.

Date's Small Divide

- In order to overcome the second issue of Codd-style division, Date proposed division operation called Small Divide. Later, it has been further extended to eliminate the first issue as well.
- ▶ For relations D₁ on R (dividend), D₂ on S (divisor) and D₃ on RS (mediator), the Small Divide can be characterized by

$$\mathcal{D}_1 \div_{\mathsf{sdo}}^{\mathcal{D}_3} \mathcal{D}_2 = \{ r \in \mathcal{D}_1 \mid \text{for all } s \in \mathcal{D}_2, \text{ we have } rs \in \mathcal{D}_3 \}.$$

Its generalization in our model is straightforward:

$$(\mathcal{D}_1 \div^{\mathcal{D}_3}_{\mathsf{gsdo}} \mathcal{D}_2)(r) = \mathcal{D}_1(r) \otimes \bigwedge_{s \in \mathsf{Tupl}(S)} (\mathcal{D}_2(s) \to \mathcal{D}_3(rs)).$$

 If the residuated lattice is prelinear or divisible, division in our style is equivalent to generalized Small Divide.

Todd's Division, Date's Great Divide

► To overcome the first issue of Codd-style division, in the past Todd proposed the following: For D₁ on RS and D₂ on ST

 $\mathcal{D}_1 \div_{\mathsf{Todd}} \mathcal{D}_2 = \{ \mathsf{rt} \in \pi_{\mathsf{R}}(\mathcal{D}_1) \bowtie \pi_{\mathsf{T}}(\mathcal{D}_2) \mid \forall s \colon \text{ if } st \in \mathcal{D}_2 \text{ then } \mathsf{rs} \in \mathcal{D}_1 \}$

► This definition suffers from the second issue. Date proposed Great Divide in similar fashion as Small Divide to overcome this issue. For D₁ on R, D₂ on S, D₃ on RS and D₄ on ST:

$$\mathcal{D}_1 \div_{\mathsf{gdo}}^{\mathcal{D}_3, \mathcal{D}_4} \mathcal{D}_2 = \{ \mathsf{rt} \in \mathcal{D}_1 \bowtie \mathcal{D}_2 \mid \forall s \colon \text{ if } st \in \mathcal{D}_4 \text{ then } \mathsf{rs} \in \mathcal{D}_3 \}$$

Darwen's Divide

- Darwen's division is based on Great Divide, but do not pose any requirements on relation schemes.
- For relations D₁ on R₁ (dividend), D₂ on R₂ (divisor), D₃ on R₃ (first mediator), and D₄ on R₄ (second mediator), we put

$$\mathcal{D}_1 \div_{\mathrm{ddo}}^{\mathcal{D}_3, \mathcal{D}_4} \mathcal{D}_2 = (\mathcal{D}_1 \bowtie \mathcal{D}_2) \ \bar{\ltimes} \ ((\mathcal{D}_1 \bowtie \mathcal{D}_4) \ \bar{\ltimes} \ \mathcal{D}_3).$$

Written in set notation:

$$\mathcal{D}_1 \div_{\mathrm{ddo}}^{\mathcal{D}_3, \mathcal{D}_4} \mathcal{D}_2 = \big\{ r_1 r_2 \in \mathcal{D}_1 \bowtie \mathcal{D}_2 \, | \\ \text{for all } r_4 \in \mathcal{D}_4: \text{ if } r_1 r_2 \circlearrowright r_4, \text{ then there is } r_3 \in \mathcal{D}_3: r_1 r_4 \circlearrowright r_3 \big\},$$

► The relation scheme of result of Darwen's Divide is R₁ ∪ R₂ since R₁ and R₂ are arbitrary and might have some attributes in common.

