Algebras assigned to ternary systems

Miroslav Kolařík

DEPARTMENT OF COMPUTER SCIENCE PALACKÝ UNIVERSITY, OLOMOUC

Olomouc 2015

Co-authors

Ivan Chajda
Palacký University, Olomouc, Czech Republic

Helmut Länger

Vienna University of Technology, Austria

Contents

11 Short introduction

2 Ternary operations assigned to ternary relations

3 Homomorphisms and subsystems of ternary relational systems

4 Median-like algebras

5 Cyclic algebras

Introduction

In [2] and [3], there were shown that to certain relational systems $\mathcal{A}=(A ; R)$, where R is a binary relation on $A \neq \emptyset$, there can be assigned a certain groupoid $\mathcal{G}(A)=(A ; \circ)$ which captures the properties of R. Namely, $x \circ y=y$ if and only if $(x, y) \in R$.

Hence, there arises the natural question if a similar way can be used for ternary relational systems and algebras with one ternary relation.

In the following let A denote a fixed arbitrary non-empty set.

Basic notions

Definition

Let T be a ternary relation on A and $a, b \in A$. The set

$$
Z_{T}(a, b):=\{x \in A \mid(a, x, b) \in T\}
$$

is called the centre of (a, b) with respect to T. The ternary relation T on A is called centred if $Z_{T}(a, b) \neq \emptyset$ for all elements $a, b \in A$.

Definition

Let T be a ternary relation on A and $a, b, c \in A$. The set

$$
M_{T}(a, b, c):=Z_{T}(a, b) \cap Z_{T}(b, c) \cap Z_{T}(c, a)
$$

will be called the median of (a, b, c) with respect to T.

Basic notions

Now we show that to every centred ternary relation there can be assigned ternary operations.

Definition

Let T be a centred ternary relation on A and t a ternary operation on A satisfying

$$
t(a, b, c) \begin{cases}=b & \text { if }(a, b, c) \in T \\ \in Z_{T}(a, c) & \text { otherwise }\end{cases}
$$

Such an operation t is called assigned to T.

Remark

By definition, if T is a centred ternary relation on A and t assigned to T then $(a, t(a, b, c), c) \in T$ for all $a, b, c \in A$.

Lemma

Let T be a centred ternary relation on A and t an assigned operation. Let $a, b, c \in A$. Then $(a, b, c) \in T$ if and only if $t(a, b, c)=b$.

Proof

By Definition 3, if $(a, b, c) \in T$ then $t(a, b, c)=b$. Conversely, assume $(a, b, c) \notin T$. Then $t(a, b, c) \in Z_{T}(a, c)$. Now $t(a, b, c)=b$ would imply $(a, b, c)=(a, t(a, b, c), c) \in T$ contradicting $(a, b, c) \notin T$. Hence $t(a, b, c) \neq b$.

Example ...

Theorem

A ternary operation t on A is assigned to some centred ternary relation T on A if and only if it satisfies the identity

$$
\begin{equation*}
t(x, t(x, y, z), z)=t(x, y, z) \tag{I1}
\end{equation*}
$$

Proof

Let $a, b, c \in A$.
Assume that T is a ternary relation on A and t an assigned operation. If $(a, b, c) \in T$ then $t(a, b, c)=b$ and hence $t(a, t(a, b, c), c)=t(a, b, c)$. If $(a, b, c) \notin T$ then
$t(a, b, c) \in Z_{T}(a, c)$ and hence $(a, t(a, b, c), c) \in T$ which yields
$t(a, t(a, b, c), c)=t(a, b, c)$. Thus t satisfies identity (I1).
Conversely, assume $t: A^{3} \rightarrow A$ satisfies (I1) and define
$T:=\left\{(x, y, z) \in A^{3} \mid t(x, y, z)=y\right\}$. If $(a, b, c) \in T$ then $t(a, b, c)=b$ and, if $(a, b, c) \notin T$ then $(a, t(a, b, c), c) \in T$ whence $t(a, b, c) \in Z_{T}(a, c)$, i. e. t is assigned to T.

Properties of ternary relations

Further, we get a characterization of some important properties of ternary relations by means of identities of their assigned operations.

