Running Boolean Matrix Factorization in Parallel

Jan Outrata and Martin Trnecka

(iv)

DEPARTMENT OF COMPUTER SCIENCE PALACKÝ UNIVERSITY, OLOMOUC CZECH REPUBLIC

AusDM 2016
December 6-8, Canberra

Outline

1 the problem, our contribution

2 preliminaries in Boolean Matrix Factorization (BMF)

3 running BMF in parallel
■ base (sequential) algorithm

- general parallelization scheme

4 experimental evaluation

5 conclusions

Boolean Matrix Factorization (BMF) in parallel?

- BMF also called Boolean matrix decomposition, Boolean factor analysis, ...
$=$ (approximate) decomposition of Boolean matrix (entries 1 or 0) to (Boolean) matrix product of two Boolean matrices

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

- optimization problems:

1 find a decomposition with inner matrix product dimension as low as possible for a given maximal decomposition approximation = Approximate Factorization Problem (AFP)
2 find as exact decomposition as possible for a given maximal inner dimension $=$ Discrete Basis Problem (DBP)
■ least dimension of exact decomposition = Boolean (Schein) rank of matrix
■ NP-hard problems \rightarrow approximation algorithms for sub-optimal decompositions: GreConD, GreEss (both for AFP), Asso (for DBP) and other (PaNDa, Hyper)

Boolean Matrix Factorization (BMF) in parallel?

Algorithms

- heuristic $=$ final decomposition constructed from partial (approximate) decompositions which are only locally optimal
■ sequential = choice of optimal partial decomposition hardcoded in algorithm design, one cannot explore several most optimal (or even all) \rightarrow parallel computation (preferred - multicore CPUs, GPGPU)
- no parallel algorithm for Boolean matrix factorization - there are for methods designed for real-valued matrices (SVD, NMF), but they lack interpretability when applied to Boolean matrices! - crucial for knowledge discovery \Rightarrow BMF more appropriate for Boolean matrices

■ reasons? (most commonly used) greedy heuristic approach is inherently sequential, BMF is young compared to real-valued factorization methods (?)

Our contribution

- not a parallel BMF algorithm
\rightarrow general parallelization scheme to compute in parallel several locally optimal decompositions and select the most optimal one(s) hoping to find the globally optimal
■ following several choices of locally most optimal partial decompositions in the heuristics, constructing several most optimal final decompositions - in more processes running simultaneously in parallel
- return the single most optimal decomposition or several top-k of them

■ applicable to any sequential heuristic BMF algorithm - chosen GRECOND for demonstration (simple, well-known, efficient)

Boolean Matrix Factorization (BMF) - preliminaries

$=$ (approximate) decomposition of Boolean matrix I (entries 1 or 0) to (Boolean) matrix product of two Boolean matrices A and B
$I_{i j} \approx(A \circ B)_{i j}=\max _{l=1}^{k} \min \left(A_{i l}, B_{l j}\right)$

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

■ I . . object-attribute incidence relation, $A \ldots$ object-factor i. r., $B \ldots$ factor-attribute i. r.
$=$ discovery of k factors (approximately) explaining $I \approx$ "new attributes":
$(A \circ B)_{i j} \ldots$ "object i has attribute $j\left(I_{i j}=1\right)$ if and only if there exists a factor l that applies to $i\left(A_{i l}=1\right)$ and j is one of the manifestations of $l\left(B_{l j}=1\right)$ "
■ geometric view: factor \sim rectangle full of $1 \mathrm{~s} \rightarrow$ decomposition of $I \sim$ coverage of 1 s of I by rectangles

Boolean Matrix Factorization (BMF) - preliminaries

■ optimization problem (AFP): find a decomposition with the number k of factors as small as possible such that $\|I-A \circ B\| \leq \varepsilon \ldots$ explain a prescribed portion of data

$$
E(I, A \circ B)=\|I-A \circ B\|=\sum_{i, j=1}^{m, n}\left|I_{i j}-(A \circ B)_{i j}\right|
$$

■ quality of decomposition \rightarrow coverage quality of the first l factors:

$$
c(l)=1-E(I, A \circ B) /\|I\|
$$

自
Belohlavek R., Vychodil V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. Journal of Computer and System Sciences 76(1)(2010), 3-20.
目 Belohlavek R., Trnecka M.: From-Below Approximations in Boolean Matrix Factorization: Geometry and New Algorithm, Journal of Computer and System Sciences 81(8)(2015), 1678-1697.

GreConD - base (sequential) algorithm

自
Belohlavek R., Vychodil V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. Journal of Computer and System Sciences 76(1)(2010), 3-20.

