Minimal Bases for Temporal Attribute Implications

Jan Triska, Vilem Vychodil

Dept. Computer Science, Palacky University, Olomouc

9. 3. 2017

Jan Triska, Vilem Vychodil Minimal Bases for Temporal Attribute Implications

Input data for attribute implications

Definition

Formal context is a binary relation $I \subseteq X \times Y$ between a set of objects X and a set of attributes Y.

Figure: Formal context

9. 3. 2017 2 / 10

Input data for temporal attribute implications

Definition

Temporal formal context is a ternary relation $I \subseteq X \times Y \times \mathbb{Z}$ where X is a set of objects, Y is a set of attributes, and \mathbb{Z} is a set of time points represented by integers.

Figure: Series of formal contexts

Temporal attribute implications

Definition

Temporal attribute implication is a formula in the form

$$\left\{y_1^{i_1},\ldots,y_m^{i_m}\right\} \Rightarrow \left\{z_1^{j_1},\ldots,z_n^{j_n}\right\},$$

where $y_1, \ldots, y_m, z_1, \ldots, z_n \in Y$ and $i_1, \ldots, i_m, j_1, \ldots, j_n \in \mathbb{Z}$.

- Numbers in temporal attribute implications denote relative time points (0 is current time point, 1 is the follower of 0, etc.).
- Meaning in a series of formal contexts: "Every object in every time point *t* having attributes y_1 at time point i_1 relative to t, \ldots, y_m at time point i_m relative to *t* has also attributes z_1 at time point j_1 relative to t, \ldots, z_n at time point j_n relative to t."

メポト イヨト イヨト ニヨ

4 / 10

Basic notions

- $y^i \dots$ attribute y at time point i
- $\mathcal{T}_Y \dots$ set of all attributes at all times
- to get absolute time points from relative for M ⊆ T_Y and i ∈ Z we have M + i = {y^{t+i} | y^t ∈ M}
- \bullet objects of temporal formal contexts can be regarded as subsets of \mathcal{T}_Y

Definition

Attribute implication annotated by time points $A \Rightarrow B$ is true in $M \subseteq T_Y$ whenever, for each $i \in \mathbb{Z}$, if $A + i \subseteq M$, then $B + i \subseteq M$. This fact is denoted by $M \models A \Rightarrow B$.

Example

Let $M_2 = \{c^1, s^1, c^2, r^2, c^3, s^3\}$. Then $M_2 \models \{c^0, r^0\} \Rightarrow \{c^1\}$ but $M_2 \not\models \{c^0\} \Rightarrow \{s^1\}$ where integer 1 is a counter example.

Jan Triska, Vilem Vychodil

Minimal Bases for Temporal Attribute Implications

< ≧ ▶ ≧ ∽ ९ C 9. 3. 2017 5 / 10

- 4 回 ト 4 回 ト 4 回 ト

Entailment

Definition

A set $M \subseteq \mathcal{T}_Y$ is a *model* of a set Σ of attribute implications annotated by time points (called *theory*) if every $A \Rightarrow B$ from Σ is true in M.

Definition

An attribute implication annotated by time points $A \Rightarrow B$ is entailed by a theory Σ if it is true in every model of Σ which we denote by $\Sigma \models A \Rightarrow B$.

Definition

Let S be a system of subsets of T_Y . Then S is *closed under time shifts* if for every $i \in \mathbb{Z}$ and $M \in S$ is also $M + i \in S$.

Theorem

A set of all models of a theory is precisely an algebraic closure system closed under time shifts.

Jan Triska, Vilem Vychodil

Minimal Bases for Temporal Attribute Implications

9. 3. 2017 6 / 10

Canonical and finite representation

Definition

For $A, B \subseteq \mathcal{T}_Y$ we put $A \sqsubseteq B$ whenever there is $i \in \mathbb{Z}$ such that $A + i \subseteq B$; we put $A \not\sqsubseteq B$ if it is not the case that $A \sqsubseteq B$; we put $A \sqsubset B$ whenever $A \sqsubseteq B$ and $B \not\sqsubseteq A$; put $A \not\sqsubset B$ whenever $A \not\sqsubseteq B$ or $B \sqsubseteq A$; and put $A \equiv B$, whenever $A \sqsubseteq B$ and $B \sqsubseteq A$.

Definition

$$I(M) = \min\{i \in \mathbb{Z} \mid y^i \in M \text{ for some } y \in Y\},\$$
$$u(M) = \max\{i \in \mathbb{Z} \mid y^i \in M \text{ for some } y \in Y\},\$$
$$\|M\| = u(M) - I(M).$$

Theorem

If $\mathcal{S} \subseteq \mathcal{F}^*$ is finitely representable then $\mathcal{S}/_{\equiv}$ is a finite set.

Jan Triska, Vilem Vychodil

Minimal Bases for Temporal Attribute Implications

< ■> ■ のへの 9. 3. 2017 7 / 10

イロト イポト イヨト イヨト

Input data

Definition

$$\mathcal{I} = \{I_x \in \mathcal{F} \mid x \in X\}.$$

Definition

$$A^{\uparrow_{\mathcal{I}}} = \bigcap \{ I_x - i \, | \, x^i \in A \},\ B^{\downarrow_{\mathcal{I}}} = \{ x^i \, | \, B \subseteq I_x - i \}.$$

Definition

$$B^{\downarrow\uparrow} = \bigcap \{I_x - i \mid B \subseteq I_x - i\}.$$

Theorem

 $\mathcal{M}_{\mathcal{I}} = \{ M^{\downarrow\uparrow} \mid M \subseteq \mathcal{T}_{Y} \}$ is an algebraic closure system which is closed under time shifts. Moreover, we have $\mathcal{M}_{\mathcal{I}} \subseteq \mathcal{F}^{*}$ and $\mathcal{M}_{\mathcal{I}}$ is finitely representable.

Jan Triska, Vilem Vychodil

Minimal Bases for Temporal Attribute Implications

9. 3. 2017 8 / 10

Finitely generated bases

Definition

A theory Σ is *finitely generated* whenever $Mod(\Sigma)$ is finitely representable, $\emptyset \in Mod(\Sigma)$, and $Mod(\Sigma) \cap \mathcal{F} \neq \emptyset$.

Theorem

Every Σ which is complete in \mathcal{I} is finitely generated and for every finitely generated Γ there is input data \mathcal{I}_{Γ} .

Theorem

Let Σ be finitely generated theory. Then $S = \{A \mid A \Rightarrow B \in \Sigma\}$ is not finitely representable.

A B M A B M

Minimal bases

Definition

 Σ is called complete in \mathcal{I} whenever for every $A \Rightarrow B$ we have $\mathcal{I} \models A \Rightarrow B$ iff $\Sigma \models A \Rightarrow B$.

Definition

A set $P \in \mathcal{F}$ is a pseudo-intent of \mathcal{I} if $P \neq P^{\downarrow\uparrow}$ and for any pseudo-intent Q of \mathcal{I} such that $Q \subset P$ we have $Q^{\downarrow\uparrow} \subseteq P$. The set of all pseudo-intents of \mathcal{I} is denoted by $\mathcal{P}_{\mathcal{I}}$.

Theorem

 $\{P \to P^{\downarrow\uparrow} | P \in r(\mathcal{P})\}$ is minimal and complete in \mathcal{I} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