Definition

Let T be a ternary relation on A. We call T

- reflexive if $|\{a, b, c\}| \leq 2$ implies $(a, b, c) \in T$;
- symmetric if $(a, b, c) \in T$ implies $(c, b, a) \in T$;
- antisymmetric if $(a, b, a) \in T$ implies $a=b$;
- cyclic if $(a, b, c) \in T$ implies $(b, c, a) \in T$;
- R-transitive if $(a, b, c),(b, d, e) \in T$ implies $(a, d, e) \in T$;
- t_{1}-transitive if $(a, b, c),(a, d, b) \in T$ implies $(d, b, c) \in T$;
- t_{2}-transitive if $(a, b, c),(a, d, b) \in T$ implies $(a, d, c) \in T$;
- R-symmetric if $(a, b, c) \in T$ implies $(b, a, c) \in T$;
- R-antisymmetric if $(a, b, c),(b, a, c) \in T$ implies $a=b$;
- non-sharp if $(a, a, b) \in T$ for all $a, b \in A$;
- cyclically transitive if $(a, b, c),(a, c, d) \in T$ implies $(a, b, d) \in T$.

Theorem 1/3

Let T be a centred ternary relation on A and t an assigned operation. Then (i) - (xi) hold: (i) T is reflexive if and only if t satisfies the identities

$$
t(x, x, y)=t(y, x, x)=t(y, x, y)=x
$$

(ii) T is symmetric if and only if t satisfies the identity

$$
t(z, t(x, y, z), x)=t(x, y, z)
$$

(iii) T is antisymmetric if and only if t satisfies the identity

$$
t(x, y, x)=x
$$

(iv) T is cyclic if and only if t satisfies the identity

$$
t(t(x, y, z), z, x)=z
$$

Theorem 2/3

(v) T is R-transitive if and only if t satisfies the identity

$$
t(x, t(t(x, y, z), u, v), v)=t(t(x, y, z), u, v)
$$

(vi) T is t_{1}-transitive if and only if t satisfies the identity

$$
t(t(x, u, t(x, y, z)), t(x, y, z), z)=t(x, y, z)
$$

(vii) T is t_{2}-transitive if and only if t satisfies the identity

$$
t(x, t(x, u, t(x, y, z)), z)=t(x, u, t(x, y, z))
$$

(viii) T is R-symmetric if and only if t satisfies the identity

$$
t(t(x, y, z), x, z)=x
$$

Theorem 3/3

(ix) If t satisfies the identity

$$
t(t(x, y, z), x, z)=t(x, y, z)
$$

then T is R-antisymmetric.
(x) T is non-sharp if and only if t satisfies the identity

$$
t(x, x, y)=x
$$

(xi) T is cyclically transitive if and only if t satisfies the identity

$$
t(x, t(x, y, t(x, z, u)), u)=t(x, y, t(x, z, u))
$$

Centred ternary relational system

By a ternary relational system is meant a couple $\mathcal{T}=(A ; T)$ where T is a ternary relation on A. \mathcal{T} is called centred if T is centred. As shown above, to every centred ternary relational system $\mathcal{T}=(A ; T)$ there can be assigned an algebra $\mathcal{A}(T)=(A ; t)$ with one ternary operation $t: A^{3} \rightarrow A$ such that t is assigned to T. Now, we can introduce an inverse construction. It means that to every algebra $\mathcal{A}=(A ; t)$ of type (3) there can be assigned a ternary relational system $\mathcal{T}(A)=\left(A ; T_{t}\right)$ where T_{t} is defined by

$$
\begin{equation*}
T_{t}:=\left\{(x, y, z) \in A^{3} \mid t(x, y, z)=y\right\} \tag{1}
\end{equation*}
$$

Of course, an assigned ternary relational system $\mathcal{T}(A)=\left(A ; T_{t}\right)$ need not be centred. However, if $\mathcal{T}=(A ; T)$ is a centred ternary relational system and $\mathcal{A}(T)=(A ; t)$ an assigned algebra then T_{t} is centred despite the fact that t is not determined uniquely. In fact, we have $(a, b, c) \in T_{t}$ if and only if $t(a, b, c)=b$ if and only if $(a, b, c) \in T$. Hence, we have proved the following

Centred ternary relational system

Lemma

Let $\mathcal{T}=(A ; T)$ be a centred ternary relational system, $\mathcal{A}(T)=(A ; t)$ an assigned algebra and $\mathcal{T}(\mathcal{A}(T))=\left(A ; T_{t}\right)$ the ternary relational system assigned to $\mathcal{A}(T)$. Then $\mathcal{T}(\mathcal{A}(T))=\mathcal{T}$.

The best known correspondence between centred ternary relational systems and corresponding algebras of type (3) is the case of "betweenness"-relations and median algebras.

