
Relational Division in Rank-Aware Databases:
An Overview, Issues, and New Directions

Ondrej Vaverka, Vilem Vychodil

Dept. Computer Science, Palacky University, Olomouc, Czech Republic

Rank-Aware Databases

I Rank-aware databases allow imperfect matches.

I Each tuple is annotated by a score – a number quantifying
how much a tuple matches the query.

Example

id car color price

1 Honda Civic blue $18.500
2 Mazda 323F dark red $17.500
3 Toyota Celica light blue $21.000
4 Toyota Corolla blue $20.000

Intended query: Get all blue cars with price around $20.000.

Rank-Aware Databases

I Rank-aware databases allow imperfect matches.

I Each tuple is annotated by a score – a number quantifying
how much a tuple matches the query.

Example

id car color price

1 Honda Civic blue $18.500
2 Mazda 323F dark red $17.500
3 Toyota Celica light blue $21.000
4 Toyota Corolla blue $20.000

Query: Get all blue cars with price between $19.000 and $21.000.

Rank-Aware Databases

I Rank-aware databases allow imperfect matches.

I Each tuple is annotated by a score – a number quantifying
how much a tuple matches the query.

Example

score id car color price

1.00 4 Toyota Corolla blue $20.000
0.85 1 Honda Civic blue $18.500
0.80 3 Toyota Celica light blue $21.000
0.15 2 Mazda 323F dark red $17.500

Query: Get all blue cars with price around $20.000.

Note: We call such table a ”ranked data table” (RDT).

Approach Based on Residuated Lattices

I There are many approaches to rank-aware databases that
differ in the treatment of the scores of tuples.

I In our model the tuple scores come from residuated lattices.

I Our model can be seen as a generalization of Codd’s
relational model of data.

Definition
Residuated lattice is a general algebra of the form

L = 〈L,∧,∨,⊗,→, 0, 1〉

where

I 〈L,∧,∨, 0, 1〉 is a bounded lattice,

I 〈L,⊗, 1〉 is a commutative monoid,

I multiplication ⊗ and residuum → satisfy adjointness property.

Query Systems
Two basic types of query systems:

1. system based on evaluating predicate formulas,
2. system consisting of relational operations.

For convenience:
Abbreviation RS denotes relational schema R ∪ S with R ∩ S = ∅.

Examples of relational operations in our model

I Natural Join of RDTs D1 (on RS) and D2 (on ST) is an RDT
on RST given by

(D1 ./ D2)(rst) = D1(rs)⊗D2(st)

for all r ∈ Tupl(R), s ∈ Tupl(S), t ∈ Tupl(T).

I Projection of RDT D (on R) onto S ⊆ R is defined by

(πS(D))(s) =
∨

t∈Tupl(R\S)

D(st)

for all s ∈ Tupl(S).

Query Systems
Two basic types of query systems:

1. system based on evaluating predicate formulas,
2. system consisting of relational operations.

For convenience:
Abbreviation RS denotes relational schema R ∪ S with R ∩ S = ∅.
Examples of relational operations in our model

I Natural Join of RDTs D1 (on RS) and D2 (on ST) is an RDT
on RST given by

(D1 ./ D2)(rst) = D1(rs)⊗D2(st)

for all r ∈ Tupl(R), s ∈ Tupl(S), t ∈ Tupl(T).

I Projection of RDT D (on R) onto S ⊆ R is defined by

(πS(D))(s) =
∨

t∈Tupl(R\S)

D(st)

for all s ∈ Tupl(S).

Query Systems
Two basic types of query systems:

1. system based on evaluating predicate formulas,
2. system consisting of relational operations.

For convenience:
Abbreviation RS denotes relational schema R ∪ S with R ∩ S = ∅.
Examples of relational operations in our model

I Natural Join of RDTs D1 (on RS) and D2 (on ST) is an RDT
on RST given by

(D1 ./ D2)(rst) = D1(rs)⊗D2(st)

for all r ∈ Tupl(R), s ∈ Tupl(S), t ∈ Tupl(T).

I Projection of RDT D (on R) onto S ⊆ R is defined by

(πS(D))(s) =
∨

t∈Tupl(R\S)

D(st)

for all s ∈ Tupl(S).

”Some ϕ Is ψ” Query

I Query: Some tuples from D1 are matching tuples in D2.

I Such queries can be expressed using joins and projections.

Example

Employees
name . . .

Carolyn . . .
Amy . . .
Jean . . .
Elizabeth . . .

Teaching assignments
name course

Amy Database systems
Amy Algorithms
Jean Compilers
Peter Machine Learning

Query: Employees that teach some courses.

