AXIAL ASYMMETRY IN HOLOGRAPHIC AND INCOHERENT CORRELATION IMAGING

Jaromír BĚHAL ${ }^{1}$, Petr BOUCHAL ${ }^{2}$, Petr SCHOVÁNEK ${ }^{1}$, Tomáš FORDEY ${ }^{1}$ and Zdeněk BOUCHAL ${ }^{1}$
${ }^{1}$ Department of Optics, Palacký University, 17. listopadu 1192/12, 77146 Olomouc, Czech Republic
${ }^{2}$ Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic
Axial asymmetry and focal shift occurring in lens focusing have been thoroughly investigated in many studies [1-3]. Here we present an extended analysis devoted to three-dimensional (3D) diffraction-limited Point Spread Function (PSF) in digital holography [4-6]. The axial profile and shift of the intensity maximum of the digitally reconstructed PSF are examined for geometries of recording waves commonly used in Digital In-line Holographic Microscopy (DIHM) and Fresnel Incoherent Correlation Holography (FINCH). Experimental configuration and critical parameters resulting in axial imaging asymmetry are assessed in both simulations and experiments.

