

# Rank-aware Clustering of Relational Data: Organizing Search Results

Petr Krajča



DEPARTMENT OF COMPUTER SCIENCE PALACKÝ UNIVERSITY, OLOMOUC

# U

# Motivation

- applications of similarity-based databases
- improving user experience

| # | Score | City      | Price   | Bdrms | SqFeet | Porch |
|---|-------|-----------|---------|-------|--------|-------|
| 1 | 1.000 | Roseville | 327,000 | 5     | 3,856  | Y     |
| 2 | 0.850 | Roseville | 321,900 | 5     | 4,460  | Y     |
| 3 | 0.560 | Elmwood   | 290,000 | 5     | 2,933  | Ν     |
| 4 | 0.560 | West End  | 292,000 | 3     | 2,945  | Y     |
| 5 | 0.560 | Roseville | 295,900 | 5     | 3,820  | Y     |
| 6 | 0.325 | West End  | 299,900 | 3     | 2,810  | Ν     |
| 7 | 0.275 | Roseville | 181,500 | 4     | 2,562  | Y     |

#### Issues

- users overwhelmed with similar items
- items with similar relevance (score) mixed up (unintuitive order)
- lack of insight into result ordering

### **Proposed Solution**



based on formal concepts analysis (FCA)

#### Outline of the Algorithm

- 1 convert input data into a form suitable for FCA
- **2** identify formal concepts (clusters)
- 3 from these concepts pick the most interesting ones from the user's viewpoint

#### Remarks

- FCA: well-established framework (theory, algorithms, applications)
- connection to psychology of concepts
- need to preserve order given by the scoring function

# Formal Concept Analysis (1 of 3)



- method of tabular data analysis (R. Wille, TU Darmstadt)
- used for data mining, knowledge discovery, data preprocessing

#### Input

table—rows = objects, columns = attributes (features), × indicates that particular object has particular attribute

|       | $a_1$    | $a_2$ | $a_3$    | $a_4$ |
|-------|----------|-------|----------|-------|
| 01    | ×        | ×     |          | ×     |
| $o_2$ | $\times$ |       | $\times$ |       |
| 03    |          | ×     | $\times$ | ×     |
| $O_4$ | ×        | ×     | ×        | ×     |

#### Output

- $\blacksquare$  all maximal submatrices full of  $\times `s$  present in table
- these submatrices are natural concepts hidden in the data
- form a hierarchy

# Formal Concept Analysis (2 of 3)



- A formal context is a triplet  $\langle X, Y, I \rangle$ , where X and Y are non-empty sets and  $I \subseteq X \times Y$ .
- $X \dots$  set of objects
- Y ... set of attributes
- $\langle x, y \rangle \in I \dots$  object x has attribute y)

#### **Concept-forming operators**

For a formal context  $\langle X, Y, I \rangle$ , operators  $\uparrow : 2^X \to 2^Y$  and  $\downarrow : 2^Y \to 2^X$  are defined for every  $A \subseteq X$  and  $B \subseteq Y$  by:

$$\begin{split} A^{\uparrow} &= \{y \in Y \mid \text{for each } x \in A : \ \langle x, y \rangle \in I \}, \\ B^{\downarrow} &= \{x \in X \mid \text{for each } y \in B : \ \langle x, y \rangle \in I \}. \end{split}$$

•  $A^{\uparrow}$  ... set of all attributes shared by all objects from A

 $\blacksquare \ B^{\downarrow} \ \ldots$  set of all objects sharing all attributes from B

# Formal Concept Analysis (3 of 3)



A formal concept in  $\langle X,Y,I\rangle$  is a pair  $\langle A,B\rangle$  of  $A\subseteq X$  and  $B\subseteq Y$  such that

 $A^{\uparrow} = B$  and  $B^{\downarrow} = A$ .

- $\blacksquare~A~\ldots$  extent of  $\langle A,B\rangle$
- $B \dots$  intent of  $\langle A, B \rangle$
- $\langle A, B \rangle$  is a formal concept iff A contains just objects sharing all attributes from B and B contains just attributes shared by all objects from A.

### Formal Concept Analysis (Example)



|           | needs water | lives in water | lives on land | has chlorophyll | can move around |  |
|-----------|-------------|----------------|---------------|-----------------|-----------------|--|
| dog       | $\times$    |                | $\times$      |                 | $\times$        |  |
| cod       | $\times$    | $\times$       |               |                 | $\times$        |  |
| frog      | $\times$    | $\times$       | $\times$      |                 | $\times$        |  |
| bean      | ×           |                | $\times$      | $\times$        |                 |  |
| daffodil  | $\times$    |                | $\times$      | $\times$        |                 |  |
| waterlily | ×           | $\times$       |               | $\times$        |                 |  |

0

 $\{dog, cod, frog\}^{\uparrow} = \{needs water, can move around\}$  $\{needs water, can move around\}^{\downarrow} = \{dog, cod, frog\}$ 

 $\langle \{ dog, cod, frog \}, \{ needs \ water, can \ move \ around \} \rangle \Longrightarrow \mathsf{animal}$ 

#### Subconcept-superconcept Hierarchy



• partial order  $\leq$ 

 $\langle A_1, B_1 \rangle \leq \langle A_2, B_2 \rangle$  iff  $A_1 \subseteq A_2$  (or, equivalently, iff  $B_2 \subseteq B_1$ ).

set of formal concepts  $\mathcal{B}(X, Y, I)$  together with  $\leq$  form a complete lattice (concept lattice).