Darwen's Divide - graded variant

 We may introduce a graded variant ÷_{gddo} of the Darwen's Divide as follows

$$\begin{split} & \big(\mathcal{D}_1 \div^{\mathcal{D}_3,\mathcal{D}_4}_{\mathrm{gddo}} \mathcal{D}_2\big)(r_1r_2) = \\ & = \mathcal{D}_1(r_1) \otimes \mathcal{D}_2(r_2) \otimes \bigwedge_{\substack{r_4 \in \mathrm{Tupl}(R_4) \\ r_1r_2 \lor r_4}} & \big(\mathcal{D}_4(r_4) \to \bigvee_{r_3 \in \mathrm{Tupl}(R_3) \\ r_1r_4 \lor r_3} & \big(\mathcal{D}_3(r_3)\big) \big) \\ & = (\mathcal{D}_1 \bowtie \mathcal{D}_2)(r_1r_2) \otimes \bigwedge_{\substack{r_4 \in \mathrm{Tupl}(R_4) \\ r_1r_2 \lor r_4}} & \big(\mathcal{D}_4(r_4) \to \bigvee_{\substack{r_3 \in \mathrm{Tupl}(R_3) \\ r_1r_4 \lor r_3} & r_3 \in \mathrm{Tupl}(R_3) \\ \end{array} \end{split}$$

 Semantics of the operation depends on the relations schemes of input relations.

Darwen's Divide – graded variant, contd.

The condition of joinability is not necessary and can be avoided:

$$\begin{split} & \left(\mathcal{D}_{1} \div_{\mathrm{gddo}}^{\mathcal{D}_{3},\mathcal{D}_{4}} \mathcal{D}_{2}\right)(r_{1}r_{2}) = \\ & = \left(\mathcal{D}_{1} \bowtie \mathcal{D}_{2}\right)(r_{1}r_{2}) \otimes \bigwedge_{\substack{r_{4} \in \mathrm{Tupl}(R_{4}) \\ r_{1}r_{2} \Diamond r_{4}}} \left(\mathcal{D}_{4}(r_{4}) \rightarrow \bigvee_{r_{3} \in \mathrm{Tupl}(R_{3}) \\ r_{1}r_{4} \Diamond r_{3}}\right) \\ & = \left(\mathcal{D}_{1} \bowtie \mathcal{D}_{2}\right)(r_{1}r_{2}) \otimes \bigwedge_{\substack{r_{4}' \in \mathrm{Tupl}(R_{4 \setminus 12}) \\ r_{4}' \in \mathrm{Tupl}(R_{4 \setminus 12})}} \left(\mathcal{D}_{4}(r_{12}^{\Diamond 4}r_{4}') \rightarrow \bigvee_{r_{3}' \in \mathrm{Tupl}(R_{3 \setminus 14})} \mathcal{D}_{3}(r_{14}^{\Diamond 3}r_{3}')\right) \\ & = \left(\mathcal{D}_{1} \bowtie \mathcal{D}_{2}\right)(r_{1}r_{2}) \otimes \bigwedge_{\substack{r_{4}' \in \mathrm{Tupl}(R_{4 \setminus 12}) \\ r_{4}' \in \mathrm{Tupl}(R_{4 \setminus 12})}} \left(\mathcal{D}_{4}(r_{12}^{\Diamond 4}r_{4}') \rightarrow \pi_{R_{3} \cap 14}(\mathcal{D}_{3})(r_{14}^{\Diamond 3})\right), \end{split}$$

• where $r_{12}^{\check{\Diamond}4} = (r_1r_2)(R_{4\cap 12})$ and $r_{14}^{\check{\Diamond}3} = (r_1r_4)(R_{3\cap 14})$.

