# **Raman Optical Activity in the Ultraviolet Spectral Region**

Philip J. Stephens Award Address

Josef Kapitán, Laurence D. Barron, Lutz Hecht





Palacký University Olomouc



5th International Conference on Vibrational Optical Activity

September 11-16, 2016

Overview of Raman scattering signal origin and instrumentation

DUV ROA spectrometer

Measurement of non-resonant and pre-resonant spectra and their interpretation

Outlook for further development of DUV ROA spectrometer

# **Origin of Raman scattering signal**

- 1. Raman scattering from a single molecule:
  - wavenumber of scattered radiation
  - geometry of scattering
  - polarization of excitation and scattered radiation
  - molecular properties
- 2. Raman scattering from a bulk sample volume source of radiation
- 3. Properties of spectral analyzers:
  - optical throughput, étendue
  - spectral resolution
  - spectral range
  - efficiency (transmittance)
  - signal/noise, sources of noise
- 4. Optics for transfer of scattered radiation to spectral analyser

## 1. Raman scattering from a single molecule

Radiant intensity of Raman scattering from single molecule:



# **1.** Raman scattering from a single molecule

Radiant intensity of Raman scattering from single molecule:

$$I \equiv \frac{d\Phi}{d\Omega} = \beta E_0$$
[W sr<sup>1</sup>] Irradiance [W cm<sup>-2</sup>]

Differential Raman scattering cross-section:

$$\beta \equiv \frac{d\sigma}{d\Omega} = k_{\tilde{v}} (\tilde{v}_s^4) F(\theta, p_i, p_s, T_{fi})$$

$$(cm^2 \, sr^{-1} \, molecule^{-1})$$



But: detected signal proportional to detected photons.s<sup>-1</sup> (in UV and VIS, NIR spectral regions)

# 2. Raman scattering from a bulk sample - volume source of radiation

Radiant emissivity (radiant flux from unit volume into unit solid angle):

$$J \equiv \frac{d^2 \Phi_s}{d\Omega \, dV} = D \, \beta' E_0$$

concentration of molecules [molecule cm-3]

Radiant flux of Raman scattering:

$$d^{3}\Phi_{s} = J T dA dz d\Omega = D \beta' T d\Phi_{0} dz d\Omega$$

$$\uparrow$$
transmission factor

transmission factor

# dV $\theta$ $E_0$ dA dz

dΩ

Radiance from a thin sample:

$$B_s = \frac{d^2 \Phi_s}{d\Omega \, dA \cos \theta}$$

$$dB_s = \frac{J \, dz}{\cos \theta}$$

# 2. Raman scattering from a bulk sample - volume source of radiation

Radiant emissivity (radiant flux from unit volume into unit solid angle):

$$J = \frac{d^2 \Phi_s}{d\Omega \, dV} = D \, \beta' E_0$$

concentration of molecules [molecule cm-3]

#### Radiant flux of Raman scattering:

$$d^{3}\Phi_{s} = J T dA dz d\Omega = D \beta' T d\Phi_{0} dz d\Omega$$
transmission factor

1 41151111551011 140101

often possible to evaluate as:

$$\Phi = D \beta \Phi_0 \int \Omega(s) T(s) ds$$



# Scattering geometry:





# Collinear (back / forward) scattering



 $d^{3}\Phi = JT \, dA \, dz \, d\Omega = D \, \beta T \, d\Phi_{0} \, dz \, d\Omega$ 

$$\Phi_{2a} = D \beta \Phi_0 \int_{s_{1\min}}^{s_{1\max}} \pi \frac{D_{p1}^2}{4(f_1 - s_1)^2} ds_1 = D \beta \Phi_0 \pi D_{20}' NA_{20}'$$



#### Calculation of transmittance factor in dependence of position in object space

Dependence on distance between lenses 1 and 2



#### Collinear (back / forward) scattering



## Collinear (back / forward) scattering



$$\Phi_{\textit{collinear}} = D \beta \Phi_0 \pi D'_{20} NA'_{20}$$

Sample volume: 
$$V = \pi \frac{D_{20}^3}{NA_{20}} \left(\frac{f_1'}{f_2'}\right)^4$$