I π{name,...}(Employees ./ Teaching assignments)

I Employees ./ π{name}(Teaching assignments)

”All ϕ Are ψ” Query

I In the classical model this type of query is connected to
relational division.

Example

Supplies
supplier product

Logitech Keyboard
Logitech Microphone
Logitech Webcam
IBM Keyboard
IBM Webcam

Required Products
product

Keyboard
Microphone
Webcam

Query: Suppliers that supply all required products.

I Supplies÷ Required Products

”All ϕ Are ψ” Query

I In the classical model this type of query is connected to
relational division.

Example

Supplies
supplier product

Logitech Keyboard
Logitech Microphone
Logitech Webcam
IBM Keyboard
IBM Webcam

Required Products
product

Keyboard
Microphone
Webcam

Query: Suppliers that supply all required products.

I Supplies÷ Required Products =
supplier

Logitech

Codd-style Division

I The Codd-style division is an initial operation in the class of
division-like operations.

I Its presence in the classical relational algebra is not necessary
due to the fact that (∀x)ϕ ≡ ¬(∃x)¬ϕ.

I In the classical model we consider division as a derived
operation expressed by the means of set difference and
projection.

Definition
For relation D1 on RS and relation D2 on S , the Codd-style
division may be introduced as

D1 ÷Codd D2 = πR(D1) \ πR((πR(D1) ./ D2) \ D1).

Issues of Codd-style Division

1. It is restricted to relations on particular schemes which makes
the operation less general.

2. The meaning of the operation does not faithfully correspond
to the categorical proposition ”all ϕ are ψ”.

If ϕ is s ∈ D2 and ψ is rs ∈ D1, then

(∀s)(s ∈ D2 ⇒ rs ∈ D1)

is true for all r ∈ Tupl(R) if D2 is empty.

The result of Codd-style division is always a subset of πR(D1)
and can be characterized as

D1÷CoddD2 = {r ∈ πR(D1) | for all s ∈ D2, we have rs ∈ D1}.

Issues of Codd-style Division

1. It is restricted to relations on particular schemes which makes
the operation less general.

2. The meaning of the operation does not faithfully correspond
to the categorical proposition ”all ϕ are ψ”.

If ϕ is s ∈ D2 and ψ is rs ∈ D1, then

(∀s)(s ∈ D2 ⇒ rs ∈ D1)

is true for all r ∈ Tupl(R) if D2 is empty.

The result of Codd-style division is always a subset of πR(D1)
and can be characterized as

D1÷CoddD2 = {r ∈ πR(D1) | for all s ∈ D2, we have rs ∈ D1}.

Issues of Codd-style Division

1. It is restricted to relations on particular schemes which makes
the operation less general.

2. The meaning of the operation does not faithfully correspond
to the categorical proposition ”all ϕ are ψ”.

If ϕ is s ∈ D2 and ψ is rs ∈ D1, then

(∀s)(s ∈ D2 ⇒ rs ∈ D1)

is true for all r ∈ Tupl(R) if D2 is empty.

The result of Codd-style division is always a subset of πR(D1)
and can be characterized as

D1÷CoddD2 = {r ∈ πR(D1) | for all s ∈ D2, we have rs ∈ D1}.

Issues of Codd-style Division

1. It is restricted to relations on particular schemes which makes
the operation less general.

2. The meaning of the operation does not faithfully correspond
to the categorical proposition ”all ϕ are ψ”.

If ϕ is s ∈ D2 and ψ is rs ∈ D1, then

(∀s)(s ∈ D2 ⇒ rs ∈ D1)

is true for all r ∈ Tupl(R) if D2 is empty.

The result of Codd-style division is always a subset of πR(D1)
and can be characterized as

D1÷CoddD2 = {r ∈ πR(D1) | for all s ∈ D2, we have rs ∈ D1}.

Division in Rank-Aware Databases

I Most common approaches to rank-aware databases found in
literature introduce the division by

(D1 ÷D2)(r) =
∧

s∈Tupl(S)

(D2(s)→ D1(rs))

for all r ∈ Tupl(R), where D1 is on RS and D2 is on S .

I This definition solves the second issue of Codd-style division,
but it is domain-dependent. If there is an attribute in R, that
has an infinite domain, the result of division can be infinite.

I To overcome this issue, some approaches use this definition
with additional assumption

(πR(D1))(r) > 0,

which introduces the second issue again.

Division – Our Approach

I In our setting, (∀x)ϕ ≡ ¬(∃x)¬ϕ does not hold in general.
We need to consider the division as a fundamental operation.