Relationship among the operators – easy part

If L is prelinear or divisible, then division in our sense is equivalent to Date's Small Divide. We have

$$\mathcal{D}_3 \div^{\mathcal{D}_1} \mathcal{D}_2 = \mathcal{D}_1 \div^{\mathcal{D}_3}_{\mathrm{gsdo}} \mathcal{D}_2$$

As in the classical case, Date's Small Divide is expressible by Date's Great Divide in the following way:

$$\mathcal{D}_1 \div^{\mathcal{D}_3}_{\text{gsdo}} \mathcal{D}_2 = \mathcal{D}_1 \div^{\mathcal{D}_3, \mathcal{D}_2}_{\text{ggdo}} \mathbf{1}_{\emptyset}.$$

 Darwen's Divide is directly applicable to relations that conform to requirements imposed by Date's Great Divide with the same semantics. We have

$$\mathcal{D}_1 \div_{\mathrm{ggdo}}^{\mathcal{D}_3, \mathcal{D}_4} \mathcal{D}_2 = \mathcal{D}_1 \div_{\mathrm{gddo}}^{\mathcal{D}_3, \mathcal{D}_4} \mathcal{D}_2.$$

- In order to show further relationships among the division operations we have introduced new relationally complete query language – Pseudo Tuple Calculus
- PTC provides easy way to express any relational operation utilizing its set notation.
- Such PTC expression is semantically equivalent to the original RA operation.
- Using relational completeness we get the equivalent formulation of this operation utilizing just the fundamental RA operations.

Example: Consider the division operation in our sense, i. e., for RDTs D₁, D₂, and D₃ on RS, S, and R, we put

$$(\mathcal{D}_1 \div^{\mathcal{D}_3} \mathcal{D}_2)(r) = \bigwedge_{s \in \operatorname{Tupl}(S)} (\mathcal{D}_3(r) \otimes (\mathcal{D}_2(s) \to \mathcal{D}_1(rs))),$$

for each $r \in \text{Tupl}(R)$.

► Consider relation symbols D₁, D₂ and D₃ on RS, S, and R, respectively. Then the PTC-expression

$$\mathcal{T}(\mathbb{r}) = \bigwedge_{s} (\mathbb{D}_{3}(\mathbb{r}) \otimes (\mathbb{D}_{2}(s) \rightarrow \mathbb{D}_{1}(\mathbb{r}s))),$$

is semantically equivalent to the division operation. More precisely, for a database instance \mathcal{D} such that $\mathbb{D}_1^{\mathcal{D}} = \mathcal{D}_1$, $\mathbb{D}_2^{\mathcal{D}} = \mathcal{D}_2$, and $\mathbb{D}_3^{\mathcal{D}} = \mathcal{D}_3$ we have

$$(\mathcal{D}_1 \div^{\mathcal{D}_3} \mathcal{D}_2)(r) = \mathcal{T}^{\mathcal{D}}(r)$$

for all $r \in \text{Tupl}(R)$.

Let \mathcal{D}_1 , \mathcal{D}_2 , and \mathcal{D}_3 be RDTs on *RS*, *S*, and *R*, respectively, and let \div_{gsdo} be Date's Small Divide. For the division operation in our sense we have

$$(\mathcal{D}_1 \div^{\mathcal{D}_3} \mathcal{D}_2)(r) = (\mathcal{E}_R^{\mathcal{D}} \div^{\mathcal{E}^{\mathcal{D}}}_{\mathrm{gsdo}} \mathcal{E}_S^{\mathcal{D}})(r),$$

for all $r \in \operatorname{Tupl}(R)$ where

$$E^{\mathcal{D}} = \mathcal{D}_{3} \bowtie \left((\mathcal{D}_{2} \bowtie \mathcal{E}_{R}^{\mathcal{D}})^{\mathcal{E}_{RS}^{\mathcal{D}}} \mathcal{D}_{1} \right)$$

and the extended active domains $\mathcal{E}_{R}^{\mathcal{D}}, \mathcal{E}_{S}^{\mathcal{D}}$, and $\mathcal{E}_{RS}^{\mathcal{D}}$ contain tuples built only from the values from relations $\mathcal{D}_{1}, \mathcal{D}_{2}$, and \mathcal{D}_{3} .

