Algebras assigned to ternary systems

Miroslav Kolařík

DEPARTMENT OF COMPUTER SCIENCE PALACKÝ UNIVERSITY, OLOMOUC

Olomouc 2015

Co-authors

Ivan Chajda Palacký University, Olomouc, Czech Republic

Helmut Länger Vienna University of Technology, Austria

Contents

- Short introduction
- 2 Ternary operations assigned to ternary relations
- 3 Homomorphisms and subsystems of ternary relational systems
- 4 Median-like algebras
- 5 Cyclic algebras

Introduction

In [2] and [3], there were shown that to certain relational systems $\mathcal{A}=(A;R)$, where R is a binary relation on $A\neq\emptyset$, there can be assigned a certain groupoid $\mathcal{G}(A)=(A;\circ)$ which captures the properties of R. Namely, $x\circ y=y$ if and only if $(x,y)\in R$.

Hence, there arises the natural question if a similar way can be used for ternary relational systems and algebras with one ternary relation.

In the following let A denote a fixed arbitrary non-empty set.

Basic notions

Definition

Let T be a ternary relation on A and $a, b \in A$. The set

$$Z_T(a,b) := \{x \in A \mid (a,x,b) \in T\}$$

is called the **centre of** (a,b) **with respect to** T. The ternary relation T on A is called **centred** if $Z_T(a,b) \neq \emptyset$ for all elements $a,b \in A$.

Definition

Let T be a ternary relation on A and $a,b,c\in A$. The set

$$M_T(a,b,c) := Z_T(a,b) \cap Z_T(b,c) \cap Z_T(c,a)$$

will be called the **median of** (a, b, c) **with respect to** T.

Basic notions

Now we show that to every centred ternary relation there can be assigned ternary operations.

Definition

Let T be a centred ternary relation on A and t a ternary operation on A satisfying

$$t(a,b,c)$$
 $\begin{cases} = b & \text{if } (a,b,c) \in T \\ \in Z_T(a,c) & \text{otherwise.} \end{cases}$

Such an operation t is called **assigned to** T.

Remark

By definition, if T is a centred ternary relation on A and t assigned to T then $(a,t(a,b,c),c)\in T$ for all $a,b,c\in A$.

Lemma

Let T be a centred ternary relation on A and t an assigned operation. Let $a,b,c\in A$. Then $(a,b,c)\in T$ if and only if t(a,b,c)=b.

Proof

By Definition 3, if $(a,b,c) \in T$ then t(a,b,c) = b. Conversely, assume $(a,b,c) \notin T$. Then $t(a,b,c) \in Z_T(a,c)$. Now t(a,b,c) = b would imply $(a,b,c) = (a,t(a,b,c),c) \in T$ contradicting $(a,b,c) \notin T$. Hence $t(a,b,c) \neq b$.

Example . . .

Theorem

A ternary operation t on A is assigned to some centred ternary relation T on A if and only if it satisfies the identity

$$t(x, t(x, y, z), z) = t(x, y, z).$$
 (I1)

Proof

Let $a, b, c \in A$.

Assume that T is a ternary relation on A and t an assigned operation. If $(a,b,c) \in T$ then t(a,b,c) = b and hence t(a,t(a,b,c),c) = t(a,b,c). If $(a,b,c) \notin T$ then $t(a,b,c) \in Z_T(a,c)$ and hence $(a,t(a,b,c),c) \in T$ which yields t(a,t(a,b,c),c) = t(a,b,c). Thus t satisfies identity (I1). Conversely, assume $t:A^3 \to A$ satisfies (I1) and define $T:=\{(x,y,z) \in A^3 \mid t(x,y,z) = y\}$. If $(a,b,c) \in T$ then t(a,b,c) = b and, if $(a,b,c) \notin T$ then $(a,t(a,b,c),c) \in T$ whence $t(a,b,c) \in Z_T(a,c)$, i. e. t is assigned to T.

Properties of ternary relations

Further, we get a characterization of some important properties of ternary relations by means of identities of their assigned operations.

