Rank-aware Clustering of Relational Data: Organizing Search Results

Petr Krajča

(iv)

DEPARTMENT OF COMPUTER SCIENCE PALACKÝ UNIVERSITY, OLOMOUC

Motivation

- applications of similarity-based databases
- improving user experience

$\#$	Score	City	Price	Bdrms	SqFeet	Porch
1	1.000	Roseville	327,000	5	3,856	Y
2	0.850	Roseville	321,900	5	4,460	Y
3	0.560	Elmwood	290,000	5	2,933	N
4	0.560	West End	292,000	3	2,945	Y
5	0.560	Roseville	295,900	5	3,820	Y
6	0.325	West End	299,900	3	2,810	N
7	0.275	Roseville	181,500	4	2,562	Y

Issues

- users overwhelmed with similar items
- items with similar relevance (score) mixed up (unintuitive order)
- lack of insight into result ordering

Proposed Solution

■ based on formal concepts analysis (FCA)

Outline of the Algorithm

1 convert input data into a form suitable for FCA
2 identify formal concepts (clusters)
3 from these concepts pick the most interesting ones from the user's viewpoint

Remarks

■ FCA: well-established framework (theory, algorithms, applications)

- connection to psychology of concepts
- need to preserve order given by the scoring function

Formal Concept Analysis (1 of 3)

- method of tabular data analysis (R. Wille, TU Darmstadt)

■ used for data mining, knowledge discovery, data preprocessing

Input

■ table-rows $=$ objects, columns $=$ attributes (features), \times indicates that particular object has particular attribute

	a_{1}	a_{2}	a_{3}	a_{4}
o_{1}	\times	\times		\times
o_{2}	\times		\times	
o_{3}		\times	\times	\times
o_{4}	\times	\times	\times	\times

Output

- all maximal submatrices full of \times 's present in table

■ these submatrices are natural concepts hidden in the data

- form a hierarchy

Formal Concept Analysis (2 of 3)

A formal context is a triplet $\langle X, Y, I\rangle$, where X and Y are non-empty sets and $I \subseteq X \times Y$.

- $X \ldots$. set of objects

■ Y . . . set of attributes
$■\langle x, y\rangle \in I \ldots$ object x has attribute y)

Concept-forming operators

For a formal context $\langle X, Y, I\rangle$, operators ${ }^{\uparrow}: 2^{X} \rightarrow 2^{Y}$ and ${ }^{\downarrow}: 2^{Y} \rightarrow 2^{X}$ are defined for every $A \subseteq X$ and $B \subseteq Y$ by:

$$
\begin{aligned}
& A^{\uparrow}=\{y \in Y \mid \text { for each } x \in A: \quad\langle x, y\rangle \in I\} \\
& B^{\downarrow}=\{x \in X \mid \text { for each } y \in B:\langle x, y\rangle \in I\}
\end{aligned}
$$

- $A^{\uparrow} \ldots$ set of all attributes shared by all objects from A
- $B^{\downarrow} \ldots$ set of all objects sharing all attributes from B

Formal Concept Analysis (3 of 3)

A formal concept in $\langle X, Y, I\rangle$ is a pair $\langle A, B\rangle$ of $A \subseteq X$ and $B \subseteq Y$ such that

$$
A^{\uparrow}=B \text { and } B^{\downarrow}=A .
$$

- A... extent of $\langle A, B\rangle$
- $B \ldots$ intent of $\langle A, B\rangle$
- $\langle A, B\rangle$ is a formal concept iff A contains just objects sharing all attributes from B and B contains just attributes shared by all objects from A.

Formal Concept Analysis (Example)

dog	\times		\times		\times
cod	\times	\times			\times
frog	\times	\times	\times		\times
bean	\times		\times	\times	
daffodil	\times		\times	\times	
waterlily	\times	\times		\times	

$$
\{\operatorname{dog}, \operatorname{cod}, f r o g\}^{\uparrow}=\{\text { needs water, can move around }\}
$$

$\{\text { needs water, can move around }\}^{\downarrow}=\{$ dog, cod, frog $\}$
$\langle\{$ dog, cod, frog $\},\{$ needs water, can move around $\}\rangle \Longrightarrow$ animal

Subconcept-superconcept Hierarchy

- partial order \leq

$$
\left\langle A_{1}, B_{1}\right\rangle \leq\left\langle A_{2}, B_{2}\right\rangle \text { iff } A_{1} \subseteq A_{2} \text { (or, equivalently, iff } B_{2} \subseteq B_{1} \text {). }
$$

■ set of formal concepts $\mathcal{B}(X, Y, I)$ together with \leq form a complete lattice (concept lattice).