#### Natural interpretation

- animal:  $\langle \{ dog, cod, frog \}, \{ needs water, can move around \} \rangle$
- dog:  $\langle \{ dog \}, \{ needs water, lives on land, can move around \} \rangle$
- $dog \leq animal$ , this means:
  - *dog* more specific concept
  - animal more general concept

### Input Data



- ranked data table
- $\mathbb{Y} = \{y_1, \dots, y_n\}$  finite number of columns (attributes)
- each attribute has its domain  $D_y$  (set of permitted values)
- **Cartesian product of domains**, denoted by  $\prod_{y \in \mathbb{Y}} D_y$ , is a set of all maps

$$t\colon \mathbb{Y}\to \bigcup_{y\in\mathbb{Y}}D_y$$

such that  $t(y) \in D_y$  for all  $y \in \mathbb{Y}$ .

- data table is any finite subset  $\mathcal{D} \subseteq \prod_{y \in \mathbb{Y}} D_y$ .
- D is a set of tuples (no inherent order of tuples)
- $\blacksquare$  let  $\langle \mathbb{S}, \leq \rangle$  be a poset, map  $s_{\mathcal{D}}$

$$s_{\mathcal{D}}: \mathcal{D} \to \mathbb{S}$$

describes relevance of tuples in the data table (scoring function)

# Data Preparation (1 of 2)



- conceptual scaling is a process transforming general data table  ${\cal D}$  into a formal context  $\langle X,Y,I\rangle$
- replacing ordinal attributes with nominal ones (e.g., with equidistant intervals)
- e.g.:  $D_{price}$  may be replaced with intervals {..., [280, 000; 290, 000), [290, 000; 300, 000), ...}
- $X = \{1, \ldots, n\}$  where each  $x \in X$  corresponds to one row t in the data table and numbers are assigned to rows in the descending order w.r.t.  $s_D$

•  $Y = \{\langle y, v \rangle \mid \langle y, v \rangle \in \bigcup_{t_i \in \mathcal{D}} t_i\}$ , i.e., all attribute value pairs in the data table  $\mathcal{D}$ 

•  $I = \{\langle i, \langle y, v \rangle \rangle \mid \text{for every } t_i \in \mathcal{D} \text{ and } y \in Y \text{ iff } t_i(y) = v\} \text{ (object } i \text{ has an attribute } \langle y, v \rangle, \text{ iff the value of the attribute } y \text{ of row } t_i \text{ is equal to } v)$ 

# Data Preparation (2 of 2)



• map  $r: X \to \mathbb{N}$  assigns to each tuple numerical rank such that for every two tuples  $t_i, t_j \in \mathcal{D}$  and corresponding objects  $x_i, x_j \in X$ ,

```
s_{\mathcal{D}}(x_i) \leq s_{\mathcal{D}}(x_j) implies r(x_j) \leq r(x_i).
```

- $\blacksquare r$  and  $\leq$  provides comparative meaning
- $r(x_i) \leq r(x_j)$  means object  $x_i$  is more or equally relevant than  $x_j$