I We have proposed domain-independent division, that suffices
to establish relational completeness and does not suffer from
the second issue of Codd-style division.

Definition
Let D1,D2,D3 be RDTs on R,S and RS . Division D1 ÷D3 D2 of
D1 by D2 which ranges over D3 is an RDT on R defined by

(D1 ÷D3 D2)(r) =
∧

s∈Tupl(S)

(D3(r)⊗ (D2(s)→ D1(rs)))

for each r ∈ Tupl(R).

Date’s Small Divide

I In order to overcome the second issue of Codd-style division,
Date proposed division operation called Small Divide. Later, it
has been further extended to eliminate the first issue as well.

I For relations D1 on R (dividend), D2 on S (divisor) and D3

on RS (mediator), the Small Divide can be characterized by

D1 ÷D3
sdo D2 = {r ∈ D1 | for all s ∈ D2, we have rs ∈ D3}.

I Its generalization in our model is straightforward:

(D1 ÷D3
gsdo D2)(r) = D1(r)⊗

∧
s∈Tupl(S)

(D2(s)→ D3(rs)) .

I If the residuated lattice is prelinear or divisible, division in our
style is equivalent to generalized Small Divide.

Todd’s Division, Date’s Great Divide

I To overcome the first issue of Codd-style division, in the past
Todd proposed the following: For D1 on RS and D2 on ST

D1÷ToddD2 = {rt ∈ πR(D1) ./ πT (D2) | ∀s : if st ∈ D2 then rs ∈ D1}

I This definition suffers from the second issue. Date proposed
Great Divide in similar fashion as Small Divide to overcome
this issue. For D1 on R, D2 on S , D3 on RS and D4 on ST :

D1 ÷D3,D4

gdo D2 = {rt ∈ D1 ./ D2 | ∀s : if st ∈ D4 then rs ∈ D3}

Darwen’s Divide

I Darwen’s division is based on Great Divide, but do not pose
any requirements on relation schemes.

I For relations D1 on R1 (dividend), D2 on R2 (divisor), D3 on
R3 (first mediator), and D4 on R4 (second mediator), we put

D1 ÷D3,D4

ddo D2 = (D1 ./ D2) n̄ ((D1 ./ D4) n̄ D3).

I Written in set notation:

D1 ÷D3,D4

ddo D2 =
{
r1r2 ∈ D1 ./ D2 |

for all r4 ∈ D4: if r1r2 G r4, then there is r3 ∈ D3: r1r4 G r3
}
,

I The relation scheme of result of Darwen’s Divide is R1 ∪ R2

since R1 and R2 are arbitrary and might have some attributes
in common.

Darwen’s Divide – graded variant

I We may introduce a graded variant ÷gddo of the Darwen’s
Divide as follows(
D1 ÷D3,D4

gddo D2

)
(r1r2) =

= D1(r1)⊗D2(r2)⊗
∧

r4∈Tupl(R4)
r1r2Gr4

(
D4(r4)→

∨
r3∈Tupl(R3)

r1r4Gr3

D3(r3)
)

= (D1 ./ D2)(r1r2)⊗
∧

r4∈Tupl(R4)
r1r2Gr4

(
D4(r4)→

∨
r3∈Tupl(R3)

r1r4Gr3

D3(r3)
)

I Semantics of the operation depends on the relations schemes
of input relations.

Darwen’s Divide – graded variant, contd.

I The condition of joinability is not necessary and can be
avoided:(
D1 ÷D3,D4

gddo D2

)
(r1r2) =

= (D1 ./ D2)(r1r2)⊗
∧

r4∈Tupl(R4)
r1r2Gr4

(
D4(r4)→

∨
r3∈Tupl(R3)

r1r4Gr3

D3(r3)
)

= (D1 ./ D2)(r1r2)⊗
∧

r ′4∈Tupl(R4\12)

(
D4(r

G4
12 r

′
4)→

∨
r ′3∈Tupl(R3\14)

D3(r
G3
14 r

′
3)
)

= (D1 ./ D2)(r1r2)⊗
∧

r ′4∈Tupl(R4\12)

(
D4(r

G4
12 r

′
4)→ πR3∩14(D3)(r

G3
14)
)
,

I where r
G4
12 = (r1r2)(R4∩12) and r

G3
14 = (r1r4)(R3∩14).

Relationship among the operators – easy part

I If L is prelinear or divisible, then division in our sense is
equivalent to Date’s Small Divide. We have

D3 ÷D1 D2 = D1 ÷D3
gsdo D2

I As in the classical case, Date’s Small Divide is expressible by
Date’s Great Divide in the following way:

D1 ÷D3
gsdo D2 = D1 ÷D3,D2

ggdo 1∅.

