Experimental entanglement recovery by thermal environment probing

Ivo Straka, Martina Miková, Michal Mičuda, <u>Miroslav Ježek</u>, Radim Filip

Department of Optics, Faculty of Science Palacký University Olomouc

Entanglement transfer through noisy environment

Multi-qubit environment *E*:

$$\mathcal{E} = (1 - p_T)|0\rangle\langle 0| + p_T|1\rangle\langle 1|$$
 $p_T = rac{\exp\left(-rac{\Delta E}{k_B T}
ight)}{1 + \exp\left(-rac{\Delta E}{k_B T}
ight)}$

 ΔE

Incoherent environment:

qubits do not interfere or interact with another qubits

Entanglement transfer through incoherent environment—cooling limit

Entanglement transfer through incoherent environment—cooling limit

Using additional environment probing

Using additional environment probing

Three possible processes—success, flip, and loss

 $P_S + P_F + P_L = 1$

Conditional cooling limit

Conditional cooling limit

Projecting channel A to environment's ground state gives

$$\rho_{\mathsf{R},\mathsf{A}} \propto (1-p_{\mathcal{T}}) P_{\mathcal{S}} |\Psi^{-}\rangle_{\mathsf{R},\mathsf{A}} \langle \Psi^{-}| + \frac{1}{2} P_{\mathcal{F}} |1\rangle_{\mathsf{R}} \langle 1| \otimes \mathcal{E}_{\mathsf{A}} + (1-p_{\mathcal{T}}) P_{\mathcal{L}} \frac{1}{2} \mathbf{1}_{\mathsf{R}} \otimes \mathcal{E}_{\mathsf{A}}$$

The state remains entangled if $P_{S} > \frac{1}{2} \left(\sqrt{p_{T} P_{L} (4 - 3p_{T} P_{L})} - p_{T} P_{L} \right)$ $\frac{p_{T} P_{L}}{P_{S}^{2}} < 1 \text{ for } p_{T} \ll 1$

 $P_L = 0$ for single particle environment [F. Sciarrino et al., PRA 79, 060304(R) (2009)] [M. Gavenda et al., PRA 81, 022313 (2010)] [M. Gavenda et al., PRA 83, 042320 (2011)]

Photonic simulator

Noise depolarization

Photonic simulator

Model of the simulator:

$$\rho_{RS} \propto (1 - p_T) |\Psi^-\rangle_{RA} \langle \Psi^-| + \frac{1}{2} |1\rangle \langle 1| \otimes \mathcal{E}_A + (1 - p_T) \widetilde{P}_L \frac{1_R}{2} \otimes \mathcal{E}_A, \quad \widetilde{P}_L \propto \frac{\tau R_S R_N}{R_{\psi^-}}$$

Results of the photonic simulation

I. Straka et al., arXiv:1509.03144 (2015)

Simulation rusults—full parametric space

Model of the simulator: $\rho_{RS} \propto (1 - p_T) |\Psi^-\rangle_{RA} \langle \Psi^-| + \frac{1}{2} |1\rangle \langle 1| \otimes \mathcal{E}_A + (1 - p_T) \widetilde{P}_L \frac{1_R}{2} \otimes \mathcal{E}_A, \quad \widetilde{P}_L \propto \frac{\tau R_S R_N}{R_{\psi^-}}$

Parametric reach

Parametric reach

00

PL

output B

Entanglement transfer through noisy environment

- Multi-qubit incoherent environment
- Environment probing
- Unconditional and conditional cooling limits
- Photonic simulator
- Channel parameters accessible to the simulation

I. Straka et al., arXiv:1509.03144 (2015)

Quantum Optics Lab Olomouc

www.opticsolomouc.org

Quantum Optics Lab Olomouc

www.opticsolomouc.org

Thank you for your attention