Definition

Let T be a ternary relation on A. We call T

- **reflexive** if $|\{a,b,c\}| \le 2$ implies $(a,b,c) \in T$;
- symmetric if $(a, b, c) \in T$ implies $(c, b, a) \in T$;
- antisymmetric if $(a, b, a) \in T$ implies a = b;
- **cyclic** if $(a, b, c) \in T$ implies $(b, c, a) \in T$;
- R-transitive if $(a, b, c), (b, d, e) \in T$ implies $(a, d, e) \in T$;
- t_1 -transitive if $(a, b, c), (a, d, b) \in T$ implies $(d, b, c) \in T$;
- t_2 -transitive if $(a, b, c), (a, d, b) \in T$ implies $(a, d, c) \in T$;
- R-symmetric if $(a,b,c) \in T$ implies $(b,a,c) \in T$;
- R-antisymmetric if $(a, b, c), (b, a, c) \in T$ implies a = b;
- non-sharp if $(a, a, b) \in T$ for all $a, b \in A$;
- cyclically transitive if $(a,b,c), (a,c,d) \in T$ implies $(a,b,d) \in T$.

Theorem 1/3

Let T be a centred ternary relation on A and t an assigned operation. Then (i) – (xi) hold: (i) T is reflexive if and only if t satisfies the identities

$$t(x, x, y) = t(y, x, x) = t(y, x, y) = x.$$

(ii) T is symmetric if and only if t satisfies the identity

$$t(z, t(x, y, z), x) = t(x, y, z).$$

(iii) T is antisymmetric if and only if t satisfies the identity

$$t(x, y, x) = x.$$

(iv) T is cyclic if and only if t satisfies the identity

$$t(t(x, y, z), z, x) = z.$$

Theorem 2/3

(v) T is R-transitive if and only if t satisfies the identity

$$t(x, t(t(x, y, z), u, v), v) = t(t(x, y, z), u, v).$$

(vi) T is t_1 -transitive if and only if t satisfies the identity

$$t(t(x, u, t(x, y, z)), t(x, y, z), z) = t(x, y, z).$$

(vii) T is t_2 -transitive if and only if t satisfies the identity

$$t(x, t(x, u, t(x, y, z)), z) = t(x, u, t(x, y, z)).$$

(viii) T is R-symmetric if and only if t satisfies the identity

$$t(t(x, y, z), x, z) = x.$$

Theorem 3/3

(ix) If t satisfies the identity

$$t(t(x, y, z), x, z) = t(x, y, z)$$

then T is R-antisymmetric.

(x) T is non-sharp if and only if t satisfies the identity

$$t(x, x, y) = x.$$

(xi) T is cyclically transitive if and only if t satisfies the identity

$$t(x, t(x, y, t(x, z, u)), u) = t(x, y, t(x, z, u)).$$

Centred ternary relational system

By a **ternary relational system** is meant a couple $\mathcal{T}=(A;T)$ where T is a ternary relation on A. \mathcal{T} is called **centred** if T is centred. As shown above, to every centred ternary relational system $\mathcal{T}=(A;T)$ there can be assigned an algebra $\mathcal{A}(T)=(A;t)$ with one ternary operation $t:A^3\to A$ such that t is assigned to T. Now, we can introduce an inverse construction. It means that to every algebra $\mathcal{A}=(A;t)$ of type (3) there can be assigned a ternary relational system $\mathcal{T}(A)=(A;T_t)$ where T_t is defined by

$$T_t := \{(x, y, z) \in A^3 \mid t(x, y, z) = y\}. \tag{1}$$

Of course, an assigned ternary relational system $\mathcal{T}(A)=(A;T_t)$ need not be centred. However, if $\mathcal{T}=(A;T)$ is a centred ternary relational system and $\mathcal{A}(T)=(A;t)$ an assigned algebra then T_t is centred despite the fact that t is not determined uniquely. In fact, we have $(a,b,c)\in T_t$ if and only if t(a,b,c)=t if and only if t(a,b,c)=t. Hence, we have proved the following

Centred ternary relational system

Lemma

Let $\mathcal{T}=(A;T)$ be a centred ternary relational system, $\mathcal{A}(T)=(A;t)$ an assigned algebra and $\mathcal{T}(\mathcal{A}(T))=(A;T_t)$ the ternary relational system assigned to $\mathcal{A}(T)$. Then $\mathcal{T}(\mathcal{A}(T))=\mathcal{T}$.

