Algebras assigned to ternary relations

Miroslav Kolařík

DEPARTMENT OF COMPUTER SCIENCE PALACKÝ UNIVERSITY, OLOMOUC

Co-authors

Ivan Chajda
Palacký University, Olomouc, Czech Republic

Helmut Länger

Vienna University of Technology, Austria

Contents

11 Introduction

2 Ternary operations assigned to ternary relations

3 Centred ternary relational system

4 Median-like algebras

5 Cyclic algebras

Introduction

In [2] and [3], there were shown that to certain relational systems $\mathcal{A}=(A ; R)$, where R is a binary relation on $A \neq \emptyset$, there can be assigned a certain groupoid $\mathcal{G}(A)=(A ; \circ)$ which captures the properties of R. Namely, $x \circ y=y$ if and only if $(x, y) \in R$.

Hence, there arises the natural question if a similar way can be used for ternary relational systems and algebras with one ternary relation.

In the following let A denote a fixed arbitrary non-empty set.

Basic notions

Definition

Let T be a ternary relation on A and $a, b \in A$. The set

$$
Z_{T}(a, b):=\{x \in A \mid(a, x, b) \in T\}
$$

is called the centre of (a, b) with respect to T. The ternary relation T on A is called centred if $Z_{T}(a, b) \neq \emptyset$ for all elements $a, b \in A$.

Definition

Let T be a ternary relation on A and $a, b, c \in A$. The set

$$
M_{T}(a, b, c):=Z_{T}(a, b) \cap Z_{T}(b, c) \cap Z_{T}(c, a)
$$

will be called the median of (a, b, c) with respect to T.

Basic notions

Now we show that to every centred ternary relation there can be assigned ternary operations.

Definition

Let T be a centred ternary relation on A and t a ternary operation on A satisfying

$$
t(a, b, c) \begin{cases}=b & \text { if }(a, b, c) \in T \\ \in Z_{T}(a, c) & \text { otherwise }\end{cases}
$$

Such an operation t is called assigned to T.

Example

Example

Let $\mathcal{L}=(L ; \vee, \wedge)$ be a lattice. Define a ternary relation T on L as follows:

$$
(a, b, c) \in T \quad \text { if and only if } \quad a \wedge c \leq b \leq a \vee c
$$

Put $m(x, y, z):=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$ and $M(x, y, z):=(x \vee y) \wedge(y \vee z) \wedge(z \vee x)$. Then

$$
M_{T}(a, b, c)=[m(a, b, c), M(a, b, c)]
$$

is the interval in \mathcal{L}. It is well-known that $m(x, y, z)=M(x, y, z)$ if and only if \mathcal{L} is distributive. Hence, \mathcal{L} is distributive if and only if $\left|M_{T}(a, b, c)\right|=1$ for all $a, b, c \in L$.

This example was used in [5] for the definition of a median algebra. If \mathcal{L} is a distributive lattice then the algebra $(L ; m)$ is called the median algebra derived from \mathcal{L}. Note that, there exist median algebras which are not derived from a lattice.

Theorem

Now, we get a characterization of some important properties of ternary relations by means of identities of their assigned operations.

Theorem

A ternary operation t on A is assigned to some centred ternary relation T on A if and only if it satisfies the identity

$$
t(x, t(x, y, z), z)=t(x, y, z)
$$

Properties of ternary relations

Definition

Let T be a ternary relation on A. We call T

- reflexive if $|\{a, b, c\}| \leq 2$ implies $(a, b, c) \in T$;
- symmetric if $(a, b, c) \in T$ implies $(c, b, a) \in T$;
- antisymmetric if $(a, b, a) \in T$ implies $a=b$;
- cyclic if $(a, b, c) \in T$ implies $(b, c, a) \in T$;
- R-transitive if $(a, b, c),(b, d, e) \in T$ implies $(a, d, e) \in T$;
- t_{1}-transitive if $(a, b, c),(a, d, b) \in T$ implies $(d, b, c) \in T$;
- t_{2}-transitive if $(a, b, c),(a, d, b) \in T$ implies $(a, d, c) \in T$;
- R-symmetric if $(a, b, c) \in T$ implies $(b, a, c) \in T$;
- R-antisymmetric if $(a, b, c),(b, a, c) \in T$ implies $a=b$;
- non-sharp if $(a, a, b) \in T$ for all $a, b \in A$;
- cyclically transitive if $(a, b, c),(a, c, d) \in T$ implies $(a, b, d) \in T$.

