Squeezing of quantum states

Tomáš Opatrný

Faculty of Science, Palacky University Olomouc

Squeezing of quantum states

- Introduction
- Motivation: why squeezing?
- Basics of squeezing
- Hamilton canonical equations and squeezing rate
- Examples
- Conclusion

Why squeezing?

■ Metrology: suppressed noise of interferometers

- optics:detection of gravitational waves
- squeezed atomic spin states: magnetometry
- atomic clocks

■ Quantum information processing: irreducble resource

- quantum teleportation of continuous variables
- quantum cryptography
- quantum computation with continuous variables

Why squeezing?

Measurement noise 100 times lower than the quantum-projection limit using entangled atoms

[Hosten et al. (Kasevich group)]

Why squeezing?

Measurement noise 100 times lower than the quantum-projection limit using entangled atoms

[Hosten et al. (Kasevich group)]

Why squeezing?

Gravitational wave detection, LIGO

[www.ligo.caltech.edu; PRL 116, 061102 (2016)]

Why squeezing?

Gravitational wave detection, LIGO

[www.ligo.caltech.edu; PRL 116, 061102 (2016)]

Why squeezing?

Gravitational wave detection: GEO600 (LIGO collaboration),
R. Schnabel

[Abadie et al., Nature Physics, 7, 962-965 (2011)]

Why squeezing?

Gravitational wave detection: GEO600 (LIGO collaboration), R. Schnabel

[Abadie et al., Nature Physics, 7, 962-965 (2011)]

Why squeezing?

Quantum information processing with squeezed states

■ Quantum teleportation of continuous variables [Vaidman, PRA 49, 1473 (1994)].
■ Quantum cryptography with continuous variables (e.g., [Hillery, PRA 61, 022309 (2000)]

- Quantum computation with continuous variables (e.g., [Lloyd \& Braunstein, PRL 82, 1784 (1999)])
- Analogue computation,
- quantum simulators,
- to have universal computer, necessary to have Hamiltonian of higher than quadratic nonlinearity in x and p.

Basics of squeezing

Squeezing

Example: harmonic oscillator
■ Hamiltonian:

$$
H=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}
$$

- Coherent states: saturate uncertainty relation

$$
\begin{aligned}
\Delta x & =\sqrt{\frac{\hbar}{2 m \omega}} \\
\Delta p & =\sqrt{\frac{\hbar m \omega}{2}} \\
\Delta x \Delta p & =\frac{\hbar}{2}
\end{aligned}
$$

Basics of squeezing

Squeezing

Example: harmonic oscillator
Coherent states: saturate uncertainty relation

Basics of squeezing

Squeezing

Example: harmonic oscillator
Creation and annihilation operators:

$$
\begin{aligned}
\hat{x} & =\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right) \\
\hat{p} & =-i \sqrt{\frac{\hbar m \omega}{2}}\left(\hat{a}-\hat{a}^{\dagger}\right) \\
{[\hat{x}, \hat{p}] } & =i \hbar \\
{\left[\hat{a}, \hat{a}^{\dagger}\right] } & =1 \\
H & =\hbar\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)
\end{aligned}
$$

Basics of squeezing

Squeezing

Example: harmonic oscillator Squeezed coherent states: can also saturate uncertainty relation, but, e.g.:

$$
\begin{aligned}
\Delta x & <\sqrt{\frac{\hbar}{2 m \omega}} \\
\Delta p & >\sqrt{\frac{\hbar m \omega}{2}} \\
\Delta x \Delta p & =\frac{\hbar}{2}
\end{aligned}
$$