■ chosen base (sequential) BMF algorithm for demonstration of our general parallelization scheme
$=$ greedy search for factors - each factor explains as much of input matrix as possible, until the prescribed number of 1 s is covered (i.e designed for the AFP)
■ factor $=$ maximal rectangle - maximal numbers of objects and attributes, stems Formal concept analysis (FCA) (maximal rectangle \sim formal concept) \rightarrow "Greedy Concepts on Demand"

GreConD - base (sequential) algorithm

- greedy "on demand" factor/rectangle computation, not selection among candidates
- starting empty set of attributes is repeatedly grown by a selected attribute - such that the rectangle grown by the attribute covers as many still uncovered 1 s in input matrix as possible, as long as the number of 1 s increases
- other attributes may be added with the selected one - due to construction as maximal rectangle $=$ closure (with all attributes shared by all objects having the attributes, see the paper)

■ char. vectors of object sets of rectangles $=$ columns of object-factor matrix A
■ char. vectors of attribute sets of rectangles $=$ rows of factor-attribute matrix B
■ in details commented pseudocode in the paper (Algorithm 1)

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=(\quad \circ(\square)
$$

GreConD - base (sequential) algorithm

- greedy "on demand" factor/rectangle computation, not selection among candidates
- starting empty set of attributes is repeatedly grown by a selected attribute - such that the rectangle grown by the attribute covers as many still uncovered 1 s in input matrix as possible, as long as the number of 1 s increases
- other attributes may be added with the selected one - due to construction as maximal rectangle $=$ closure (with all attributes shared by all objects having the attributes, see the paper)

■ char. vectors of object sets of rectangles $=$ columns of object-factor matrix A
■ char. vectors of attribute sets of rectangles $=$ rows of factor-attribute matrix B
■ in details commented pseudocode in the paper (Algorithm 1)

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=(\quad) \quad(\square)
$$

GreConD - base (sequential) algorithm

- greedy "on demand" factor/rectangle computation, not selection among candidates
- starting empty set of attributes is repeatedly grown by a selected attribute - such that the rectangle grown by the attribute covers as many still uncovered 1 s in input matrix as possible, as long as the number of 1 s increases
- other attributes may be added with the selected one - due to construction as maximal rectangle $=$ closure (with all attributes shared by all objects having the attributes, see the paper)

■ char. vectors of object sets of rectangles $=$ columns of object-factor matrix A
■ char. vectors of attribute sets of rectangles $=$ rows of factor-attribute matrix B
■ in details commented pseudocode in the paper (Algorithm 1)

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=(\quad \circ(\square)
$$

GreConD - base (sequential) algorithm

- greedy "on demand" factor/rectangle computation, not selection among candidates
- starting empty set of attributes is repeatedly grown by a selected attribute - such that the rectangle grown by the attribute covers as many still uncovered 1 s in input matrix as possible, as long as the number of 1 s increases
- other attributes may be added with the selected one - due to construction as maximal rectangle $=$ closure (with all attributes shared by all objects having the attributes, see the paper)

■ char. vectors of object sets of rectangles $=$ columns of object-factor matrix A
■ char. vectors of attribute sets of rectangles $=$ rows of factor-attribute matrix B
■ in details commented pseudocode in the paper (Algorithm 1)

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
& & & \\
& & &
\end{array}\right)
$$

GreConD - base (sequential) algorithm

- greedy "on demand" factor/rectangle computation, not selection among candidates
- starting empty set of attributes is repeatedly grown by a selected attribute - such that the rectangle grown by the attribute covers as many still uncovered 1 s in input matrix as possible, as long as the number of 1 s increases
- other attributes may be added with the selected one - due to construction as maximal rectangle $=$ closure (with all attributes shared by all objects having the attributes, see the paper)

■ char. vectors of object sets of rectangles $=$ columns of object-factor matrix A
■ char. vectors of attribute sets of rectangles $=$ rows of factor-attribute matrix B
■ in details commented pseudocode in the paper (Algorithm 1)

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
& & & & \\
& & & &
\end{array}\right)
$$

GreConD - base (sequential) algorithm

- greedy "on demand" factor/rectangle computation, not selection among candidates
- starting empty set of attributes is repeatedly grown by a selected attribute - such that the rectangle grown by the attribute covers as many still uncovered 1 s in input matrix as possible, as long as the number of 1 s increases
- other attributes may be added with the selected one - due to construction as maximal rectangle $=$ closure (with all attributes shared by all objects having the attributes, see the paper)

■ char. vectors of object sets of rectangles $=$ columns of object-factor matrix A
■ char. vectors of attribute sets of rectangles $=$ rows of factor-attribute matrix B
■ in details commented pseudocode in the paper (Algorithm 1)

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
& & & & \\
& & & &
\end{array}\right)
$$

GreConD - base (sequential) algorithm

- greedy "on demand" factor/rectangle computation, not selection among candidates
- starting empty set of attributes is repeatedly grown by a selected attribute - such that the rectangle grown by the attribute covers as many still uncovered 1 s in input matrix as possible, as long as the number of 1 s increases
- other attributes may be added with the selected one - due to construction as maximal rectangle $=$ closure (with all attributes shared by all objects having the attributes, see the paper)

■ char. vectors of object sets of rectangles $=$ columns of object-factor matrix A
■ char. vectors of attribute sets of rectangles $=$ rows of factor-attribute matrix B
■ in details commented pseudocode in the paper (Algorithm 1)