The best known correspondence between centred ternary relational systems and corresponding algebras of type (3) is the case of "betweenness"-relations and median algebras.

Strong homomorphism

By a **subsystem** of $\mathcal{T}=(A;T)$ is meant a couple of the form (B,T|B) with a non-empty subset B of A and $T|B:=T\cap B^3$. One can easily see that this need not be a subalgebra of $\mathcal{A}(T)=(A;t)$.

By a **homomorphism** of a ternary relational system $\mathcal{T}=(A;T)$ into a ternary relational system $\mathcal{S}=(B;S)$ is meant a mapping $h:A\to B$ satisfying

$$(a,b,c) \in T \implies (h(a),h(b),h(c)) \in S.$$

A homomorphism h is called **strong** if for each triple $(p,q,r) \in S$ there exists $(a,b,c) \in T$ such that (h(a),h(b),h(c))=(p,q,r).

Definition

A t-homomorphism from a centred ternary relational system $\mathcal{T}=(A;T)$ to a ternary relational system $\mathcal{S}=(B;S)$ is a homomorphism from \mathcal{T} to \mathcal{S} such that there exists an algebra (A;t) assigned to \mathcal{T} such that $a,b,c,a',b',c'\in A$ and (h(a),h(b),h(c))=(h(a'),h(b'),h(c')) together imply h(t(a,b,c))=h(t(a',b',c')).

Theorem

Let $\mathcal{T}=(A;T)$ and $\mathcal{S}=(B;S)$ be centred ternary relational systems and $\mathcal{A}(T)=(A;t)$ and $\mathcal{B}(S)=(B;s)$ assigned algebras. Then every homomorphism from $\mathcal{A}(T)$ to $\mathcal{B}(S)$ is a t-homomorphism from \mathcal{T} to \mathcal{S} .

The theorem says that every homomorphism of assigned algebras is a t-homomorphism of the original relational systems. Now we can show under which conditions the converse assertion becomes true.

Theorem

Let $\mathcal{T}=(A;T)$ and $\mathcal{S}=(B;S)$ be centred ternary relational systems. Then for every strong t-homomorphism h from \mathcal{T} to \mathcal{S} with assigned algebra $\mathcal{A}(T)=(A;t)$ there exists an algebra $\mathcal{B}(S)=(B;s)$ assigned to \mathcal{S} such that h is a homomorphism from $\mathcal{A}(T)$ to $\mathcal{B}(S)$.

Proof

Let h be a strong t-homomorphism from \mathcal{T} to \mathcal{S} . By definition there exists an algebra $\mathcal{A}(T)=(A;t)$ assigned to \mathcal{T} such that for all $a,b,c,a',b',c'\in A$ with (h(a),h(b),h(c))=(h(a'),h(b'),h(c')) it holds h(t(a,b,c))=h(t(a',b',c')). Define a ternary operation s on B as follows: s(h(x),h(y),h(z)):=h(t(x,y,z)) for all $x,y,z\in A$. Since h is strong and a t-homomorphism, s is correctly defined. For $a,b,c\in A$, if $(h(a),h(b),h(c))\in S$ then there exists $(d,e,f)\in T$ such that (h(d),h(e),h(f))=(h(a),h(b),h(c)). Now

$$s(h(a), h(b), h(c)) = h(t(a, b, c)) = h(t(d, e, f)) = h(e) = h(b).$$

If $(h(a),h(b),h(c)) \notin S$ then $(a,b,c) \notin T$ since h is a homomorphism from \mathcal{T} to \mathcal{S} and hence $t(a,b,c) \in Z_T(a,c)$, i. e. $(a,t(a,b,c),c) \in T$. Thus $(h(a),h(t(a,b,c)),h(c)) \in S$, i. e. $(h(a),s(h(a),h(b),h(c)),h(c)) \in S$ whence $s(h(a),h(b),h(c)) \in Z_S(h(a),h(c))$. This shows that $\mathcal{B}(S)$ is an algebra assigned to \mathcal{B} . It is easy to see that h is a homomorphism from $\mathcal{A}(T)$ to $\mathcal{B}(S)$.

t-subsystem

Definition

Let $\mathcal{T}=(A;T)$ be a centred ternary relational system. A subset B of A is called a t-subsystem of \mathcal{T} if there exists an algebra $\mathcal{A}(T)=(A;t)$ assigned to \mathcal{T} such that (B;t) is a subalgebra of $\mathcal{A}(T)$.