Let \mathcal{D}_1 , \mathcal{D}_2 , and \mathcal{D}_3 be RDTs on R, S, and RS, respectively, and let \div be the division operation in our sense. For Date's Small Divide we have

$$(\mathcal{D}_1 \div^{\mathcal{D}_3}_{\mathrm{gsdo}} \mathcal{D}_2)(r) = (\mathcal{D}_1 \bowtie (\mathcal{E}^{\mathcal{D}} \div^{\mathcal{E}_R^{\mathcal{D}}} \mathcal{E}_S^{\mathcal{D}}))(r)$$

for all $r \in \operatorname{Tupl}(R)$ where

$$E^{\mathcal{D}} = \left((\mathcal{D}_2 \bowtie \mathcal{E}_R^{\mathcal{D}})^{\mathcal{E}_{RS}^{\mathcal{D}}} \mathcal{D}_3 \right)$$

and the extended active domains $\mathcal{E}_{R}^{\mathcal{D}}, \mathcal{E}_{S}^{\mathcal{D}}$, and $\mathcal{E}_{RS}^{\mathcal{D}}$ contain tuples built only from the values from relations $\mathcal{D}_{1}, \mathcal{D}_{2}$, and \mathcal{D}_{3} .

Let \mathcal{D}_1 , \mathcal{D}_2 , \mathcal{D}_3 , and \mathcal{D}_4 be RDTs on R_1, R_2, R_3 , and R_4 , respectively, and let \div be the division operation defined by (??). For Darwen's Divide we have

$$\left(\mathcal{D}_1 \div_{\mathrm{gddo}}^{\mathcal{D}_3,\mathcal{D}_4} \mathcal{D}_2\right)(r) = \left(\left(\mathcal{D}_1 \bowtie \mathcal{D}_2\right) \bowtie \left(E^{\mathcal{D}} \div_{R'_1}^{\mathcal{E}^{\mathcal{D}}_{R'_1}} \mathcal{E}^{\mathcal{D}}_{R'_2}\right)\right)(r),$$

for all $r \in \operatorname{Tupl}(R_1 \cup R_2)$ where

$$E^{\mathcal{D}} = \left((\mathcal{D}_{4} \bowtie \mathcal{E}_{R'_{3}}^{\mathcal{D}})^{\mathcal{E}_{R'_{4}}^{\mathcal{D}}} (\pi_{R'_{3}}(\mathcal{D}_{3}) \bowtie \mathcal{E}_{R_{4}}^{\mathcal{D}}) \right),$$

$$R'_{1} = (R_{4} \cap (R_{1} \cup R_{2})) \cup (R_{1} \cap R_{3}),$$

$$R'_{2} = R_{4} \setminus (R_{1} \cup R_{2}),$$

$$R'_{3} = R_{3} \cap (R_{1} \cup R_{4}),$$

$$R'_{4} = R_{4} \cup (R_{1} \cap R_{3})$$

and the extended active domains contain tuples built only from the values from relations $\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$, and \mathcal{D}_4 .

Note on Graded Subsethood

- ► Graded subsethood can be seen as a relational operation on two RDTs D₁, D₂ on the same relation scheme R.
- ► The result is an RDT on empty relation scheme containing an empty tuple with score that is equal to the degree of D₁ being a subset of D₂. It is given by

$$(\mathcal{D}_1 \subseteq \mathcal{D}_2)(\emptyset) = \bigwedge_{r \in \mathsf{Tupl}(R)} (\mathcal{D}_1(r) \to \mathcal{D}_2(r))$$

- Graded subsethood can be seen as a special case of division in our style, generalized Small Divide, Great Divide or Darwen's Divide.
- The generalized division operations can be expressed using the graded subsethood and the notion of image relations.

Conclusions

- We have presented an overview of various relational division operations and their generalized counterparts.
- Furthermore, we have investigated their relationship with the help of newly introduced relationally complete query language
 Pseudo Tuple Calculus.
- We have answered an open question regarding the relationship of Date's Great Divide and Darwen's Divide in the classical model.
- Future research will focus on a model with graded subsethood as a fundamental operation alongisde with the imaging operation.