Natural interpretation

- animal: 〈\{dog, cod, frog\}, \{needs water, can move around\}〉
- dog: $\langle\{\operatorname{dog}\},\{$ needs water, lives on land, can move around $\}\rangle$
- $\operatorname{dog} \leq$ animal, this means:
- dog - more specific concept
- animal - more general concept

Input Data

- ranked data table

■ $\mathbb{Y}=\left\{y_{1}, \ldots, y_{n}\right\}$ finite number of columns (attributes)

- each attribute has its domain D_{y} (set of permitted values)

■ Cartesian product of domains, denoted by $\prod_{y \in \mathbb{Y}} D_{y}$, is a set of all maps

$$
t: \mathbb{Y} \rightarrow \bigcup_{y \in \mathbb{Y}} D_{y}
$$

such that $t(y) \in D_{y}$ for all $y \in \mathbb{Y}$.

- data table is any finite subset $\mathcal{D} \subseteq \prod_{y \in \mathbb{Y}} D_{y}$.
- \mathcal{D} is a set of tuples (no inherent order of tuples)

■ let $\langle\mathbb{S}, \leq\rangle$ be a poset, map $s_{\mathcal{D}}$

$$
s_{\mathcal{D}}: \mathcal{D} \rightarrow \mathbb{S}
$$

describes relevance of tuples in the data table (scoring function)

Data Preparation (1 of 2)

- conceptual scaling is a process transforming general data table \mathcal{D} into a formal context $\langle X, Y, I\rangle$
- replacing ordinal attributes with nominal ones (e.g., with equidistant intervals)

■ e.g.: $D_{\text {price }}$ may be replaced with intervals $\{\ldots,[280,000 ; 290,000)$, $[290,000 ; 300,000), \ldots\}$

■ $X=\{1, \ldots, n\}$ where each $x \in X$ corresponds to one row t in the data table and numbers are assigned to rows in the descending order w.r.t. $s_{\mathcal{D}}$
$■ Y=\left\{\langle y, v\rangle \mid\langle y, v\rangle \in \bigcup_{t_{i} \in \mathcal{D}} t_{i}\right\}$, i.e., all attribute value pairs in the data table \mathcal{D}
■ $I=\left\{\langle i,\langle y, v\rangle\rangle \mid\right.$ for every $t_{i} \in \mathcal{D}$ and $y \in Y$ iff $\left.t_{i}(y)=v\right\}$ (object i has an attribute $\langle y, v\rangle$, iff the value of the attribute y of row t_{i} is equal to v)

Data Preparation (2 of 2)

- map $r: X \rightarrow \mathbb{N}$ assigns to each tuple numerical rank such that for every two tuples $t_{i}, t_{j} \in \mathcal{D}$ and corresponding objects $x_{i}, x_{j} \in X$,

$$
s_{\mathcal{D}}\left(x_{i}\right) \leq s_{\mathcal{D}}\left(x_{j}\right) \text { implies } r\left(x_{j}\right) \leq r\left(x_{i}\right)
$$

- r and \leq provides comparative meaning
- $r\left(x_{i}\right) \leq r\left(x_{j}\right)$ means object x_{i} is more or equally relevant than x_{j}

Formal Context for Our Running Example

x	$r(x)$	$\langle\text { City, Roseville }\rangle$	〈poomulg ‘ κ ? ? , ○〉			$\begin{aligned} & \hat{3} \\ & \frac{2}{2} \\ & \stackrel{3}{0} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \text { s. } \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { n } \\ & \text { sis } \\ & 0 \end{aligned}$	$\begin{aligned} & \widehat{\text { In}} \\ & \text { ng } \\ & \text { sis } \end{aligned}$							z su E E
1	1	\times			\times					\times			\times			
2	2	\times			\times					\times				\times		
3	5		\times			\times				\times		\times				\times
4	5			\times		\times		\times				\times				
5	5	\times				\times				\times			\times			
6	6			\times		\times		\times				\times				\times
7	7	\times					\times		\times		\times					