Example

Consider $A=\{a,b,c,d\}$ and the ternary relation T on A defined as follows: $T:=A\times\{d\}\times A$. Then $d\in Z_T(x,y)$ for each $x,y\in A$ and hence T is centred and its median is non-empty, in fact $M_T(x,y,z)=\{d\}$ for all $x,y,z\in A$. For $B=\{a,b,c\}$, $\mathcal{B}=(B;T|B)$ is a subsystem of $\mathcal{A}=(A;T)$ but it is not a t-subsystem. Namely, for every $x,y,z\in A$ t can be defined in the unique way as follows: t(x,y,z):=d. Hence, $(\{a,b,c\};t)$ is not a subalgebra of (A;t). On the contrary, $\{a,b,d\}$, $\{a,c,d\}$, $\{b,c,d\}$ are t-subsystems of \mathcal{A} .

Remark

Let $\mathcal{A}=(A;t)$, $\mathcal{B}=(B;s)$ be algebras of type (3) and $h:A\to B$ a homomorphism from \mathcal{A} to \mathcal{B} . Put $\mathcal{T}(A):=(A;T_t)$ and $\mathcal{S}(B):=(B;S_s)$ where T_t , S_s are defined by (1). Then h need not be a t-homomorphism of $\mathcal{T}(A)$ to $\mathcal{S}(B)$, see the following example.

Example

Let $A=\{-1,0,1\}$, $B=\{1,0\}$ and $t(x,y,z)=x\cdot y$, $s(x,y,z)=x\cdot y$, where "·"is the multiplication of integers. Let $h:A\to B$ be defined by h(x)=|x|. Then h is clearly a homomorphism from $\mathcal{A}=(A;t)$ to $\mathcal{B}=(B;s)$ and

$$T_t = (A \times \{0\} \times A) \cup (\{1\} \times A^2).$$

There exists exactly one algebra $(A;t^*)$ assigned to $\mathcal{T}(A)$, namely where

$$t^*(x, y, z) := \left\{ egin{array}{ll} y & \mbox{if } y = 0 \mbox{ or } x = 1 \\ 0 & \mbox{otherwise.} \end{array} \right.$$

Now h(-1) = h(1) but $h(t^*(-1, -1, 1)) = h(0) = 0 \neq 1 = h(1) = h(t^*(1, 1, 1))$. Thus h is not a t-homomorphism.

We can prove the following:

Theorem

If A = (A;t) and B = (B;s) are algebras of type (3), A satisfies the identity

$$t(x,t(x,y,z),z)=t(x,y,z)$$

and $\mathcal{T}(A) = (A; T_t)$ and $\mathcal{S}(B) = (B; S_s)$ denote the relational systems corresponding to \mathcal{A} and \mathcal{B} , respectively, as defined by (1) then every homomorphism h from \mathcal{A} to \mathcal{B} is a t-homomorphism from $\mathcal{T}(A)$ to $\mathcal{S}(B)$.

Median algebra

The concept of a median algebra was introduced in [1] as follows: An algebra $\mathcal{A}=(A;t)$ of type (3) is called a **median algebra** if it satisfies the following identities:

- (M1) t(x, x, y) = x;
- (M2) t(x, y, z) = t(y, x, z) = t(y, z, x);
- (M3) t(t(x, y, z), v, w) = t(x, t(y, v, w), t(z, v, w)).

It is well-known (see e.g. [1], [5]) that the ternary relation T_t on A assigned to t via (1) is centred and, moreover, $|M_{T_t}(a,b,c)|=1$ for all $a,b,c\in A$. In fact, $t(a,b,c)\in M_{T_t}(a,b,c)$. In particular, having a distributive lattice $\mathcal{L}=(L;\vee,\wedge)$ then m(x,y,z)=M(x,y,z) and putting t(x,y,z):=m(x,y,z), one obtains a median algebra. Conversely, every median algebra can be embedded into a distributive lattice. Moreover, the assigned ternary relation T_t is the so-called "betweenness", see [7] and [8]. In what follows, we focus on the case when $M_T(a,b,c)\neq\emptyset$ for all $a,b,c\in A$ and $t(a,b,c)\in M_T(a,b,c)$ also in case $|M_T(a,b,c)|\geq 1$.