p

Basics of squeezing: detection

Homodyne detection

$$
\begin{aligned}
& \hat{a}_{1}=\frac{1}{\sqrt{2}}(\hat{a}+\hat{b}), \quad \hat{a}_{2}=\frac{1}{\sqrt{2}}(\hat{a}-\hat{b}) \\
& I_{1} \propto \hat{a}_{1}^{\dagger} \hat{a}_{1}=\frac{1}{2} \hat{a}^{\dagger} \hat{a}+\frac{|b|}{2}\left(\hat{a}^{\dagger} e^{i \varphi}+\hat{a} e^{-i \varphi}\right)+\frac{|b|^{2}}{2} \\
& I_{2} \propto \hat{a}_{1}^{\dagger} \hat{a}_{1}=\frac{1}{2} \hat{a}^{\dagger} \hat{a}-\frac{|b|}{2}\left(\hat{a}^{\dagger} e^{i \varphi}+\hat{a} e^{-i \varphi}\right)+\frac{|b|^{2}}{2}
\end{aligned}
$$

Basics of squeezing: detection

Homodyne detection

$$
I_{1}-I_{2} \propto|b|\left(\hat{a}^{\dagger} e^{i \varphi}+\hat{a} e^{-i \varphi}\right)
$$

Example: $\varphi=0$

$$
I_{1}-I_{2} \propto|b|\left(\hat{a}^{\dagger}+\hat{a}\right) \propto \hat{x}
$$

Example: $\varphi=\pi / 2$

$$
I_{1}-I_{2} \propto i|b|\left(\hat{a}^{\dagger}-\hat{a}\right) \propto \hat{p}
$$

Basics of squeezing: detection

Homodyne detection

Noise squeezing [G. Breitenbach dissertation, 1998; Nature 387, 471 (1997)]

Basics of squeezing: squeezing production

Parametric down-conversion

Basics of squeezing: squeezing production

Parametric down-conversion

$$
H=\chi\left(\hat{b} \hat{a}_{1}^{\dagger} \hat{a}_{2}^{\dagger}+\hat{b}^{\dagger} \hat{a}_{1} \hat{a}_{2}\right)
$$

Parametric down-conversion, degenerate case

$$
H=\chi\left(\hat{b} \hat{a}^{\dagger 2}+\hat{b}^{\dagger} \hat{a}^{2}\right)
$$

Basics of squeezing: squeezing production

Kerr nonlinearity

(index of refraction proportional to light intensity)

$$
H=\chi \hat{n}^{2}
$$

Strong pulses propagating in optical fibres

Basics of squeezing: squeezing production

Jaynes-Cummings model

a two level atom and a single-mode field

$$
\hat{H}_{J C}=g\left(\hat{a} \hat{\sigma}_{+}+\hat{a}^{\dagger} \hat{\sigma}_{-}\right)
$$

[C. W. Woods and J. Gea-Banacloche, J. Mod. Opt. 40, 2361-2379 (1993)]

Classical Hamiltonian $H(x, p)$, equations of motion

$$
\begin{aligned}
\dot{x} & =\frac{\partial H}{\partial p} \\
\dot{p} & =-\frac{\partial H}{\partial x}
\end{aligned}
$$

Continuity equation

$$
\begin{aligned}
\frac{\partial \varrho}{\partial t} & =-\sum_{k} \frac{\partial j_{k}}{\partial q_{k}} \\
j_{k} & =\varrho \dot{q}_{k}
\end{aligned}
$$

Liouville theorem

$$
\frac{d \varrho}{d t}=0
$$

Hamilton canonical equations and squeezing rate

Phase space is the countryside, Hamiltonian is the elevation

Rules of motion:

- Follow the countour line (constant elevation), hill on your left, valley on your right,

■ speed is proportional to the slope magnitude.

Hamilton canonical equations and squeezing rate

Phase space is the countryside, Hamiltonian is the elevation

Hamilton canonical equations and squeezing rate

Phase space is the countryside, Hamiltonian is the elevation

Hamilton canonical equations and squeezing rate

Phase space is the countryside, Hamiltonian is the elevation

Hamilton canonical equations and squeezing rate

Phase space is the countryside, Hamiltonian is the elevation

Hamilton canonical equations and squeezing rate

Phase space is the countryside, Hamiltonian is the elevation

Derivation of the squeezing rate
Variation matrix

$$
V=\left(\begin{array}{cc}
\left\langle\Delta x^{2}\right\rangle & \langle\Delta x \Delta p\rangle \\
\langle\Delta x \Delta p\rangle & \left\langle\Delta p^{2}\right\rangle
\end{array}\right) \equiv\left(\begin{array}{cc}
V_{x x} & V_{x p} \\
V_{x p} & V_{p p}
\end{array}\right),
$$

for a state centered in $\left(x_{0}, p_{0}\right)$.