#### Formal Context for Our Running Example



| x | r(x) | $\langle City, Roseville \rangle$ | $\langle City, Elmwood \rangle$ | $\langle City, WestEnd \rangle$ | $\langle Price, 320k \rangle$ | $\langle Price, 290k \rangle$ | $\langle Price, 180k \rangle$ | $\langle Bdrms, 3 \rangle$ | $\langle Bdrms, 4 \rangle$ | $\langle Bdrms, 5 \rangle$ | $\langle SqFeet, 2.4k \rangle$ | $\langle SqFeet, 2.8k \rangle$ | $\langle SqFeet, \Im.8k \rangle$ | $\langle SqFeet, 4.4k \rangle$ | $\langle Porch, Y \rangle$ | $\langle Porch, N \rangle$ |
|---|------|-----------------------------------|---------------------------------|---------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|--------------------------------|--------------------------------|----------------------------------|--------------------------------|----------------------------|----------------------------|
| 1 | 1    | ×                                 |                                 |                                 | ×                             |                               |                               |                            |                            | ×                          |                                |                                | ×                                |                                | ×                          |                            |
| 2 | 2    | ×                                 |                                 |                                 | ×                             |                               |                               |                            |                            | ×                          |                                |                                |                                  | ×                              | ×                          |                            |
| 3 | 5    |                                   | $\times$                        |                                 |                               | $\times$                      |                               |                            |                            | $\times$                   |                                | ×                              |                                  |                                |                            | ×                          |
| 4 | 5    |                                   |                                 | $\times$                        |                               | $\times$                      |                               | $  \times$                 |                            |                            |                                | $\times$                       |                                  |                                | ×                          |                            |
| 5 | 5    | ×                                 |                                 |                                 |                               | $\times$                      |                               |                            |                            | $\times$                   |                                |                                | $\times$                         |                                | ×                          |                            |
| 6 | 6    |                                   |                                 | $\times$                        |                               | $\times$                      |                               | ×                          |                            |                            |                                | $\times$                       |                                  |                                |                            | ×                          |
| 7 | 7    | ×                                 |                                 |                                 |                               |                               | ×                             |                            | ×                          |                            | ×                              |                                |                                  |                                | $\times$                   |                            |

### Algorithm: Idea (1 of 2)



- $\blacksquare$  each formal concept  $\langle A,B\rangle$  identifies set of objects A having common attributes B
- $\blacksquare$  set of attributes B unambiguously describes set of objects A
- $\hfill\blacksquare$  attributes from B can serve as description (labels) for objects from A
- interested in formal concepts creating continuous sequence w.r.t. a ranking function

Formal concept  $\langle A, B \rangle$  shall be called **continuous formal concept** w.r.t. a ranking function r iff there is no object  $x \notin A$  such that

$$\min_{i \in A}(r(i)) < r(x) < \max_{i \in A}(r(i)).$$

### Algorithm: Idea (2 of 2)



- $\blacksquare$  enumerating continuous formal concepts recursively in lexicographical order  $\prec$
- $\blacksquare \text{ e.g., } \langle \{1,2\},\ldots\rangle \prec \langle \{1,2,3\},\ldots\rangle \prec \langle \{1,3\},\ldots\rangle$
- recursive algorithm
  - each invocation extends input formal concept with one object
  - whenever is the new concept lexigraphically smaller, the given branch of computation can be abandoned
- variant of the Kuznetsov's Close-by-One (CbO) algorithm
- extension enumerating only continuous formal concepts (pruning)

### Algorithm: Pseudocode



Algorithm 1: Procedure computing all continuous formal concepts



### Are All Concepts Equal?

- large number of formal concepts hidden in the data
- not all continuous
- still large number (18 in our examples)
- some of low importance, e.g.:
  - covering single object
  - covering single attribute  $\langle \{1, 2, 3, 5\}, \{\langle Bdrms, 5\rangle\} \rangle$



### What Is It?





- (a) a transport vehicle
- (b) a car
- (c) a 2011 Ford Mondeo LX Hatchback

#### In sentence

- (a) I always go to work by transport vehicle.
- (b) I always go to work by car.
- (c) I always go to work by 2011 Ford Mondeo LX Hatchback.

### What Is It?



V

- (a) a transport vehicle
- (b) a car
- (c) a 2011 Ford Mondeo LX Hatchback

#### In sentence

- (a) I always go to work by transport vehicle.
- (b) I always go to work by car.
- (c) I always go to work by 2011 Ford Mondeo LX Hatchback.

### What Is It?



V

- (a) a transport vehicle
- (b) a car
- (c) a 2011 Ford Mondeo LX Hatchback

#### In sentence

- (a) I always go to work by transport vehicle.
- (b) I always go to work by car.
- (c) I always go to work by 2011 Ford Mondeo LX Hatchback.

### Basic Level Concepts: Intuition



- multiple approaches
- we adhere to definition by E. Rosch
- notion of *cohesion* which is a measure describing similarity among objects in a given formal concept

#### **Basic Level Concept**

- (a)  $\langle A, B \rangle$  has a high cohesion,
- (b)  $\langle A, B \rangle$  has a significantly larger cohesion than its upper neighbors,
- (c)  $\langle A, B \rangle$  has only a slightly smaller cohesion than its lower neighbors.

not a yes/no property

# Basic Level Concepts: Formalization (1 of 2)



 approach based on fuzzy logic in the narrow sense (proposed by Belohlavek and Trnecka)

#### Cohesion

an average bitwise similarity of all objects of a formal concept

$$coh(\langle A, B \rangle) = \frac{\sum_{x_1, x_2 \in A, x_1 > x_2} sim(x_1, x_2)}{|A| \cdot (|A| - 1)/2}$$