Numerical example:

$$f_1' = 26 \text{ mm}$$
  
 $f_2 = 100 \text{ mm}$   
 $D_{20} = 1.6 \text{ mm}$   
 $NA_{20} = 0.12$ 



 $V=0.5\,\mu\,\mathrm{L}$ 

Real-life volume (path-length 4 mm): 30 µL

# **Comparison of right angle and collinear scattering**

Spectrograph input aperture area:  $\frac{\pi}{4}D'_{20}^2 = w'_{x2}h'_{y2}$ 

$$\frac{\Phi_{90}}{\Phi_{180}} = \frac{D\beta \Phi_0 h'_{y2} \frac{f'_2}{f'_1} \pi N A'^2_{20}}{D\beta \Phi_0 \pi D'_{20} N A'_{20}} = \sqrt{\frac{\pi}{4} \frac{h_{y1}}{w_{x1}}} N A_{10}$$

Numerical example

$$NA_1 = 0.5$$

$$h_{y1}: w_{x1} = 256:2$$
$$\frac{\Phi_{90}}{\Phi_{180}} = 5$$

## Radiation transfer: from sample to spectrograph



## Collinear (back / forward) scattering

#### Radiation transfer optical system:



V. Profant, V. Baumruk et at., J. Raman. Spectrosc. (2014)

# **Raman and ROA Intensity calibration**

Relative intensity correction: standard reference source needed

NIST Relative intensity correction standard reference 2242



V. Profant, V. Baumruk et at., J. Raman. Spectrosc. (2014)

## Collinear (back / forward) scattering

# Design of new optical system



#### Parameters for radiation transfer optics (excitation wavelength 532 nm)

| Required parameter                        | Value                    |  |  |
|-------------------------------------------|--------------------------|--|--|
| Collimating objective                     | Aspheric singlet lens    |  |  |
| Diameter                                  | 30 mm                    |  |  |
| Focal lenght                              | 26,0 mm (for 780 nm)     |  |  |
| Material                                  | S-LAH64                  |  |  |
| Sample                                    |                          |  |  |
| Water                                     | 0-4 mm, center at 2,0 mm |  |  |
| Max. distance from optical axis           | 0,05 mm                  |  |  |
| Distance between focusing and collimating | 200 - 400  mm            |  |  |
| lens                                      |                          |  |  |
| Numerical aperture of focusing lens       | 0,118                    |  |  |
| Wavelength range                          | 530 – 600 nm             |  |  |

## Collinear (back / forward) scattering

#### Design of new optical system



#### spherical and chromatic aberration



Pupil Radius: 2.0513 Millimeters





532nm 562 nm 590 nm

# spot diagram

# 3. Spectral Analyzers



- How to compare and evaluate various spectral analysers?



- spectral range
- geometrical throughput
- source size (confocal/bulk)

$$R = \frac{\lambda}{d\lambda} = \frac{\widetilde{v}}{d\widetilde{v}}$$

$$d^2 G \equiv n^2 dA \cos \theta \, d\Omega$$

mirror

Required resolving power for various excitation wavelengths:

| $\lambda_{0}(\mathbf{nm})$ | $\widetilde{\nu}_{vib} = 600 \text{ cm}^{-1}$ | $\widetilde{\nu}_{vib} = 1800 \text{ cm}^{-1}$ | $d\widetilde{\nu} = 7 \text{ cm}^{-1}$ | $R = \lambda / d\lambda$ |
|----------------------------|-----------------------------------------------|------------------------------------------------|----------------------------------------|--------------------------|
| 1064                       | 1137 nm                                       | 1316 nm                                        | 1,0 nm                                 | 1200                     |
| 532                        | 550                                           | 588                                            | 0,22 nm                                | 2500                     |
| 356                        | 364                                           | 380                                            | 0,095 nm                               | 3900                     |
| 229                        | 232                                           | 239                                            | 0,038 nm                               | 6100                     |

Étendue, geometrical throughput:  $d^2G \equiv n^2 dA \cos \theta \, d\Omega$ 

$$G = \iint_{\Omega A} d^2 G \cong n^2 A_D \Omega_D \cong \pi A n^2 \sin^2 \theta$$

Basic radiance 
$$B' \equiv \frac{B}{n^2} = \frac{d^2 \Phi}{n^2 d\Omega dA \cos \theta}$$

Radiance from thin sample:

$$B_s \equiv \frac{d^2 \Phi_s}{d\Omega \, dA \cos \theta} = \frac{J \, dz}{\cos \theta}$$

## Evaluation of "throughput" of spectral analyzer (spectrograph)



of spectrograph



- shot noise limit (UV, VIS): dispersive multichannel spectrographs
- readout noise limit (IR): intefrerometers Jacquinot advantage (high throughput)
- background noise limit (fluorescence): go to NIR or UV spectral region