Derivation of the squeezing rate
Change of position

$$
\begin{aligned}
\tilde{x}_{0}+\Delta \tilde{x} \approx & x_{0}+\Delta x+\frac{d}{d t}\left(x_{0}+\Delta x\right) d t \\
= & x_{0}+\Delta x+\frac{\partial H\left(x_{0}+\Delta x, p_{0}+\Delta p\right)}{\partial p} d t \\
\approx & x_{0}+\Delta x+\frac{\partial H\left(x_{0}, p_{0}\right)}{\partial p} d t \\
& +\left(\frac{\partial^{2} H\left(x_{0}, p_{0}\right)}{\partial p^{2}} \Delta p+\frac{\partial^{2} H\left(x_{0}, p_{0}\right)}{\partial x \partial p} \Delta x\right) d t
\end{aligned}
$$

Derivation of the squeezing rate

Change of momentum

$$
\begin{aligned}
\tilde{p}_{0}+\Delta \tilde{p} \approx & p_{0}+\Delta p+\frac{d}{d t}\left(p_{0}+\Delta p\right) d t \\
= & p_{0}+\Delta p-\frac{\partial H\left(x_{0}+\Delta x, p_{0}+\Delta p\right)}{\partial x} d t \\
\approx & p_{0}+\Delta p-\frac{\partial H\left(x_{0}, p_{0}\right)}{\partial x} d t \\
& -\left(\frac{\partial^{2} H\left(x_{0}, p_{0}\right)}{\partial x^{2}} \Delta x+\frac{\partial^{2} H\left(x_{0}, p_{0}\right)}{\partial x \partial p} \Delta p\right) d t
\end{aligned}
$$

Derivation of the squeezing rate

New central position and momentum:

$$
\begin{aligned}
& \tilde{x}_{0} \approx x_{0}+H_{p} d t, \\
& \tilde{p}_{0} \approx p_{0}-H_{x} d t,
\end{aligned}
$$

new deviations:

$$
\begin{aligned}
& \Delta \tilde{x} \approx \Delta x+\left(H_{x p} \Delta x+H_{p p} \Delta p\right) d t \\
& \Delta \tilde{p} \approx \Delta p-\left(H_{x p} \Delta p+H_{x x} \Delta x\right) d t
\end{aligned}
$$

Derivation of the squeezing rate

Assuming $\langle\Delta x\rangle=\langle\Delta p\rangle=0$, the new variances are (up to the first order in $d t$)

$$
\begin{aligned}
\left\langle\Delta \tilde{x}^{2}\right\rangle & \approx\left\langle\Delta x^{2}\right\rangle+2\left(H_{x p}\left\langle\Delta x^{2}\right\rangle+H_{p p}\langle\Delta x \Delta p\rangle\right) d t \\
\left\langle\Delta \tilde{p}^{2}\right\rangle & \approx\left\langle\Delta p^{2}\right\rangle-2\left(H_{x p}\left\langle\Delta p^{2}\right\rangle+H_{x x}\langle\Delta x \Delta p\rangle\right) d t \\
\langle\Delta \tilde{x} \Delta \tilde{p}\rangle & \approx\langle\Delta x \Delta p\rangle+\left(H_{p p}\left\langle\Delta p^{2}\right\rangle-H_{x x}\left\langle\Delta x^{2}\right\rangle\right) d t
\end{aligned}
$$