Theorem 1/3

Theorem

Let T be a centred ternary relation on A and t an assigned operation. Then (i) - (xi) hold: (i) T is reflexive if and only if t satisfies the identities

$$
t(x, x, y)=t(y, x, x)=t(y, x, y)=x
$$

(ii) T is symmetric if and only if t satisfies the identity

$$
t(z, t(x, y, z), x)=t(x, y, z)
$$

(iii) T is antisymmetric if and only if t satisfies the identity

$$
t(x, y, x)=x
$$

(iv) T is cyclic if and only if t satisfies the identity

$$
t(t(x, y, z), z, x)=z
$$

Theorem 2/3

Theorem

(v) T is R-transitive if and only if t satisfies the identity

$$
t(x, t(t(x, y, z), u, v), v)=t(t(x, y, z), u, v)
$$

(vi) T is t_{1}-transitive if and only if t satisfies the identity

$$
t(t(x, u, t(x, y, z)), t(x, y, z), z)=t(x, y, z)
$$

(vii) T is t_{2}-transitive if and only if t satisfies the identity

$$
t(x, t(x, u, t(x, y, z)), z)=t(x, u, t(x, y, z))
$$

(viii) T is R-symmetric if and only if t satisfies the identity

$$
t(t(x, y, z), x, z)=x
$$

Theorem 3/3

Theorem

(ix) If t satisfies the identity

$$
t(t(x, y, z), x, z)=t(x, y, z)
$$

then T is R-antisymmetric.
(x) T is non-sharp if and only if t satisfies the identity

$$
t(x, x, y)=x
$$

(xi) T is cyclically transitive if and only if t satisfies the identity

$$
t(x, t(x, y, t(x, z, u)), u)=t(x, y, t(x, z, u))
$$

Centred ternary relational system

By a ternary relational system is meant a couple $\mathcal{T}=(A ; T)$ where T is a ternary relation on A. \mathcal{T} is called centred if T is centred. As shown above, to every centred ternary relational system $\mathcal{T}=(A ; T)$ there can be assigned an algebra $\mathcal{A}(T)=(A ; t)$ with one ternary operation $t: A^{3} \rightarrow A$ such that t is assigned to T. Now, we can introduce an inverse construction. It means that to every algebra $\mathcal{A}=(A ; t)$ of type (3) there can be assigned a ternary relational system $\mathcal{T}(A)=\left(A ; T_{t}\right)$ where T_{t} is defined by

$$
\begin{equation*}
T_{t}:=\left\{(x, y, z) \in A^{3} \mid t(x, y, z)=y\right\} . \tag{1}
\end{equation*}
$$

Of course, an assigned ternary relational system $\mathcal{T}(A)=\left(A ; T_{t}\right)$ need not be centred.
The best known correspondence between centred ternary relational systems and corresponding algebras of type (3) is the case of "betweenness"-relations and median algebras.

Median algebra

The concept of a median algebra was introduced by J. R. Isbell as follows: An algebra $\mathcal{A}=(A ; t)$ of type (3) is called a median algebra if it satisfies the following identities:
(M1) $t(x, x, y)=x$;
(M2) $t(x, y, z)=t(y, x, z)=t(y, z, x)$;
(M3) $t(t(x, y, z), v, w)=t(x, t(y, v, w), t(z, v, w))$.
It is well-known (see e.g. [1], [5]) that the ternary relation T_{t} on A assigned to t via (1) is centred and, moreover, $\left|M_{T_{t}}(a, b, c)\right|=1$ for all $a, b, c \in A$. In fact, $t(a, b, c) \in M_{T_{t}}(a, b, c)$. In particular, having a distributive lattice $\mathcal{L}=(L ; \vee, \wedge)$ then $m(x, y, z)=M(x, y, z)$ and putting $t(x, y, z):=m(x, y, z)$, one obtains a median algebra. Conversely, every median algebra can be embedded into a distributive lattice. Moreover, the assigned ternary relation T_{t} is the so-called "betweenness", see [4] and [5].
In what follows, we focus on the case when $M_{T}(a, b, c) \neq \emptyset$ for all $a, b, c \in A$ and $t(a, b, c) \in M_{T}(a, b, c)$ also in case $\left|M_{T}(a, b, c)\right| \geq 1$.

Median-like algebra

Definition

A median-like algebra is an algebra ($A ; t$) of type (3) where t satisfies (M1) and (M2) and where there exists a centred ternary relation T on A such that $t(x, y, z) \in M_{T}(x, y, z)$ for all $x, y, z \in A$.

Theorem

An algebra $\mathcal{A}=(A ; t)$ of type (3) is median-like if t satisfies (M1), (M2) and

$$
t(x, t(x, y, z), y)=t(y, t(x, y, z), z)=t(z, t(x, y, z), x)=t(x, y, z)
$$

Lemma

Every median algebra is a median-like algebra.

Median-like algebra

Example

Put $A:=\{1,2,3,4,5\}$, let t denote the ternary operation on A defined by $t(x, x, y)=t(x, y, x)=t(y, x, x):=x$ for all $x, y \in A$ and $t(x, y, z):=\min (x, y, z)$ for all $x, y, z \in A$ with $x \neq y \neq z \neq x$ and put $T:=\{(x, x, y) \mid x, y \in A\} \cup\{(y, x, x) \mid x, y \in$ $A\} \cup\left\{(x, y, z) \in A^{3} \mid y<x<z\right\} \cup\left\{(x, y, z) \in A^{3} \mid y<z<x\right\}$. Then t satisfies (M1) and (M2) and $t(x, y, z) \in M_{T}(x, y, z)$ for all $x, y, z \in A$. This shows that $(A ; t)$ is median-like. However, this algebra is not a median algebra since

$$
t(t(1,3,4), 2,5)=t(1,2,5)=1 \neq 2=t(1,2,2)=t(1, t(3,2,5), t(4,2,5))
$$

and hence (M3) is not satisfied.