Evaluation of "throughput" of spectral analyzer (spectrograph)



#### **Cross-section transformer**



#### Utilization of geometrical throughput – cross-section transformer



#### **Cross section transformer**

# Solution 1: fibre optics



W. Hug, J. Raman Spectrosc. 30, 841 (1999).

# Solution 2a: slit slicing





# Solution 2b: pupil slicing



Patent Application Publication Dec. 8, 2011

US 2011/0299075 A1



I. S. Bowen, Astrophys. J., 1938, 88, 113

# Solution 3: interferometers

#### Michelson interferometer



 $\sigma_{n} = \sigma_{o} + n\delta\sigma$ 

Combined

#### Harlander interferometer



W/2

J. Harlander et. Al, Astrophys. J., 1992, 396, 730

### **Cross section transformer**

Solution 4: use of coded apertures



#### Hadamard mask

M. E. Gehm, Appl. Optics, 2006, 45, 2965

# **Raman Optical Activity**

Raman scattering: two-photon process

1. Excitation wavelength

Raman scattering cross-section

- 488 532 nm
- 785 nm
  - L. A. Nafie, Appl. Spectrosc. 2007, 61, 1103

$$\beta' \equiv \frac{d\sigma'}{d\Omega} = \frac{k_{\tilde{v}}(\tilde{v}_s^3)}{h c} F(\theta, p_i, p_s, T_{fi})$$



ROA 
$$\approx \widetilde{\nu}_s^4$$

S-(-)-α-pinene
### **Raman Optical Activity**

Raman scattering: two-photon process

1. Excitation wavelength

Raman scattering cross-section

- 488 532 nm
- 785 nm
  - L. A. Nafie, Appl. Spectrosc. 2007, 61, 1103

M. Unno, et. al, J. Phys. Chem. B 2013, 117, 1321

 $\beta' \equiv \frac{d\sigma'}{d\Omega} = \frac{k_{\widetilde{v}}(\widetilde{V}_s^3)}{hc} F(\theta, p_i, p_s, T_{fi})$ 

ROA  $\approx \widetilde{\nu}_s^4$ 



## **Raman Optical Activity**

Raman scattering: two-photon process

- 1. Excitation wavelength
- 488 532 nm
- 785 nm
- 244 nm (this work)
  - + higher intensity of Raman/ROA scattering
  - but lower laser power (photo-damage)
  - + absence of fluorescence background
  - + pre/resonance enhancement

$$\beta' \equiv \frac{d\sigma'}{d\Omega} = \frac{k_{\widetilde{v}}\widetilde{v}_s^3}{hc} F(\theta, p_i, p_s, T_{fi})$$

Raman scattering cross-section

ROA 
$$\approx \widetilde{v}_s^4$$



#### **Resonance Raman scattering**



Raman spectra of myoglobin

# **Raman Optical Activity**

Raman scattering: two-photon process

- 1. Excitation wavelength
- 488 532 nm
- 785 nm
- 244 nm

- 2. Scattering geometry (scattering angle)
- backscattering geometry
- right-angle scattering geometry
- forward scattering geometry

# 3. Modulation scheme



ROA first observed (as ICP) in 1973 by L.D. Barron, M.P. Bogaard and A.D. Buckingham, JACS 95, 603 (1973).

### **Right angle scattering ICP ROA Instrument**



L. D. Barron, J. Raman Spectrosc. 18, 281 (1987).



W. Hug, Appl. Spectrosc. 35, 115 (1981)

#### **Backscattering**

#### **ICP ROA Instrument**



W. Hug, Raman Spectroscopy (1982)

- L. D. Barron, JACS 111, 8731 (1989),
- L. Hecht, L. D. Barron, J. Raman Spectrosc. 23, 401 (1992),
- L. Hecht, L. D. Barron, J. Raman Spectrosc. 30, 815 (1999).

#### **Backscattering**

#### **ICP ROA Instrument**

#### **SCP ROA Instrument**

frequency-doubled



CCD detector

W. Hug, Raman Spectroscopy (1982)

- L. D. Barron, JACS 111, 8731 (1989),
- L. Hecht, L. D. Barron, J. Raman Spectrosc. 23, 401 (1992),
- L. Hecht, L. D. Barron, J. Raman Spectrosc. 30, 815 (1999).

W. Hug, J. Raman Spectrosc. 30, 841 (1999).W. Hug, Comprehensive Chiroptical Spectroscopy, Vol. I (2012)



CC,

z



Building blocks of an SCP ROA spectrometer.

