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Introduction

Construction of substructures is a fundamental task.

Computing a complete sublattice generated by given set is computationally hard.

We are aware of only one algorithm, which we believe is not correct.
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Closed subrelations

Definition (closed subrelation)

A relation J ⊆ I ⊆ X × Y is called a closed subrelation of the context 〈X,Y, I〉 if every
concept of the context 〈X,Y, J〉 is also concept of 〈X,Y, I〉.

There is a 1-1 correspondence between closed subrelations and complete sublattices.
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Substructures

Let U be a complete lattice.

Definition (substructures)

A subset V ⊆ U is a
∨

-subsemilattice (resp.
∧

-subsemilattice, resp. complete sublattice)
of U, if for each P ⊆ V it holds

∨
P ∈ V (resp.

∧
P ∈ V , resp. {

∨
P,

∧
P} ⊆ V ).

Definition (generated substructures)

For a subset P ⊆ U denote by C∨P (resp. C∧P , resp. C∨∧P ) the
∨

-subsemilattice
(resp.

∧
-subsemilattice, resp. complete sublattice) of U generated by P .

C∨P always exists and is equal to intersection of all
∨

-subsemilattices of U containing P .
Similarly for operators C∧ and C∨∧.

The operators C∨, C∧, C∨∧ are closure operators on the set U .
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Substructures cont.

Let B(X,Y, I) be finite.

Set V1 = C∨P , V2 = C∧V1, V3 = C∨V2, . . . .

Once Vi = Vi−1, we obtained the complete sublattice V ⊆ B(X,Y, I) generated by P .

V can be computed by alternating applications of operators C∨, C∧.

For each i > 0, Vi is a complete lattice but not a complete sublattice of B(X,Y, I).
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Problem statement

Let 〈X,Y, I〉 be a formal context, B(X,Y, I) its concept lattice.

Denote V the complete sublattice of B(X,Y, I) generated by P ⊆ B(X,Y, I).

V can be obtained using the subsemilattices Vi, i > 0.

We are not computing Vi instead we work with contexts.

For each i > 0 we compute a formal context with the concept lattice isomorphic to Vi.

There exist a closed subrelation J ⊆ I such that

B(X,Y, J) = V.

The interesting part is how to construct J .

B(X,Y, J) can then be constructed by any known efficient algorithm.
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The first step

Recall V1 = C∨P .

For V1 the corresponding formal context is 〈P, Y,K1〉 where K1 is given by

〈〈A,B〉, y〉 ∈ K1 iff y ∈ B.

The rows in 〈P, Y,K1〉 are exactly intents of concepts from P .

Proposition

The concept lattice B(P, Y,K1) and the complete lattice V1 are isomorphic. The
isomorphism assigns to each concept 〈B↓K1 , B〉 ∈ B(P, Y,K1) the concept
〈B↓I , B〉 ∈ B(X,Y, I).

Proof.

Concepts from V1 are exactly those with intents equal to intersections of intents of
concepts from P . The same holds for concepts from B(P, Y,K1).
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General step

For all Vi where i > 1 the corresponding formal contexts are of the form 〈X,Y,Ki〉
where Ki is given by

〈x, y〉 ∈ Ki iff

{
x ∈ {y}↓Ki−1

↑Ki−1
↓I for even i,

y ∈ {x}↑Ki−1
↓Ki−1

↑I for odd i.

Useful to think about concepts as maximal rectangles.

For even i > 0 we obtain Ki by ”extending extents of attribute concepts of Ki−1 in I”.

Similarly for odd i.
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General step cont.

Following can be easily proven:

If i is even then for each y ∈ Y , {y}↓Ki = {y}↓Ki−1
↑Ki−1

↓I .

If i is odd then for each x ∈ X, {x}↑Ki = {x}↑Ki−1
↓Ki−1

↑I .

For each i > 1 it holds Ki ⊆ I and Ki ⊆ Ki+1.

Proposition

If i is even then each extent of Ki is also an extent of I.
If i is odd then each intent of Ki is also an intent of I.

Proof.

Previous observation implies that each attribute extent of Ki is an extent of I. Thus, the
proposition follows from the fact that each extent of Ki is an intersection of attribute
extents of Ki. Similarly for intents.
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General step conclusion

Proposition

For each i > 0, the concept lattice B(P, Y,Ki) (for i = 1) resp. B(X,Y,Ki) (for i > 1)
and the complete lattice Vi are isomorphic. The isomorphism is given by
〈B↓Ki , B〉 7→ 〈B↓I , B〉 if i is odd and by 〈A,A↑Ki 〉 7→ 〈A,A↑I 〉 if i is even.

If X and Y are finite then Ki ⊆ Ki+1 (for i > 1) implies there is a number n > 1 such
that Kn+1 = Kn. Denote this relation by J .