Algorithm: Idea (1 of 2)
■ each formal concept $\langle A, B\rangle$ identifies set of objects A having common attributes B
■ set of attributes B unambiguously describes set of objects A

- attributes from B can serve as description (labels) for objects from A

■ interested in formal concepts creating continuous sequence w.r.t. a ranking function

Formal concept $\langle A, B\rangle$ shall be called continuous formal concept w.r.t. a ranking function r iff there is no object $x \notin A$ such that

$$
\min _{i \in A}(r(i))<r(x)<\max _{i \in A}(r(i))
$$

Algorithm: Idea (2 of 2)

■ enumerating continuous formal concepts recursively in lexicographical order \prec
■ e.g., $\langle\{1,2\}, \ldots\rangle \prec\langle\{1,2,3\}, \ldots\rangle \prec\langle\{1,3\}, \ldots\rangle$
■ recursive algorithm

- each invocation extends input formal concept with one object
- whenever is the new concept lexigraphically smaller, the given branch of computation can be abandoned
- variant of the Kuznetsov's Close-by-One (CbO) algorithm

■ extension enumerating only continuous formal concepts (pruning)

Algorithm: Pseudocode

1 Procedure Generate $(\langle A, B\rangle, x)$
2 result $=\{\langle A, B\rangle\}$;
$3 \quad$ foreach i in $X-A$ do
if $(i \geq x)$ and $((A \neq \emptyset)$ and $(r(i) \leq \operatorname{MaxRANK}(A, x)))$ then
$D=B \cap\{i\}^{\uparrow}$;
$C=D^{\downarrow}$;
skip $=$ false;
foreach j in C do
if $((j<i) \wedge(j \notin A))$ then
skip = true;
break loop;
if not skip and IsContinuous (C, i) then result $=$ result \cup GENERATE $(\langle C, D\rangle, i)$;
return result;
Algorithm 1: Procedure computing all continuous formal concepts

Are All Concepts Equal?

- large number of formal concepts hidden in the data
- not all continuous
- still large number (18 in our examples)
- some of low importance, e.g.:
- covering single object
- covering single attribute $\langle\{1,2,3,5\},\{\langle B d r m s, 5\rangle\}\rangle$

What Is It?

(a) a transport vehicle
(b) a car
(c) a 2011 Ford Mondeo

LX Hatchback

```
In sentence
(a) I always go to work by transport vehicle
(b) I always go to work by car
(c) I always oo to work by 2011 Ford Mondeo LX Hatchback
```


What Is It?

(a) a transport vehicle
(b) a car
(c) a 2011 Ford Mondeo LX Hatchback

```
In sentence
(a) I always go to work by transport vehicle
(b) I always go to work by car
(c) I always oo to work by 2011 Ford Mondeo LX Hatchback
```


What Is It?

(a) a transport vehicle
(b) a car
(c) a 2011 Ford Mondeo LX Hatchback

In sentence
(a) I always go to work by transport vehicle.
(b) I always go to work by car.
(c) I always go to work by 2011 Ford Mondeo LX Hatchback.

Basic Level Concepts: Intuition

■ multiple approaches

- we adhere to definition by E. Rosch
- notion of cohesion which is a measure describing similarity among objects in a given formal concept

Basic Level Concept

(a) $\langle A, B\rangle$ has a high cohesion,
(b) $\langle A, B\rangle$ has a significantly larger cohesion than its upper neighbors,
(c) $\langle A, B\rangle$ has only a slightly smaller cohesion than its lower neighbors.

■ not a yes/no property

Basic Level Concepts: Formalization (1 of 2)

- approach based on fuzzy logic in the narrow sense (proposed by Belohlavek and Trnecka)

Cohesion

- an average bitwise similarity of all objects of a formal concept

$$
\operatorname{coh}(\langle A, B\rangle)=\frac{\sum_{x_{1}, x_{2} \in A, x_{1}>x_{2}} \operatorname{sim}\left(x_{1}, x_{2}\right)}{|A| \cdot(|A|-1) / 2}
$$