Strong homomorphism

By a subsystem of $\mathcal{T}=(A ; T)$ is meant a couple of the form $(B, T \mid B)$ with a non-empty subset B of A and $T \mid B:=T \cap B^{3}$. One can easily see that this need not be a subalgebra of $\mathcal{A}(T)=(A ; t)$.
By a homomorphism of a ternary relational system $\mathcal{T}=(A ; T)$ into a ternary relational system $\mathcal{S}=(B ; S)$ is meant a mapping $h: A \rightarrow B$ satisfying

$$
(a, b, c) \in T \quad \Longrightarrow \quad(h(a), h(b), h(c)) \in S
$$

A homomorphism h is called strong if for each triple $(p, q, r) \in S$ there exists $(a, b, c) \in T$ such that $(h(a), h(b), h(c))=(p, q, r)$.

t-homomorphism

Definition

A t-homomorphism from a centred ternary relational system $\mathcal{T}=(A ; T)$ to a ternary relational system $\mathcal{S}=(B ; S)$ is a homomorphism from \mathcal{T} to \mathcal{S} such that there exists an algebra $(A ; t)$ assigned to \mathcal{T} such that $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in A$ and $(h(a), h(b), h(c))=\left(h\left(a^{\prime}\right), h\left(b^{\prime}\right), h\left(c^{\prime}\right)\right)$ together imply $h(t(a, b, c))=h\left(t\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$.

Theorem

Let $\mathcal{T}=(A ; T)$ and $\mathcal{S}=(B ; S)$ be centred ternary relational systems and $\mathcal{A}(T)=(A ; t)$ and $\mathcal{B}(S)=(B ; s)$ assigned algebras. Then every homomorphism from $\mathcal{A}(T)$ to $\mathcal{B}(S)$ is a t-homomorphism from \mathcal{T} to \mathcal{S}.

The theorem says that every homomorphism of assigned algebras is a t-homomorphism of the original relational systems. Now we can show under which conditions the converse assertion becomes true.

Theorem

Let $\mathcal{T}=(A ; T)$ and $\mathcal{S}=(B ; S)$ be centred ternary relational systems. Then for every strong t-homomorphism h from \mathcal{T} to \mathcal{S} with assigned algebra $\mathcal{A}(T)=(A ; t)$ there exists an algebra $\mathcal{B}(S)=(B ; s)$ assigned to \mathcal{S} such that h is a homomorphism from $\mathcal{A}(T)$ to $\mathcal{B}(S)$.

Proof

Let h be a strong t-homomorphism from \mathcal{T} to \mathcal{S}. By definition there exists an algebra $\mathcal{A}(T)=(A ; t)$ assigned to \mathcal{T} such that for all $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in A$ with $(h(a), h(b), h(c))=\left(h\left(a^{\prime}\right), h\left(b^{\prime}\right), h\left(c^{\prime}\right)\right)$ it holds $h(t(a, b, c))=h\left(t\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right)$. Define a ternary operation s on B as follows: $s(h(x), h(y), h(z)):=h(t(x, y, z))$ for all $x, y, z \in A$. Since h is strong and a t-homomorphism, s is correctly defined. For $a, b, c \in A$, if $(h(a), h(b), h(c)) \in S$ then there exists $(d, e, f) \in T$ such that $(h(d), h(e), h(f))=(h(a), h(b), h(c))$. Now

$$
s(h(a), h(b), h(c))=h(t(a, b, c))=h(t(d, e, f))=h(e)=h(b)
$$

If $(h(a), h(b), h(c)) \notin S$ then $(a, b, c) \notin T$ since h is a homomorphism from \mathcal{T} to \mathcal{S} and hence $t(a, b, c) \in Z_{T}(a, c)$, i. e. $(a, t(a, b, c), c) \in T$. Thus $(h(a), h(t(a, b, c)), h(c)) \in S$, i. e. $(h(a), s(h(a), h(b), h(c)), h(c)) \in S$ whence $s(h(a), h(b), h(c)) \in Z_{S}(h(a), h(c))$. This shows that $\mathcal{B}(S)$ is an algebra assigned to \mathcal{B}. It is easy to see that h is a homomorphism from $\mathcal{A}(T)$ to $\mathcal{B}(S)$.

Definition

Let $\mathcal{T}=(A ; T)$ be a centred ternary relational system. A subset B of A is called a t-subsystem of \mathcal{T} if there exists an algebra $\mathcal{A}(T)=(A ; t)$ assigned to \mathcal{T} such that ($B ; t$) is a subalgebra of $\mathcal{A}(T)$.