From previous we know there are two isomorphism of B(X,Y, J) and Vn = Vn+1 = V .

Those two isomorphism coincide and B(X,Y, J) = V .
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Algorithm 1 Computing the closed subrelation J .

Input: formal context 〈X,Y, I〉, subset P ⊆ B(X,Y, I)
Output: the closed subrelation of J ⊆ I whose concept lattice is equal to C∨∧P
J ← relation K1

i← 1
repeat

L← J
i← i+ 1
if i is even then

J ← {〈x, y〉 ∈ X × Y | x ∈ {y}↓L↑L↓I}
else

J ← {〈x, y〉 ∈ X × Y | y ∈ {x}↑L↓L↑I}
end if

until i > 2 & J = L
return J
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Proposition

Algorithm 1 is correct and terminates after at most max(|I|+ 1, 2) iterations.

The algorithm cannot stop after one iteration, since comparison of K1 ⊆ P × Y and
K2 ⊆ X × Y does not make sense.

Each iteration adds at least one incidence.

Once nothing new gets added algorithm terminates.

We ran number of experiments on Mushrooms dataset, the maximum recorded number
of iterations was 11.

There was apparent decreasing trend of number of iteration for increasing size of P .
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Example

〈X,Y, I〉 (left) and concept lattice B(X,Y, I), together with a subset P ⊆ B(X,Y, I),
depicted by filled dots (right).

I y1 y2 y3 y4 y5
x1 × ×
x2 × × ×
x3 × ×
x4 ×
x5 ×

y1 y3

x2

x5 x4

y2

y4
x1 x3

y5
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Example cont.

〈P, Y,K1〉 (left), the concept lattice B(P, Y,K1) (center) and the
∨

-subsemilattice
C∨P ⊆ B(X,Y, I), isomorphic to B(P, Y,K1), depicted by filled dots (right).

K1 y1 y2 y3 y4 y5
c1 × ×
c2 ×
c3 ×

y3, y5

c2

y1

y4
c1

c3

y2
y1 y3

x2

x5 x4

y2

y4
x1 x3

y5
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Example cont.

〈X,Y,K2〉 (left), the concept lattice B(X,Y,K2) (center) and the
∧

-subsemilattice
V2 = C∧V1 ⊆ B(X,Y, I), isomorphic to B(X,Y,K2), depicted by filled dots (right).

K2 y1 y2 y3 y4 y5
x1 × ×
x2 × × ·
x3 · ·
x4 ·
x5 ×

x5

x1 x2

x3, x4

y3, y5

y1

y4

y2
y1 y3

x2

x5 x4

y2

y4
x1 x3

y5
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Example conclusion

〈X,Y,K3〉 (left), the concept lattice B(X,Y,K3) (center) and the
∨

-subsemilattice
V3 = C∨V2 ⊆ B(X,Y, I), isomorphic to B(X,Y,K3), depicted by filled dots (right). As
K3 = K4 = J , it is a closed subrelation of I and V4 = C∧V3 = V3 is a complete sublattice
of B(X,Y, I).

K3 y1 y2 y3 y4 y5
x1 × ×
x2 × × ×
x3 · ·
x4 ·
x5 ×

x5

x1 x2

x3, x4

y5

y1

y4

y2

y3

y1 y3

x2

x5 x4

y2

y4
x1 x3

y5
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Open problems

Closed subrelations

Set of all closed subrelations of given context is not a closure system.

There is no closure operator that would assign to a subrelation the smallest closed
subrelation.

But our algorithm can be easily changed to compute a closed subrelation to any
subrelation.

This closed subrelation seems to be minimal in some sense.

Dual computation might give different results.

Complexity

We believe presented bound on number of iteration is loose.

We didn’t prove a stronger statement yet.

But we were also unable to construct any example that would require more than
min(|X|, |Y |) iterations.
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Conclusion

We present a method for computing sublattices generated by sets of elements.

Our approach is based only on work with contexts.

Can be very efficient especially if the size of the sublattice is small compared to the
whole lattice.

The actual construction of sublattices can be done using any know algorithm for
computing concept lattices.
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Thank you for your attention!
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Algorithm from the paper by K. Bertet, M. Morvan (1999)

Authors cite a book (by Davey and Priestley) with the definition of sublattice as was
presented here.

The output of algorithm from the paper need not to be sublattice in this sense.

If we would admit a different definition for generated sublattice (such that the
algorithm would be correct with respect to this definition), then the claim that
computed result would be the smallest one would be false (it would not be a closure
system).

The algorithm is based on the following false claim: Given an element e ∈ U the
smallest element s ≥ e such that s ∈ C∨∧P can be expressed as
s =

∧
{p ∈ P | p ≥ e}.

p1 p3

p2

v
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