■ where $\operatorname{sim}\left(x_{1}, x_{2}\right)$ is similarity of two objects, i.e., a ratio of attributes both concepts have in common to the total number of attributes

$$
\operatorname{sim}\left(x_{1}, x_{2}\right)=\frac{\left|\left\{x_{1}\right\}^{\uparrow} \cap\left\{x_{2}\right\}^{\uparrow}\right|}{|\mathbb{Y}|]}
$$

Example: Continuous Formal Concepts and Cohesion

Basic Level Concepts: Formalization (2 of 2)

- formalization of properties proposed by Rosch

$$
B L(c)=B L_{a}(c) \cdot B L_{b}(c) \cdot B L_{c}(c)
$$

■ real interval $[0,1]$ as a scale of truth degrees

- multiplication corresponds to a product t-norm (Goguen)
(a) has a high cohesion ...coh(c)
(b) has a significantly larger cohesion than its UN's $\ldots 1-\frac{\operatorname{coh}\left(c_{u}\right)}{\operatorname{coh}(c)}$ where c_{u} is an UN
(c) has only a slightly smaller cohesion than its LN's $\ldots \frac{\operatorname{coh(c)}\left(\operatorname{coh}\left(c_{l}\right)\right.}{\text { where } c_{l}}$ is a LN

$$
\begin{aligned}
B L_{a}(c) & =\operatorname{coh}(c) \\
B L_{b}(c) & =\frac{1}{|\mathcal{U N} *(\mathcal{B}, c)|} \cdot \sum_{c_{u} \in \mathcal{U N}^{*}(\mathcal{B}, c)} 1-\frac{\operatorname{coh}\left(c_{u}\right)}{\operatorname{coh}(c)} \\
B L_{c}(c) & =\frac{1}{\left|\mathcal{L N}^{*}(\mathcal{B}, c)\right|} \cdot \sum_{c_{l} \in \mathcal{L N}^{*}(\mathcal{B}, c)} \frac{\operatorname{coh}(c)}{\operatorname{coh}\left(c_{l}\right)}
\end{aligned}
$$

Results: Numerical Point of View

objects	$B L_{a}$	$B L_{b}$	$B L_{c}$	$B L$
$\}$	0	1	0	0
$\{1\}$	1	0.2	0	0
$\{1,2\}$	0.8	0.08	0.8	0.05
$\{1,2,3,5\}$	0.5	0.31	0.68	0.11
$\{1,2,3,4,5,6,7\}$	0.34	0	0.59	0
$\{\mathbf{1}, \mathbf{2}, \mathbf{5}\}$	$\mathbf{0 . 7 3}$	$\mathbf{0 . 3 2}$	$\mathbf{0 . 8 3}$	$\mathbf{0 . 1 9}$
$\{2\}$	1	0.2	0	0
$\{\mathbf{3}\}$	$\mathbf{1}$	$\mathbf{0 . 5}$	$\mathbf{0}$	$\mathbf{0}$
$\{3,4,6\}$	0.6	0.22	0.88	0.12
$\{3,4,5,6\}$	0.47	0.27	0.78	0.1
$\{3,5\}$	0.4	0	0.4	0
$\{3,6\}$	0.6	0	0.6	0
$\{4\}$	1	0.4	0	0
$\{4,5\}$	0.4	0	0.4	0
$\{\mathbf{4}, \mathbf{6}\}$	$\mathbf{0 . 8}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 8}$	$\mathbf{0 . 1 6}$
$\{5\}$	1	0.49	0	0
$\{6\}$	1	0.3	0	0
$\{\mathbf{7}\}$	$\mathbf{1}$	$\mathbf{0 . 6 6}$	$\mathbf{0}$	$\mathbf{0}$

Results: User-friendly Point of View

City	Price	Bdrms	SqFeet	Porch
Roseville; 5 bedrooms; Porch				
Roseville	327,000	5	3,856	Y
Roseville	321,900	5	4,460	Y
Roseville	295,900	5	3,820	Y
Elmwood	290,000	5	2,933	N
West End; \$290,000; 2,800 sq. feet				
West End	292,000	3	2,945	Y
West End	299,900	3	2,810	N
Roseville	181,500	4	2,562	Y

Conclusions and Future Research

- novel efficient algorithm for organizing search engine results

■ real-world issue
■ takes into account psychology of concepts

- suitable for other applications
- ordinary database query processing
- document search engines

■ large scale evaluation (incl. A/B testing)