Example

Consider $A=\{a, b, c, d\}$ and the ternary relation T on A defined as follows: $T:=A \times\{d\} \times A$. Then $d \in Z_{T}(x, y)$ for each $x, y \in A$ and hence T is centred and its median is non-empty, in fact $M_{T}(x, y, z)=\{d\}$ for all $x, y, z \in A$. For $B=\{a, b, c\}$, $\mathcal{B}=(B ; T \mid B)$ is a subsystem of $\mathcal{A}=(A ; T)$ but it is not a t-subsystem. Namely, for every $x, y, z \in A t$ can be defined in the unique way as follows: $t(x, y, z):=d$. Hence, $(\{a, b, c\} ; t)$ is not a subalgebra of $(A ; t)$. On the contrary, $\{a, b, d\},\{a, c, d\},\{b, c, d\}$ are t-subsystems of \mathcal{A}.

t-homomorphism

Remark

Let $\mathcal{A}=(A ; t), \mathcal{B}=(B ; s)$ be algebras of type (3) and $h: A \rightarrow B$ a homomorphism from \mathcal{A} to \mathcal{B}. Put $\mathcal{T}(A):=\left(A ; T_{t}\right)$ and $\mathcal{S}(B):=\left(B ; S_{s}\right)$ where T_{t}, S_{s} are defined by (1). Then h need not be a t-homomorphism of $\mathcal{T}(A)$ to $\mathcal{S}(B)$, see the following example.

t-homomorphism

Example

Let $A=\{-1,0,1\}, B=\{1,0\}$ and $t(x, y, z)=x \cdot y, s(x, y, z)=x \cdot y$, where "."is the multiplication of integers. Let $h: A \rightarrow B$ be defined by $h(x)=|x|$. Then h is clearly a homomorphism from $\mathcal{A}=(A ; t)$ to $\mathcal{B}=(B ; s)$ and

$$
T_{t}=(A \times\{0\} \times A) \cup\left(\{1\} \times A^{2}\right) .
$$

There exists exactly one algebra $\left(A ; t^{*}\right)$ assigned to $\mathcal{T}(A)$, namely where

$$
t^{*}(x, y, z):= \begin{cases}y & \text { if } y=0 \text { or } x=1 \\ 0 & \text { otherwise }\end{cases}
$$

Now $h(-1)=h(1)$ but $h\left(t^{*}(-1,-1,1)\right)=h(0)=0 \neq 1=h(1)=h\left(t^{*}(1,1,1)\right)$. Thus h is not a t-homomorphism.

t-homomorphism

We can prove the following:

Theorem

If $\mathcal{A}=(A ; t)$ and $\mathcal{B}=(B ; s)$ are algebras of type (3), \mathcal{A} satisfies the identity

$$
t(x, t(x, y, z), z)=t(x, y, z)
$$

and $\mathcal{T}(A)=\left(A ; T_{t}\right)$ and $\mathcal{S}(B)=\left(B ; S_{s}\right)$ denote the relational systems corresponding to \mathcal{A} and \mathcal{B}, respectively, as defined by (1) then every homomorphism h from \mathcal{A} to \mathcal{B} is a t-homomorphism from $\mathcal{T}(A)$ to $\mathcal{S}(B)$.

Median algebra

The concept of a median algebra was introduced in [1] as follows: An algebra $\mathcal{A}=(A ; t)$ of type (3) is called a median algebra if it satisfies the following identities:
(M1) $t(x, x, y)=x$;
(M2) $t(x, y, z)=t(y, x, z)=t(y, z, x)$;
(M3) $t(t(x, y, z), v, w)=t(x, t(y, v, w), t(z, v, w))$.
It is well-known (see e.g. [1], [5]) that the ternary relation T_{t} on A assigned to t via (1) is centred and, moreover, $\left|M_{T_{t}}(a, b, c)\right|=1$ for all $a, b, c \in A$. In fact, $t(a, b, c) \in M_{T_{t}}(a, b, c)$. In particular, having a distributive lattice $\mathcal{L}=(L ; \vee, \wedge)$ then $m(x, y, z)=M(x, y, z)$ and putting $t(x, y, z):=m(x, y, z)$, one obtains a median algebra. Conversely, every median algebra can be embedded into a distributive lattice. Moreover, the assigned ternary relation T_{t} is the so-called "betweenness", see [7] and [8].
In what follows, we focus on the case when $M_{T}(a, b, c) \neq \emptyset$ for all $a, b, c \in A$ and $t(a, b, c) \in M_{T}(a, b, c)$ also in case $\left|M_{T}(a, b, c)\right| \geq 1$.