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0
\end{array}\right)
$$

GreConD - base (sequential) algorithm

- greedy "on demand" factor/rectangle computation, not selection among candidates
- starting empty set of attributes is repeatedly grown by a selected attribute - such that the rectangle grown by the attribute covers as many still uncovered 1 s in input matrix as possible, as long as the number of 1 s increases
- other attributes may be added with the selected one - due to construction as maximal rectangle $=$ closure (with all attributes shared by all objects having the attributes, see the paper)

■ char. vectors of object sets of rectangles $=$ columns of object-factor matrix A
■ char. vectors of attribute sets of rectangles $=$ rows of factor-attribute matrix B
■ in details commented pseudocode in the paper (Algorithm 1)

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)
$$

Running GreConD in parallel?

■ alone factors computed by GreConD optimal (in explaining as much of input matrix as possible), but several (or all) together may be not \Rightarrow partial decompositions (factor + previous factors) only locally optimal

- can be more equally optimal factors \rightarrow different final decompositions - will be important in experiments later

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \circ\left(\begin{array}{lllll}
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

■ alone selected attributes in factor/rectangle computation optimal (in covering as many still uncovered 1 s in input matrix as possible), but several together may be not \Rightarrow partial factor (attribute + previous attributes) also only locally optimal

- can also be more equally optimal attributes to select \rightarrow different factors

Running a BMF algorithm in parallel

$=$ construct, simultaneously in parallel, several (locally) most optimal partial decompositions and select among them several most optimal final decompositions, in hope to find the globally optimal one

For GreConD

■ in factor search (= decomposition construction), compute several factors explaining most of the input matrix $=$ several locally optimal partial decompositions - parallel

computation

■ in factor computation, select several attributes so that the corresponding rectangle covers most still uncovered 1 s in the input matrix $=$ several locally optimal partial factors - serial computation
■ in details commented pseudocode in the paper (Algorithms 2 and 3):

- several instances of (modified) GRECOND running simultaneously in parallel processes each (serially) computing several most optimal distinct (partial) factors
\rightarrow GreConDP $=$ GreConD in Parallel runs
- joint construction of several most optimal decompositions of input matrix - sorted from the most optimal one

Experimental evaluation

- comparison of GreConDP with base GreConD: quality of decomposition \rightarrow coverage quality - most important in evaluation of performance of BMF algorithms
1 numbers of factors for large coverage \rightsquigarrow low, slowly increasing (AFP view)
2 values of coverge for few factors \rightsquigarrow high, quickly increasing to 1 (DBP view)
- comparison of GreConD with other BMF algorithms in e.g.

目 Belohlavek R., Trnecka M.: From-Below Approximations in Boolean Matrix Factorization: Geometry and New Algorithm, Journal of Computer and System Sciences 81(8)(2015), 1678-1697.

■ in the paper examined also similarities of several (most optimal) decompositions delivered by GreConDP - they are rather similar but starting from different
■ running time?: time complexity not a primary concern in BMF, GreConDP $p / 2$ times slower than GreConD for p times more processes than processor units

Experimental evaluation

Datasets

1 synthetic: matrix product of randomly generated matrices with known characteristics (density, inner product dimension), enables average case evaluation
2 real: real factors, well known from various BMF papers and UCI Machine Learning Repository ${ }^{1}$

Dataset	Size	Dens. 1	Equal
Emea	3046×35	0.095	157.279
DBLP	19×6980	0.130	2.105
Firewall 1	365×709	0.124	31.168
Mushroom	8124×119	0.193	3.148
Paleo	501×139	0.051	5.868
Zoo	101×28	0.305	5.867

real datasets and their characteristics

- column Equal = average number of equally (locally) optimal factors per factor in GreConD - recall slide 18, new characteristics influencing results

[^0]
Experimental evaluation

synthetic datasets 16 parallel processes
$k=40 \ldots$ expected number of factors (inner matrix product dimension), delivered original factors

Experimental evaluation

Mushroom dataset 4 parallel processes

Experimental evaluation

Emea dataset, 4 parallel processes

GreConDP worse than GreConD (from AFP viewpoint) - extreme Equal characteristics, advantage of utilizing more equally optimal factors vanishes

Conclusions

■ general parallelization scheme for Boolean matrix factorization (BMF) applicable to any sequential heuristic BMF algorithm
■ new algorithm GreConDP utilizing the scheme - based on simple, well-known and efficient GreConD
■ in experiments GreConDP outperforms GreConD in quality of decomposition, at moderate computing time expenses
■ decomposition quality improvement depends the number of parallel runs (higher $=$ better) and the number of equally locally optimal factors in decomposition constructions (not much higher that the number of parallel runs)

Future research

■ application to other BMF algorithms (GreEss, Asso)

- study of properties of the equally locally optimal factors - to factorize better

[^0]: ${ }^{1}$ archive.ics.uci.edu/ml