Derivation of the squeezing rate

In terms of the variation matrix:

$$
\tilde{V}=S V S^{T},
$$

where

$$
S=\left(\begin{array}{cc}
1+H_{x p} d t & H_{p p} d t \tag{1}\\
-H_{x x} d t & 1-H_{x p} d t
\end{array}\right) .
$$

Derivation of the squeezing rate

For initially isotropic and uncorrelated fluctuations, i.e., $\left\langle\Delta x^{2}\right\rangle=\left\langle\Delta p^{2}\right\rangle=\sigma^{2}$, and $\langle\Delta x \Delta p\rangle=0$:

$$
\begin{aligned}
\left\langle\Delta \tilde{x}^{2}\right\rangle & \approx \sigma^{2}\left(1+2 H_{x p}\right) d t \\
\left\langle\Delta \tilde{p}^{2}\right\rangle & \approx \sigma^{2}\left(1-2 H_{x p}\right) d t \\
\langle\Delta \tilde{x} \Delta \tilde{p}\rangle & \approx \sigma^{2}\left(H_{p p}-H_{x x}\right) d t
\end{aligned}
$$

Eigenvalues of the new variance matrix \tilde{V} :

$$
\tilde{V}_{ \pm}=\frac{\left\langle\Delta \tilde{x}^{2}\right\rangle+\left\langle\Delta \tilde{p}^{2}\right\rangle}{2} \pm \frac{1}{2} \sqrt{\left(\left\langle\Delta \tilde{x}^{2}\right\rangle-\left\langle\Delta \tilde{p}^{2}\right\rangle\right)^{2}+4\langle\Delta \tilde{x} \Delta \tilde{p}\rangle^{2}}
$$

Palacký University
Olomouc

Derivation of the squeezing rate

Inserting the transformed variance:

$$
\tilde{V}_{ \pm}=\sigma^{2}(1 \pm Q d t)
$$

where

$$
\begin{equation*}
Q=\sqrt{\left(H_{p p}-H_{x x}\right)^{2}+4 H_{x p}^{2}} \tag{2}
\end{equation*}
$$

is the squeezing rate.
[T.O., PRA 92, 033801 (2015)]

Orientation and rotation of the squeezing ellipse

Transformation matrix S, general starting variance matrix:

$$
S=\left(\begin{array}{cc}
\cos (\phi-\epsilon) & -\sin (\phi-\epsilon) \\
\sin (\phi-\epsilon) & \cos (\phi-\epsilon)
\end{array}\right)\left(\begin{array}{cc}
1+\frac{Q d t}{2} & 0 \\
0 & 1-\frac{Q d t}{2}
\end{array}\right)
$$

$$
\times\left(\begin{array}{cc}
\cos \phi & \sin \phi \\
\sin \phi & \cos \phi
\end{array}\right)
$$

Palacký University
Olomouc

Orientation and rotation of the squeezing ellipse

Up to the first order in ϵ and $d t$, one finds

$$
S=\left(\begin{array}{cc}
1+\frac{Q d t}{2} \cos 2 \phi & \epsilon+\frac{Q d t}{2} \sin 2 \phi \tag{3}\\
-\epsilon+\frac{Q d t}{2} \sin 2 \phi & 1-\frac{Q d t}{2} \cos 2 \phi
\end{array}\right) .
$$

Comparing this with Eq. (1) one finds

$$
\begin{aligned}
Q \cos 2 \phi & =2 H_{x p}, \\
Q \sin 2 \phi & =H_{p p}-H_{x x}, \\
2 \epsilon & =\left(H_{x x}+H_{p p}\right) d t,
\end{aligned}
$$

with Q given by Eq. (2).