Median-like algebra

Definition

A median-like algebra is an algebra ($A ; t$) of type (3) where t satisfies (M1) and (M2) and where there exists a centred ternary relation T on A such that $t(x, y, z) \in M_{T}(x, y, z)$ for all $x, y, z \in A$.

Theorem

An algebra $\mathcal{A}=(A ; t)$ of type (3) is median-like if t satisfies (M1), (M2) and

$$
t(x, t(x, y, z), y)=t(y, t(x, y, z), z)=t(z, t(x, y, z), x)=t(x, y, z)
$$

Lemma

Every median algebra is a median-like algebra.

Median-like algebra

Example

Put $A:=\{1,2,3,4,5\}$, let t denote the ternary operation on A defined by $t(x, x, y)=t(x, y, x)=t(y, x, x):=x$ for all $x, y \in A$ and $t(x, y, z):=\min (x, y, z)$ for all $x, y, z \in A$ with $x \neq y \neq z \neq x$ and put $T:=\{(x, x, y) \mid x, y \in A\} \cup\{(y, x, x) \mid x, y \in$ $A\} \cup\left\{(x, y, z) \in A^{3} \mid y<x<z\right\} \cup\left\{(x, y, z) \in A^{3} \mid y<z<x\right\}$. Then t satisfies (M1) and (M2) and $t(x, y, z) \in M_{T}(x, y, z)$ for all $x, y, z \in A$. This shows that $(A ; t)$ is median-like. However, this algebra is not a median algebra since

$$
t(t(1,3,4), 2,5)=t(1,2,5)=1 \neq 2=t(1,2,2)=t(1, t(3,2,5), t(4,2,5))
$$

and hence (M3) is not satisfied.

Example ...

Median-like algebra

Theorem

Let $\mathcal{L}=(L ; \vee, \wedge)$ be a lattice. Define $t_{1}(x, y, z):=m(x, y, z), t_{2}(x, y, z):=M(x, y, z)$. Then $\mathcal{A}_{1}:=\left(L ; t_{1}\right)$ and $\mathcal{A}_{2}:=\left(L ; t_{2}\right)$ are median-like algebras. Moreover, the following conditions are equivalent
(a) $\mathcal{A}_{1}=\mathcal{A}_{2}$;
(b) \mathcal{A}_{1} is a median algebra;
(c) \mathcal{L} is distributive.

Proof

Since both $m(x, y, z)$ and $M(x, y, z)$ satisfy (M1) and (M2) and $m(x, y, z), M(x, y, z) \in[m(x, y, z), M(x, y, z)]=M_{T}(x, y, z)$ for $(x, y, z) \in L^{3}$ and $T:=\left\{(x, y, z) \in L^{3} \mid x \wedge z \leq y \leq x \vee z\right\}, \mathcal{A}_{1}, \mathcal{A}_{2}$ are median-like algebras. It is well-known that $m(x, y, z)=M(x, y, z)$ if and only if \mathcal{L} is distributive which proves $(a) \Leftrightarrow(c)$. The implication $(c) \Rightarrow(b)$ is well-known (see e.g. [1], [5]). Finally, we prove $(b) \Rightarrow(c)$. Assume that (b) holds but (c) does not. Then \mathcal{L} contains either $\mathcal{M}_{3}=(\{0, a, b, c, 1\} ; \vee, \wedge)$ or $\mathcal{N}_{5}=(\{0, a, b, c, 1\} ; \vee, \wedge)$ (with $\left.a<c\right)$ as a sublattice. In the first case we have

$$
t(t(a, b, c), a, 1)=t(0, a, 1)=a \neq 1=t(a, 1,1)=t(a, t(b, a, 1), t(c, a, 1))
$$

whereas in the second case

$$
t(t(c, b, a), a, 1)=t(a, a, 1)=a \neq c=t(c, 1, a)=t(c, t(b, a, 1), t(a, a, 1))
$$

which shows that (M3) does not hold. This is a contradiction to (b). Hence (c) holds.