Median-like algebra

Definition

A **median-like algebra** is an algebra (A;t) of type (3) where t satisfies (M1) and (M2) and where there exists a centred ternary relation T on A such that $t(x,y,z) \in M_T(x,y,z)$ for all $x,y,z \in A$.

Theorem

An algebra A = (A;t) of type (3) is median-like if t satisfies (M1), (M2) and

$$t(x, t(x, y, z), y) = t(y, t(x, y, z), z) = t(z, t(x, y, z), x) = t(x, y, z).$$

Lemma

Every median algebra is a median-like algebra.

Median-like algebra

Example

Put $A:=\{1,2,3,4,5\}$, let t denote the ternary operation on A defined by t(x,x,y)=t(x,y,x)=t(y,x,x):=x for all $x,y\in A$ and $t(x,y,z):=\min(x,y,z)$ for all $x,y,z\in A$ with $x\neq y\neq z\neq x$ and put $T:=\{(x,x,y)\,|\,x,y\in A\}\cup\{(y,x,x)\,|\,x,y\in A\}\cup\{(x,y,z)\in A^3\,|\,y< x< z\}\cup\{(x,y,z)\in A^3\,|\,y< z< x\}.$ Then t satisfies (M1) and (M2) and $t(x,y,z)\in M_T(x,y,z)$ for all $x,y,z\in A$. This shows that (A;t) is median-like. However, this algebra is not a median algebra since

$$t(t(1,3,4),2,5) = t(1,2,5) = 1 \neq 2 = t(1,2,2) = t(1,t(3,2,5),t(4,2,5))$$

and hence (M3) is not satisfied.

Example . . .

Median-like algebra

Theorem

Let $\mathcal{L}=(L;\vee,\wedge)$ be a lattice. Define $t_1(x,y,z):=m(x,y,z)$, $t_2(x,y,z):=M(x,y,z)$. Then $\mathcal{A}_1:=(L;t_1)$ and $\mathcal{A}_2:=(L;t_2)$ are median-like algebras. Moreover, the following conditions are equivalent

- (a) $\mathcal{A}_1 = \mathcal{A}_2$;
- (b) \mathcal{A}_1 is a median algebra;
- (c) \mathcal{L} is distributive.

Proof

Since both m(x,y,z) and M(x,y,z) satisfy (M1) and (M2) and $m(x,y,z), M(x,y,z) \in [m(x,y,z), M(x,y,z)] = M_T(x,y,z)$ for $(x,y,z) \in L^3$ and $T := \{(x,y,z) \in L^3 \mid x \land z \leq y \leq x \lor z\}$, $\mathcal{A}_1, \mathcal{A}_2$ are median-like algebras. It is well-known that m(x,y,z) = M(x,y,z) if and only if \mathcal{L} is distributive which proves $(a) \Leftrightarrow (c)$. The implication $(c) \Rightarrow (b)$ is well-known (see e.g. [1], [5]). Finally, we prove $(b) \Rightarrow (c)$. Assume that (b) holds but (c) does not. Then \mathcal{L} contains either $\mathcal{M}_3 = (\{0,a,b,c,1\}; \vee, \wedge)$ or $\mathcal{N}_5 = (\{0,a,b,c,1\}; \vee, \wedge)$ (with a < c) as a sublattice. In the first case we have

$$t(t(a,b,c),a,1) = t(0,a,1) = a \neq 1 = t(a,1,1) = t(a,t(b,a,1),t(c,a,1))$$

whereas in the second case

$$t(t(c,b,a),a,1) = t(a,a,1) = a \neq c = t(c,1,a) = t(c,t(b,a,1),t(a,a,1))$$

which shows that (M3) does not hold. This is a contradiction to (b). Hence (c) holds.