Orientation and rotation of the squeezing ellipse

Rotation angle

$$
\tan 2 \phi=\frac{H_{p p}-H_{x x}}{2 H_{x p}}
$$

and assuming that ϵ evolves with time as $\epsilon=\omega_{\nu} d t$, one gets

$$
\begin{equation*}
\omega_{v}=\frac{H_{x x}+H_{p p}}{2} \tag{4}
\end{equation*}
$$

Palacký University
Olomouc

Compensation of motion of the uncertainty ellipse

Rotation center at $\left(x_{R}, p_{R}\right)=(x, p)+\left(R_{x}, R_{p}\right)$ with

$$
R_{x}=-\frac{H_{x}}{\omega_{c}}, \quad R_{p}=-\frac{H_{p}}{\omega_{c}}
$$

angular frequency of the motion of the center

$$
\begin{equation*}
\omega_{c}=\frac{H_{x}^{2} H_{p p}+H_{p}^{2} H_{x x}-2 H_{x} H_{p} H_{x p}}{H_{x}^{2}+H_{p}^{2}} \tag{5}
\end{equation*}
$$

Compensation of motion of the uncertainty ellipse

To compensate the drift, add the Hamiltonian

$$
H_{\mathrm{ad} 1}=-\frac{1}{2} \omega_{c}\left[\left(x-x_{R}\right)^{2}+\left(p-p_{R}\right)^{2}\right] .
$$

To keep the optimal orientation, add

$$
H_{\mathrm{ad} 2}=-\frac{1}{2}\left(\omega_{v}-\omega_{c}\right)\left[\left(x-x_{0}\right)^{2}+\left(p-p_{0}\right)^{2}\right]
$$

Combined Hamiltonian $H_{a d}=H_{a d 1}+H_{a d 2}$,

$$
\begin{equation*}
H_{\mathrm{ad}}=-\frac{1}{2} \omega_{v}\left[\left(x-x_{r}\right)^{2}+\left(p-p_{r}\right)^{2}\right]+\text { const. } \tag{6}
\end{equation*}
$$

with the center localized at

$$
\left(x_{r}, p_{r}\right)=\left(x_{R}, p_{R}\right)+\left(1-\frac{\omega_{c}}{\omega_{v}}\right)\left(x_{0}-x_{R}, p_{0}-p_{R}\right)
$$

Examples

Harmonic oscillator

$$
H=\frac{1}{2} \omega\left(p^{2}+x^{2}\right)
$$

Eq. (2) yields $Q=0$.
Rotation frequencies $\omega_{v}=\omega_{c}=\omega$.

Examples

Free particle

$$
H=\frac{1}{2 m} p^{2} .
$$

Squeezing rate $Q=1 / m$, optimum orientation of the uncertainty ellipse $\theta=\pi / 4$, rotations $\omega_{v}=1 /(2 m)$, and $\omega_{c}=0$.

Examples

Free particle

In terms of quantum optical bosonic operators:

$$
\begin{aligned}
& \hat{x}=\frac{1}{\sqrt{2}}\left(\hat{a}^{\dagger}+\hat{a}\right), \\
& \hat{p}=\frac{i}{\sqrt{2}}\left(\hat{a}^{\dagger}-\hat{a}\right),
\end{aligned}
$$

the Hamiltonian is

$$
H=\frac{1}{2} \hat{p}^{2}=-\frac{1}{4}\left(\hat{a}^{\dagger 2}+\hat{a}^{2}\right)+\frac{1}{2}\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right),
$$

i.e., parametric down-conversion plus harmonic oscillator.

Examples

Inverted oscillator

$$
\frac{1}{2} \zeta\left(p^{2}-x^{2}\right)
$$

Squeezing rate $Q=2 \zeta$, optimum orientation $\theta=\pi / 4$, no rotation, $\omega_{v}=0$.

Examples

xp-Hamiltonian

$$
H=\zeta x p
$$

Classical counterpart of the quantum operator

$$
\hat{H}=\frac{1}{2} \zeta(\hat{x} \hat{p}+\hat{p} \hat{x})=\frac{i}{2} \zeta\left(\hat{a}^{\dagger 2}-\hat{a}^{2}\right),
$$

i.e., parametric down-conversion.

Squeezing rate $Q=2 \zeta$, optimum orientation $\theta=0$, no rotation, $\omega_{v}=0$.