Median-like algebra

Let us mention that median-like algebras form a variety because they are defined by identities. Moreover, this variety is congruence distributive, i. e. Con \mathcal{A} is distributive for every median-like algebra \mathcal{A}, because the operation t is a majority term, i. e. it satisfies by (M1) and (M2)

$$
t(x, x, y)=t(x, y, x)=t(y, x, x)=x
$$

Theorem

Let $\mathcal{L}=(L ; \vee, \wedge)$ be a lattice and t a ternary operation on L satisfying (M1) and (M2) and $t(x, y, z) \in[m(x, y, z), M(x, y, z)]$ for all $x, y, z \in A$. Then $\mathcal{A}:=(L ; t)$ is a median-like algebra.

Cyclic order

Apart from the "betweenness" relation, another ternary relation plays an important role in mathematics. It is the so-called cyclic order, see e.g. [4], [6].

Definition

A ternary relation T on A is called asymmetric if

$$
\begin{equation*}
(a, b, c) \in T \text { for } a \neq b \neq c \quad \text { implies } \quad(c, b, a) \notin T . \tag{2}
\end{equation*}
$$

A ternary relation C on A is called a cyclic order if it is cyclic, asymmetric, cyclically transitive and satisfies $(a, a, a) \in C$ for each $a \in A$.

Remark

Let C be a cyclic order on a set A. Then $(a, b, a) \notin C$ for all $a, b \in A$ with $a \neq b$. Namely, if $(a, b, a) \in C$ then, by $(2),(a, b, a) \notin C$, a contradiction. Since C is cyclic, we have also $(a, a, b),(b, a, a) \notin C$.

Cyclic algebra

Applying (2), we derive immediately

Lemma

A centred ternary relation T on A is asymmetric if and only if any assigned ternary operation t satisfies the implication:

$$
\begin{equation*}
(t(x, y, z)=y \text { and } x \neq y \neq z) \quad \Longrightarrow \quad t(z, y, x) \neq y . \tag{3}
\end{equation*}
$$

Similarly as for "betweenness" relations, we can derive an algebra of type (3) for a centred cyclic order by means of its assigned operation.

Definition

A cyclic algebra is an algebra assigned to a cyclic relation.

Cyclic algebras can be characterized by certain identities and the implication (3) as follows.

Cyclic algebra

Theorem

An algebra $\mathcal{A}=(A ; t)$ of type (3) is a cyclic algebra if and only if it satisfies (3) and

$$
\begin{aligned}
& t(x, t(x, y, z), z)=t(x, y, z) \\
& t(t(x, y, z), z, x)=z \\
& t(x, t(x, y, t(x, z, u)), u)=t(x, y, t(x, z, u)) \\
& t(x, x, x)=x
\end{aligned}
$$

Cyclic algebra

Example

Let K be a circle in a plane with a given direction.
Define a ternary relation C on K as follows:

$$
\begin{aligned}
& (a, a, a) \in C \text { for each } a \in K \text { and } \\
& (a, b, c) \in C \text { if } a \rightarrow b \text { and } b \rightarrow c \text { for } a \neq b \neq c .
\end{aligned}
$$

It is an easy exercise to check that C is a cyclic order on K. If $a, b \in K$ then either $a=b$ and hence $Z_{C}(a, a)=\{a\}$ or $a \neq b$ thus $Z_{C}(a, b)$ equals the arc of K between a and b, i. e. it contains a continuum of points. Hence C is centred. For any assigned operation t, the algebra $\mathcal{A}(C)=(K ; t)$ is a cyclic algebra.

References

葍 Bandelt H．－J．，Hedlíková J．：Median algebras，Discrete Math． 45 （1983），1－30．
国 Chajda I．，LÄnger H．：Quotients and homomorphisms of relational systems，Acta Univ．Palacki．Olomuc．，Fac．rer．nat．，Math． 49 （2010），37－47．
国 Chajda I．，LÄnger H．：Groupoids assigned to relational systems，Math．Bohemica 138 （2013），15－23．
击 Chajda I．，Novák V．：On extensions of cyclic orders，Časopis Pěst．Mat． 110 （1985），116－121．
园 Isbell J．R．：Median algebra，Trans．Amer．Math．Soc． 260 （1980），319－362．
婁 Novák V．：Cyclically ordered sets，Czechoslovak Math．J． 32 （1982），460－473．
围 Pitcher E．，Smiley M．F．：Transitives of betweenness，Trans．Amer．Math．Soc． 52 （1942），95－114．
囯 Sholander M．：Medians and betweenness，Proc．Amer．Math．Soc． 5 （1954）， 801－807．

Thank you for your attention!