• where  $sim(x_1, x_2)$  is similarity of two objects, i.e., a ratio of attributes both concepts have in common to the total number of attributes

$$sim(x_1, x_2) = \frac{|\{x_1\}^{\uparrow} \cap \{x_2\}^{\uparrow}|}{|\mathbb{Y}|]}$$

#### Example: Continuous Formal Concepts and Cohesion





### Basic Level Concepts: Formalization (2 of 2)



formalization of properties proposed by Rosch

 $BL(c) = BL_a(c) \cdot BL_b(c) \cdot BL_c(c)$ 

- $\blacksquare$  real interval  $\left[0,1\right]$  as a scale of truth degrees
- multiplication corresponds to a product t-norm (Goguen)
- (a) has a high cohesion  $\ldots coh(c)$

(b) has a significantly larger cohesion than its UN's  $\dots 1 - \frac{coh(c_u)}{coh(c)}$  where  $c_u$  is an UN (c) has only a slightly smaller cohesion than its LN's  $\dots \frac{coh(c)}{coh(c_l)}$  where  $c_l$  is a LN

$$BL_{a}(c) = coh(c)$$

$$BL_{b}(c) = \frac{1}{|\mathcal{UN}^{*}(\mathcal{B}, c)|} \cdot \sum_{c_{u} \in \mathcal{UN}^{*}(\mathcal{B}, c)} 1 - \frac{coh(c_{u})}{coh(c)}$$

$$BL_{c}(c) = \frac{1}{|\mathcal{LN}^{*}(\mathcal{B}, c)|} \cdot \sum_{c_{l} \in \mathcal{LN}^{*}(\mathcal{B}, c)} \frac{coh(c)}{coh(c_{l})}$$

#### Results: Numerical Point of View



| objects                   | $BL_a$ | $BL_b$ | $BL_c$ | BL   |  |
|---------------------------|--------|--------|--------|------|--|
| {}                        | 0      | 1      | 0      | 0    |  |
| {1}                       | 1      | 0.2    | 0      | 0    |  |
| $\{1, 2\}$                | 0.8    | 0.08   | 0.8    | 0.05 |  |
| $\{1, 2, 3, 5\}$          | 0.5    | 0.31   | 0.68   | 0.11 |  |
| $\{1, 2, 3, 4, 5, 6, 7\}$ | 0.34   | 0      | 0.59   | 0    |  |
| $\{{f 1,2,5}\}$           | 0.73   | 0.32   | 0.83   | 0.19 |  |
| $\{2\}$                   | 1      | 0.2    | 0      | 0    |  |
| $\{3\}$                   | 1      | 0.5    | 0      | 0    |  |
| $\{3, 4, 6\}$             | 0.6    | 0.22   | 0.88   | 0.12 |  |
| $\{3, 4, 5, 6\}$          | 0.47   | 0.27   | 0.78   | 0.1  |  |
| $\{3, 5\}$                | 0.4    | 0      | 0.4    | 0    |  |
| $\{3, 6\}$                | 0.6    | 0      | 0.6    | 0    |  |
| $\{4\}$                   | 1      | 0.4    | 0      | 0    |  |
| $\{4, 5\}$                | 0.4    | 0      | 0.4    | 0    |  |
| $\{{f 4},{f 6}\}$         | 0.8    | 0.25   | 0.8    | 0.16 |  |
| $\{5\}$                   | 1      | 0.49   | 0      | 0    |  |
| $\{6\}$                   | 1      | 0.3    | 0      | 0    |  |
| <b>{7}</b>                | 1      | 0.66   | 0      | 0    |  |

#### Results: User-friendly Point of View



| City                         | Price       | Bdrms       | SqFeet | Porch |  |  |  |  |  |
|------------------------------|-------------|-------------|--------|-------|--|--|--|--|--|
| Roseville; 5 bedrooms; Porch |             |             |        |       |  |  |  |  |  |
| Roseville                    | 327,000     | 5           | 3,856  | Y     |  |  |  |  |  |
| Roseville                    | 321,900     | 5           | 4,460  | Y     |  |  |  |  |  |
| Roseville                    | 295,900     | 5           | 3,820  | Y     |  |  |  |  |  |
| Elmwood                      | 290,000     | 5           | 2,933  | Ν     |  |  |  |  |  |
| West End; \$29               | 0,000; 2,80 | 00 sq. feet | -      |       |  |  |  |  |  |
| West End                     | 292,000     | 3           | 2,945  | Y     |  |  |  |  |  |
| West End                     | 299,900     | 3           | 2,810  | Ν     |  |  |  |  |  |
| Roseville                    | 181,500     | 4           | 2,562  | Y     |  |  |  |  |  |

#### Conclusions and Future Research

- novel efficient algorithm for organizing search engine results
- real-world issue
- takes into account psychology of concepts
- suitable for other applications
  - ordinary database query processing
  - document search engines
- large scale evaluation (incl. A/B testing)