I Darwen’s Divide is directly applicable to relations that
conform to requirements imposed by Date’s Great Divide with
the same semantics. We have

D1 ÷D3,D4

ggdo D2 = D1 ÷D3,D4

gddo D2.

Relationship among the operators – trickier part

I In order to show further relationships among the division
operations we have introduced new relationally complete
query language – Pseudo Tuple Calculus

I PTC provides easy way to express any relational operation
utilizing its set notation.

I Such PTC expression is semantically equivalent to the original
RA operation.

I Using relational completeness we get the equivalent
formulation of this operation utilizing just the fundamental
RA operations.

Relationship among the operators – trickier part

I Example: Consider the division operation in our sense, i. e., for
RDTs D1, D2, and D3 on RS , S , and R, we put(
D1 ÷D3 D2

)
(r) =

∧
s∈Tupl(S)

(
D3(r)⊗ (D2(s)→ D1(rs))

)
,

for each r ∈ Tupl(R).

I Consider relation symbols D1,D2 and D3 on RS , S , and R,
respectively. Then the PTC-expression

T (r) =
∧

s

(
D3(r)⊗ (D2(s)→ D1(rs))

)
,

is semantically equivalent to the division operation. More
precisely, for a database instance D such that DD

1 = D1,
DD
2 = D2, and DD

3 = D3 we have(
D1 ÷D3 D2

)
(r) = T D(r)

for all r ∈ Tupl(R).

Relationship among the operators – trickier part

Let D1, D2, and D3 be RDTs on RS , S , and R, respectively, and
let ÷gsdo be Date’s Small Divide. For the division operation in our
sense we have (

D1 ÷D3 D2

)
(r) = (EDR ÷ED

gsdo EDS)(r),

for all r ∈ Tupl(R) where

ED = D3 ./
(
(D2 ./ EDR)E

D
RSD1

)
and the extended active domains EDR , EDS , and EDRS contain tuples
built only from the values from relations D1,D2, and D3.

Relationship among the operators – trickier part

Let D1, D2, and D3 be RDTs on R, S , and RS , respectively,
and let ÷ be the division operation in our sense. For Date’s
Small Divide we have(

D1 ÷D3
gsdo D2

)
(r) =

(
D1 ./ (ED ÷ED

R EDS)
)
(r),

for all r ∈ Tupl(R) where

ED =
(
(D2 ./ EDR)E

D
RSD3

)
and the extended active domains EDR , EDS , and EDRS contain
tuples built only from the values from relations D1,D2, and
D3.

Relationship among the operators – trickier part

Let D1, D2, D3, and D4 be RDTs on R1,R2,R3, and R4,
respectively, and let ÷ be the division operation defined by (??).
For Darwen’s Divide we have(

D1 ÷D3,D4

gddo D2

)
(r) =

(
(D1 ./ D2) ./ (ED ÷

ED
R′
1 EDR′

2
)
)
(r),

for all r ∈ Tupl(R1 ∪ R2) where

ED =
(
(D4 ./ EDR′

3
)
ED
R′
4 (πR′

3
(D3) ./ EDR4

)
)
,

R ′
1 = (R4 ∩ (R1 ∪ R2)) ∪ (R1 ∩ R3),

R ′
2 = R4 \ (R1 ∪ R2),

R ′
3 = R3 ∩ (R1 ∪ R4),

R ′
4 = R4 ∪ (R1 ∩ R3)

and the extended active domains contain tuples built only from the
values from relations D1,D2,D3, and D4.

Note on Graded Subsethood

I Graded subsethood can be seen as a relational operation on
two RDTs D1,D2 on the same relation scheme R.

I The result is an RDT on empty relation scheme containing an
empty tuple with score that is equal to the degree of D1 being
a subset of D2. It is given by

(D1 ⊆ D2)(∅) =
∧

r∈Tupl(R)

(D1(r)→ D2(r))

I Graded subsethood can be seen as a special case of division in
our style, generalized Small Divide, Great Divide or Darwen’s
Divide.

I The generalized division operations can be expressed using the
graded subsethood and the notion of image relations.

Conclusions

I We have presented an overview of various relational division
operations and their generalized counterparts.

I Furthermore, we have investigated their relationship with the
help of newly introduced relationally complete query language
– Pseudo Tuple Calculus.

I We have answered an open question regarding the relationship
of Date’s Great Divide and Darwen’s Divide in the classical
model.

I Future research will focus on a model with graded subsethood
as a fundamental operation alongisde with the imaging
operation.