Examples

Pendulum

$$
H=\frac{1}{2} p^{2}-\cos x
$$

Squeezing rate

$$
Q=1-\cos x=2 \sin ^{2} \frac{x}{2},
$$

rotation $\omega_{v}=\cos ^{2} \frac{x}{2}$

Examples

Kerr nonlinearity

$$
H=\chi\left(p^{2}+x^{2}\right)^{2},
$$

Squeezing rate

$$
Q=8 \chi\left(p^{2}+x^{2}\right)
$$

rotation

$$
\begin{aligned}
\omega_{v} & =8 \chi\left(p^{2}+x^{2}\right) \\
\omega_{c} & =4 \chi\left(p^{2}+x^{2}\right) \\
\left(x_{r}, p_{r}\right) & =\frac{1}{2}\left(x_{0}, p_{0}\right)
\end{aligned}
$$

Examples

Kerr nonlinearity

Compensating Hamiltonian

$$
H_{\mathrm{ad}}=-4 \chi\left(x_{0}^{2}+p_{0}^{2}\right)\left[\left(x-\frac{x_{0}}{2}\right)^{2}+\left(p-\frac{p_{0}}{2}\right)^{2}\right] .
$$

Examples

Jaynes-Cummings Hamiltonian

Classical Hamiltonian postulated as

$$
H= \pm g \sqrt{\frac{p^{2}+x^{2}}{2}}
$$

Stems from the quantum Hamiltonian

$$
\hat{H}_{J C}=g\left(\hat{a} \hat{\sigma}_{+}+\hat{a}^{\dagger} \hat{\sigma}_{-}\right),
$$

assume the initial quantum state prepared as

$$
\left|\Phi_{ \pm}\right\rangle=|\alpha\rangle \otimes \frac{1}{\sqrt{2}}\left(|g\rangle \pm e^{i \varphi}|e\rangle\right)
$$

with $\alpha=\sqrt{n} e^{i \varphi}=2^{-1 / 2}(x+i p)$.
The mean energy is $\left\langle\Phi_{ \pm}\right| \hat{H}_{J C}\left|\Phi_{ \pm}\right\rangle= \pm g \sqrt{n}= \pm 2^{-1 / 2} g \sqrt{x^{2}+p^{2}}$.

Examples

Jaynes-Cummings Hamiltonian

$H= \pm g \sqrt{\frac{p^{2}+x^{2}}{2}}$, visualization:

Examples

Jaynes-Cummings Hamiltonian

Squeezing rate

$$
Q=\frac{g}{\sqrt{2}} \frac{1}{\sqrt{x^{2}+p^{2}}}
$$

angular velocities

$$
\begin{aligned}
\omega_{v} & = \pm \frac{g}{\sqrt{2}} \frac{1}{2 \sqrt{x^{2}+p^{2}}} \\
\omega_{c} & = \pm \frac{g}{\sqrt{2}} \frac{1}{\sqrt{x^{2}+p^{2}}} \\
\left(x_{r}, p_{r}\right) & =\left(-x_{0},-p_{0}\right)
\end{aligned}
$$

Compensating Hamiltonian:

$$
H_{\mathrm{ad}}=\mp \frac{g}{4 \sqrt{2} \sqrt{x_{0}^{2}+p_{0}^{2}}}\left[\left(x+x_{0}\right)^{2}+\left(p+p_{0}\right)^{2}\right] .
$$

Examples

Jaynes-Cummings Hamiltonian

Phase trajectories

Squeezing with classical Hamiltonians

- Squeezing rate for planar phase-space $Q=\sqrt{\left(H_{p p}-H_{x x}\right)^{2}+4 H_{x p}^{2}}$,

$$
\dot{V}_{ \pm}= \pm Q V_{ \pm}
$$

- Interpretation: for zero-gradient points, difference of principal curvatures of the Hamiltonian
- Add non-squeezing Hamiltonians to keep the state at right place and optimally oriented

For initial stages of squeezing, classical formulas perfectly agree with quantum predictions.

