Když prvek není roven sám sobě

Jan Laštovička, Michal Krupka

31. května 2016

Non-existing elements

If x exists then $x=x$.

- proof by contradiction

Non-existing elements

If x exists then $x=x$.

- proof by contradiction

Universe with non-existing elements
Our starting point:

$$
x \text { exists if and only if } x=x
$$

Similar approach:

- Dana Scott: Identity and existence in intuitionistic logic (1979)
- Free logic (negative semantics)

Incomplete information

Ignorance of ...

- existence of elements
- equality of elements
- sets membership

Incomplete information

Ignorance of ...

- existence of elements
- equality of elements
- sets membership

Conditions

L... Boolean algebra of conditions (complete and atomic)
In finite case

- classes of equivalent formulas
$h: L \rightarrow K$... realities (complete surjective homomorphisms)
$h: L \rightarrow 2 \ldots$ total realities

$$
h(c)=1 \ldots \text { condition } c \text { is satisfied in reality } h
$$

Conditional universes

X with $\approx: X \times X \rightarrow L$ (conditional equality)

$$
\begin{array}{r}
x \approx y=y \approx x \\
(x \approx y) \wedge(y \approx z) \leq x \approx z
\end{array}
$$

(symmetry)
(transitivity)

- $x \approx y \ldots$ the condition under which x is equal to y
- $x \approx x \ldots$ the condition under which x exists

In reality

$h: L \rightarrow K \ldots$ reality

- $h(x \approx y)=1 \ldots$ it is satisfied in h that x is equal to y
- $h(x \approx x)=1 \ldots$ it is satisfied in h that x exists

Separation

X is separated if

$$
x \approx y=x \approx x=y \approx y \text { always implies } x=y
$$

Ω-valued sets

- Ω-sets, totally fuzzy sets
$\Omega \ldots$ complete Heyting algebra
X with symmetric and transitive $\approx: X \times X \rightarrow \Omega$

Equivalence:

- Ω-valued sets
- canonical sheaves on Ω
- sets in Ω-valued universe

Literature

- Denis Higgs: A category approach to boolean-valued set theory (1973)
- Michael Fourman, Dana Scott: Sheaves and logic (1979)
- Robert Goldblatt: Topoi—The Categorial Analysis of Logic (1984)
- Oswald Wyler: Fuzzy logic and categories of fuzzy sets (1995)
- Ulrich Höhle: Fuzzy Sets and Sheaves (2007)

Conditional sets

$A: X \rightarrow L$
$A(x) \ldots$ the condition under which x is an element of A
The condition under which A exists:

$$
E(A)=\bigwedge_{x \in X} A(x) \rightarrow(x \approx x)
$$

Subsethood and equality

$$
\begin{aligned}
\mathrm{S} \approx(A, B) & =\bigwedge_{x \in X} A(x) \rightarrow \bigvee_{y \in X} B(y) \wedge(x \approx y) \\
A \approx^{+} B & =\mathrm{S} \approx(A, B) \wedge \mathrm{S}_{\approx(B, A)}
\end{aligned}
$$

We have

- $E(A)=A \approx^{+} A \quad(A$ exists iff A is equal to $A)$

Realizations of conditional universes

$\langle X, \approx\rangle \ldots L$-conditional universe
$h: L \rightarrow K \ldots$ reality
h-realization of $\langle X, \approx\rangle$:

- K-conditional universe $\left\langle X^{h}, \approx^{h}\right\rangle$
- surjective partial function $X \rightarrow X^{h}, x \mapsto x^{h}$
such that
- X^{h} is separated
- $x^{h} \approx^{h} x^{h}>0$ for all $x^{h} \in X^{h}$
- if $h(x \approx x)>0$ then x^{h} is defined
- $h(x \approx y)=x^{h} \approx^{h} y^{h}$
(it is satisfied in h that x is equal to y iff x is equal to y in h)

Realizations of conditional sets

$A: X \rightarrow L$
$h: L \rightarrow K \ldots$ reality
If $h(x \approx x)=0$ always implies $h(A(x))=0$ then we set

$$
A^{h}\left(x^{h}\right)=\bigvee_{\substack{y \in X \\ y^{h}=x^{h}}} h(A(y))
$$

- $h(A(x)) \leq A^{h}\left(x^{h}\right) \ldots A$ can lie
(if it is satisfied in h that x is an element of A then x is an element of A in h)

$$
\begin{aligned}
h(\mathrm{~S} \approx(A, B)) & =\mathrm{S}_{\approx^{h}}\left(A^{h}, B^{h}\right) \\
h\left(A \approx^{+} B\right) & =A^{h} \approx^{h+} B^{h}
\end{aligned}
$$

(it is satisfied in h that A is a subset of B iff A is a subset of B in h)

Conditional sets (cont.)

$$
\mathrm{C} \approx(A)(x)=\bigvee_{y \in X} A(y) \wedge(x \approx y)
$$

Generally: $A \nsubseteq \mathrm{C} \approx(A)$
A is a fixpoint of C_{\approx} if and only if

- $A \approx^{+} A=1$
- $A(x) \wedge(x \approx y) \leq A(y) \quad(A$ is compatible with $\approx)$

If A is a fixpoint of $\mathrm{C} \approx$ then

$$
h(A(x))=A^{h}\left(x^{h}\right)
$$

Future work

- conditional sets with $h(A(x))=A^{h}\left(x^{h}\right)$
- conditional universe of conditional sets
- realizations with non-existing elements
- concept lattices in this framework