Median-like algebra

Let us mention that median-like algebras form a variety because they are defined by identities. Moreover, this variety is congruence distributive, i. e. $\mathrm{Con}\mathcal{A}$ is distributive for every median-like algebra \mathcal{A} , because the operation t is a majority term, i. e. it satisfies by (M1) and (M2)

$$t(x, x, y) = t(x, y, x) = t(y, x, x) = x.$$

Theorem

Let $\mathcal{L}=(L;\vee,\wedge)$ be a lattice and t a ternary operation on L satisfying (M1) and (M2) and $t(x,y,z)\in[m(x,y,z),M(x,y,z)]$ for all $x,y,z\in A$. Then $\mathcal{A}:=(L;t)$ is a median-like algebra.

Cyclic order

Apart from the "betweenness" relation, another ternary relation plays an important role in mathematics. It is the so-called **cyclic order**, see e.g. [4], [6].

Definition

A ternary relation T on A is called **asymmetric** if

$$(a, b, c) \in T \text{ for } a \neq b \neq c \text{ implies } (c, b, a) \notin T.$$
 (2)

A ternary relation C on A is called a **cyclic order** if it is cyclic, asymmetric, cyclically transitive and satisfies $(a, a, a) \in C$ for each $a \in A$.

Remark

Let C be a cyclic order on a set A. Then $(a,b,a) \notin C$ for all $a,b \in A$ with $a \neq b$. Namely, if $(a,b,a) \in C$ then, by (2), $(a,b,a) \notin C$, a contradiction. Since C is cyclic, we have also $(a,a,b),(b,a,a) \notin C$.

Cyclic algebra

Applying (2), we derive immediately

Lemma

A centred ternary relation T on A is asymmetric if and only if any assigned ternary operation t satisfies the implication:

$$(t(x,y,z)=y \text{ and } x \neq y \neq z) \implies t(z,y,x) \neq y.$$
 (3)

Similarly as for "betweenness" relations, we can derive an algebra of type (3) for a centred cyclic order by means of its assigned operation.

Definition

A cyclic algebra is an algebra assigned to a cyclic relation.

Cyclic algebras can be characterized by certain identities and the implication (3) as follows.

Cyclic algebra

Theorem

An algebra $\mathcal{A}=(A;t)$ of type (3) is a cyclic algebra if and only if it satisfies (3) and

$$t(x, t(x, y, z), z) = t(x, y, z),$$

$$t(t(x, y, z), z, x) = z,$$

$$t(x, t(x, y, t(x, z, u)), u) = t(x, y, t(x, z, u)),$$

$$t(x, x, x) = x.$$

Cyclic algebra

Example

Let K be a circle in a plane with a given direction.

Define a ternary relation ${\cal C}$ on ${\cal K}$ as follows:

$$(a,a,a)\in C$$
 for each $a\in K$ and

$$(a,b,c) \in C \text{ if } a \to b \text{ and } b \to c \text{ for } a \neq b \neq c.$$

It is an easy exercise to check that C is a cyclic order on K. If $a,b\in K$ then either a=b and hence $Z_C(a,a)=\{a\}$ or $a\neq b$ thus $Z_C(a,b)$ equals the arc of K between a and b, i. e. it contains a continuum of points. Hence C is centred. For any assigned operation t, the algebra $\mathcal{A}(C)=(K;t)$ is a cyclic algebra.

References

- BANDELT H.-J., HEDLÍKOVÁ J.: *Median algebras*, Discrete Math. **45** (1983), 1–30.
- CHAJDA I., LÄNGER H.: Quotients and homomorphisms of relational systems, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 49 (2010), 37–47.
- CHAJDA I., LÄNGER H.: *Groupoids assigned to relational systems*, Math. Bohemica **138** (2013), 15–23.
- CHAJDA I., NOVÁK V.: On extensions of cyclic orders, Časopis Pěst. Mat. 110 (1985), 116–121.
- ISBELL J. R.: *Median algebra*, Trans. Amer. Math. Soc. **260** (1980), 319–362.
- NOVÁK V.: Cyclically ordered sets, Czechoslovak Math. J. 32 (1982), 460–473.
- PITCHER E., SMILEY M. F.: *Transitives of betweenness*, Trans. Amer. Math. Soc. **52** (1942), 95–114.
- SHOLANDER M.: *Medians and betweenness*, Proc. Amer. Math. Soc. **5** (1954), 801–807.

Thanks

Thank you for your attention!