Wavefront-sensor tomography for measuring spatial coherence

J. Řeháček, Z. Hradil, B. Stoklasa, L. Moťka Palacky University, Olomouc, CZ

L.L. Sánchez-Soto

Complutense University, Madrid

Program Centra kompetence

mutual intensity G(x',x)

- second-order coherence properties of partially coherent beams
- beam propagation and 3D imaging

 $I(x'') = \iint h(x'',x)h^*(x'',x')G(x',x)dx'dx$

wavefront sensors

- relatively cheap technology
- one-shot measurement
- robust compared to interferometers

Shack-Hartmann detection

standard operation

local wavefront tilts
wavefront reconstruction

alternative interpretation

- projections on position/momentum shifted pupil functions
- can be made informationally complete on a suitable search space

Z.Hradil, J.R., L.L.Sanchez-Soto, Phys. Rev. Lett. **105**, 010401 (2010) L. Waller, G. Situ and J.W. Fleischer, Nature Photonics **6**, 474 (2012)

S-H tomography

intensity at the CCD plane

 $I_{ij} = \operatorname{Tr}(\rho \Pi^{ij})$ measurement matrix: $\Pi^{ij} \ge 0$ coherence matrix: $G(x', x) = \langle x' | \rho | x \rangle, \ \rho \ge 0$

search space

- finite subspace $\{\psi_k(x)\}, k = 1...d$
- e.g. LG, HG, plane waves ...

S-H tomography ...

measurement matrix

S-H plane
$$\psi_k(x) \rightarrow \psi'_k(x)$$
 CCD plane $\Pi_{kl}^{ij} = \psi'_k^*(x_{ij})\psi'_l(x_{ij})$

reconstruction

- formally equivalent to quantum-state reconstruction
- ML approach works fine

Y.S.Teo, H.Zhu, B.-G.Englert, J.R., Z.Hradil, Phys. Rev. Lett. 107, 020404 (2011)

Experiment

Digital holography setup

B. Stoklasa, L. Motka, J.R., Z. Hradil, L.L.Sanchez-Soto, Nature Communications DOI: 10.1038/ncomms4275.

Experiment ...

vortex basis $V_{I}(r, \varphi) = \langle r, \varphi | V_{I} \rangle \propto e^{iI\varphi}$ $\rho_{\text{true}} = |V_{-3} - \frac{i}{2}V_{-6}\rangle \langle V_{-3} - \frac{i}{2}V_{-6}| + \frac{1}{2}|V_{3}\rangle \langle V_{3}|$

reconstruction

digital propagation of partially coherent vortex beams

• target state

$$\rho_{true} = |\boldsymbol{V}_4 + \boldsymbol{V}_{-4}\rangle \langle \boldsymbol{V}_4 + \boldsymbol{V}_{-4}| + \lambda |\boldsymbol{V}_0\rangle \langle \boldsymbol{V}_0|$$

- protocol
 - beam preparation
 - S-H tomography
 - digital propagation
 - calculated intensity is compared to the actual CCD scans in the far field

Propagation ...

SH tomography

direct measurement

multimode light of a UV laser source

- CrystalLaser, Nd:YAG 266nm, pulse 10ns, 1kHz repetition rate
- Meopta S-H sensor, 150µm pitch, 4.6µm CCD pixel size, 7mm microlens to CCD distance
- reconstruction
 - search space: 9 lowest-order HG modes (81 parameters)
 - data: 11x11 pixels for each of 7x7 microlenses (5929 measurements)

Characterization ...

typical S-H data

Results

Conclusions

- Quantum-state estimation techniques can be adopted for S-H data processing
- Applications:
 - complete characterization of partially coherent beams
 - 3D imaging
 - UV lasers