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Input data for attribute implications

Definition

Formal context is a binary relation I ⊆ X × Y between a set of objects X
and a set of attributes Y .

a b c d

1 × × × ×
2 × ×
3 × ×
4 × × × ×
5 ×

Figure: Formal context
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Input data for temporal attribute implications

Definition

Temporal formal context is a ternary relation I ⊆ X × Y × Z where X is a
set of objects, Y is a set of attributes, and Z is a set of time points
represented by integers.

t = 1 t = 2 t = 3

. . .

a b c d

1 ×
2 × × ×
3 × × ×
4 × ×
5 ×

,

a b c d

1 × × ×
2 × ×
3 × × × ×
4 × ×
5 ×

,

a b c d

1 × ×
2 × ×
3 × × ×
4 × × ×
5

, . . .

Figure: Series of formal contexts
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Temporal attribute implications

Definition

Temporal attribute implication is a formula in the form{
y i11 , . . . , y imm

}
⇒
{
z j11 , . . . , z jnn

}
,

where y1, . . . , ym, z1, . . . , zn ∈ Y and i1, . . . , im, j1, . . . , jn ∈ Z.

Numbers in temporal attribute implications denote relative time
points (0 is current time point, 1 is the follower of 0, etc.).

Meaning in a series of formal contexts: “Every object in every time
point t having attributes y1 at time point i1 relative to t, . . . , ym at
time point im relative to t has also attributes z1 at time point j1
relative to t, . . . , zn at time point jn relative to t.”
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Basic notions

y i . . . attribute y at time point i

TY . . . set of all attributes at all times

to get absolute time points from relative for M ⊆ TY and i ∈ Z we
have M + i = {y t+i | y t ∈ M}
objects of temporal formal contexts can be regarded as subsets of TY

Definition

Attribute implication annotated by time points A⇒ B is true in M ⊆ TY
whenever, for each i ∈ Z, if A + i ⊆ M, then B + i ⊆ M. This fact is
denoted by M |= A⇒ B.

Example

Let M2 = {c1, s1, c2, r2, c3, s3}. Then M2 |= {c0, r0} ⇒ {c1} but
M2 6|= {c0} ⇒ {s1} where integer 1 is a counter example.
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Entailment

Definition

A set M ⊆ TY is a model of a set Σ of attribute implications annotated by
time points (called theory) if every A⇒ B from Σ is true in M.

Definition

An attribute implication annotated by time points A⇒ B is entailed by a
theory Σ if it is true in every model of Σ which we denote by Σ |= A⇒ B.

Definition

Let S be a system of subsets of TY . Then S is closed under time shifts if
for every i ∈ Z and M ∈ S is also M + i ∈ S.

Theorem

A set of all models of a theory is precisely an algebraic closure system
closed under time shifts.
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Canonical and finite representation

Definition

For A,B ⊆ TY we put A v B whenever there is i ∈ Z such that
A + i ⊆ B; we put A 6v B if it is not the case that A v B; we put A @ B
whenever A v B and B 6v A; put A 6@ B whenever A 6v B or B v A; and
put A ≡ B, whenever A v B and B v A.

Definition

l(M) = min{i ∈ Z | y i ∈ M for some y ∈ Y },
u(M) = max{i ∈ Z | y i ∈ M for some y ∈ Y },
‖M‖ = u(M)− l(M).

Theorem

If S ⊆ F∗ is finitely representable then S/≡ is a finite set.
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Input data

Definition

I = {Ix ∈ F | x ∈ X}.

Definition

A↑I =
⋂
{Ix − i | x i ∈ A},

B↓I = {x i |B ⊆ Ix − i}.

Definition

B↓↑ =
⋂
{Ix − i |B ⊆ Ix − i}.

Theorem

MI = {M↓↑ |M ⊆ TY } is an algebraic closure system which is closed
under time shifts. Moreover, we have MI ⊆ F∗ and MI is finitely
representable.
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Finitely generated bases

Definition

A theory Σ is finitely generated whenever Mod(Σ) is finitely representable,
∅ ∈ Mod(Σ), and Mod(Σ) ∩ F 6= ∅.

Theorem

Every Σ which is complete in I is finitely generated and for every finitely
generated Γ there is input data IΓ.

Theorem

Let Σ be finitely generated theory. Then S = {A | A⇒ B ∈ Σ} is not
finitely representable.
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Minimal bases

Definition

Σ is called complete in I whenever for every A⇒ B we have I |= A⇒ B
iff Σ |= A⇒ B.

Definition

A set P ∈ F is a pseudo-intent of I if P 6= P↓↑ and for any pseudo-intent
Q of I such that Q ⊂ P we have Q↓↑ ⊆ P. The set of all pseudo-intents
of I is denoted by PI .

Theorem

{P → P↓↑ |P ∈ r(P)} is minimal and complete in I.
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