Median-like algebra

Theorem

Let $\mathcal{L}=(L ; \vee, \wedge)$ be a lattice. Define $t_{1}(x, y, z):=m(x, y, z), t_{2}(x, y, z):=M(x, y, z)$. Then $\mathcal{A}_{1}:=\left(L ; t_{1}\right)$ and $\mathcal{A}_{2}:=\left(L ; t_{2}\right)$ are median-like algebras. Moreover, the following conditions are equivalent
(a) $\mathcal{A}_{1}=\mathcal{A}_{2}$;
(b) \mathcal{A}_{1} is a median algebra;
(c) \mathcal{L} is distributive.

Median-like algebra

Let us mention that median-like algebras form a variety because they are defined by identities. Moreover, this variety is congruence distributive, i. e. Con \mathcal{A} is distributive for every median-like algebra \mathcal{A}, because the operation t is a majority term, i. e. it satisfies by (M1) and (M2)

$$
t(x, x, y)=t(x, y, x)=t(y, x, x)=x
$$

Theorem

Let $\mathcal{L}=(L ; \vee, \wedge)$ be a lattice and t a ternary operation on L satisfying (M1) and (M2) and $t(x, y, z) \in[m(x, y, z), M(x, y, z)]$ for all $x, y, z \in A$. Then $\mathcal{A}:=(L ; t)$ is a median-like algebra.

Cyclic order

Apart from the "betweenness" relation, another ternary relation plays an important role in mathematics. It is the so-called cyclic order, see e.g. [4], [3].

Definition

A ternary relation T on A is called asymmetric if

$$
\begin{equation*}
(a, b, c) \in T \text { for } a \neq b \neq c \quad \text { implies } \quad(c, b, a) \notin T . \tag{2}
\end{equation*}
$$

A ternary relation C on A is called a cyclic order if it is cyclic, asymmetric, cyclically transitive and satisfies $(a, a, a) \in C$ for each $a \in A$.

Applying (2), we derive immediately

Cyclic algebra

Lemma

A centred ternary relation T on A is asymmetric if and only if any assigned ternary operation t satisfies the implication:

$$
\begin{equation*}
(t(x, y, z)=y \text { and } x \neq y \neq z) \quad \Longrightarrow \quad t(z, y, x) \neq y \tag{3}
\end{equation*}
$$

Similarly as for "betweenness" relations, we can derive an algebra of type (3) for a centred cyclic order by means of its assigned operation.

Definition

A cyclic algebra is an algebra assigned to a cyclic relation.

Cyclic algebra

Theorem

An algebra $\mathcal{A}=(A ; t)$ of type (3) is a cyclic algebra if and only if it satisfies (3) and

$$
\begin{aligned}
& t(x, t(x, y, z), z)=t(x, y, z) \\
& t(t(x, y, z), z, x)=z \\
& t(x, t(x, y, t(x, z, u)), u)=t(x, y, t(x, z, u)) \\
& t(x, x, x)=x
\end{aligned}
$$

References I

国 Bandelt H．－J．，Hedlíková J．：Median algebras，Discrete Math． 45 （1983），1－30．
围 Chajda I．，LÄnger H．：Quotients and homomorphisms of relational systems，Acta Univ．Palacki．Olomuc．，Fac．rer．nat．，Math． 49 （2010），37－47．
囯 Chajda I．，LÄnger H．：Groupoids assigned to relational systems，Math．Bohemica （to appear）．
击 Chajda I．，Novák V．：On extensions of cyclic orders，Časopis Pěst．Mat． 110 （1985），116－121．
园 Isbell J．R．：Median algebra，Trans．Amer．Math．Soc． 260 （1980），319－362．
击 Ježek J．，Quackenbush R．：Directoids：algebraic models of up－directed sets， Algebra Universalis 27 （1990），49－69．

References II

囯 Megiddo N．：Partial and complete cyclic orders，Bull．Amer．Math．Soc． 82 （1976）， 274－276．
葍 MüLler G．：Lineare und zyklische Ordnung，Praxis Math． 16 （1974），261－269．
國 NovÁk V．：Cyclically ordered sets，Czechoslovak Math．J． 32 （1982），460－473．
䍰 Pitcher E．，Smiley M．F．：Transitives of betweenness，Trans．Amer．Math．Soc． 52 （1942），95－114．
围 Sholander M．：Medians and betweenness，Proc．Amer．Math．Soc． 5 （1954）， 801－807．

Thank you for your attention!