W. Hug, Comprehensive Chiroptical Spectroscopy, Vol. I, 147 (2012)



S

 $M_2$ 

 $LR_3$ 

# **UV Raman spectrometer**



L. Hecht, J. Raman Spectrosc. 37, 562 (2006)















# Glasgow ICP UV-ROA Spectrometer



Spectral resolution / pixel width

Ratio of wavenumber dependence of Raman scattering for DUV (244 nm excitation) and VIS (532 nm excitation)



#### **Comparison of DUV and VIS Raman Intensities**

Factor

8

2

1.8

1.4

1.5

1.4

90





#### Non-absorbing samples

#### Menthol in methanol



|    | Concentration           | ~2.3g + 1.0g Methanol |
|----|-------------------------|-----------------------|
| nm | Accumulation time VIS   | 0.5 hours             |
|    | Accumulation time UV    | 16 hours              |
|    | Laser power VIS (532nm) | ~30 <u>mW</u>         |
|    | Laser power UV (244 nm) | ~ <u>3_mW</u>         |

### **ROA Spectra**



#### Menthol in methanol

#### Comparision of selected CID ratios

| Band position/cm <sup>-1</sup> | $DUV \times 10^3$ | $VIS \times 10^4$ | DUV/VIS |
|--------------------------------|-------------------|-------------------|---------|
| 847                            | -2.6              | -4.2              | 6.2     |
| 877                            | -1.0              | -3.6              | 2.8     |
| 926                            | 2.2               | 8.2               | 2.7     |
| 954                            | -0.6              | -3.0              | 2.0     |
| 972                            | 1.7               | 4.5               | 3.8     |
| 1225                           | 3.0               | 6.7               | 4.4     |
| 1242                           | 3.4               | 6.9               | 4.9     |
| 1272                           | -1.1              | -2.8              | 3.9     |
| 1293                           | -4.1              | -12.2             | 3.4     |

expected values ~ 2.2-2.5

### (-)-Menthol



B3LYP 6-311++G\*\* CPCM (methanol)





#### Non-absorbing samples

#### **Borneol in methanol**



| Concentration           | 1.0 g + 1.0 g Methanol |
|-------------------------|------------------------|
| Accumulation time VIS   | 0.35 hours             |
| Accumulation time UV    | 28 hours               |
| Laser power VIS (532nm) | ~80 <u>mW</u>          |
| Laser power UV (244 nm) | ~ <u>3 mW</u>          |

Exc. 244 nm





 $\Delta E = 0.0 \text{ kcal/mol}$ 

 $\Delta E = 0.4$  kcal/mol  $\Delta E = 0.4$  kcal/mol

B3LYP 6-311++G\*\* CPCM (methanol)





#### **Enhancement estimate of preresonance samples**



Ac-Ala-NHCH<sub>3</sub> (0.5 mol/L)







#### Absorbing samples

Ala-Ala





| Concentration           | 0.125 mol/L   |
|-------------------------|---------------|
| Accumulation time VIS   | 41 hours      |
| Accumulation time UV    | 46 hours      |
| Laser power VIS (532nm) | 320 <u>mW</u> |
| Laser power UV (244 nm) | ~4 <u>mW</u>  |



# Exc. 244 nm

#### Concentration 0.1 mol/L (15 mg/mL) Accumulation time VIS 45 hours Accumulation time UV 40 hours Laser power VIS (532nm) 320 mW Laser power UV (244 nm) 3.5 mW

# cyclo(Ala-Ala)

Absorbing samples





cyclo(Ala-Ala)







## **UV/VIS ROA Spectra**

Absorbing samples



### UV Raman/ROA spectra of proteins



Wavenumber (cm<sup>-1</sup>)

Insulin pH ~ 3 1.5 mg/mL

Human serum albumin pH ~ 7 1.5 mg/mL
#### Further development of UV ROA spectrometer

Development of custom made lens-based spectrographs and transfer optics

Collaboration with Meopta company



#### Spectral analysers utilized in VIS/NIR Raman spectroscopy



 $d_V = 7 \text{ cm}^{-1}$ 

$$\alpha = \beta = 45^{\circ}$$
  
 $g = 2400 \text{ mm}^{-1}$   
 $m = 1$   
 $\lambda = 565 \text{ nm}$   
 $y_2 = 6,7 \text{ mm}$ 

$$f_1 = f_2 = 85 \text{ mm}$$

*(f/#)* = 1,8

 $G = 0,10 \text{ mm}^2.\text{sr}$ 



RoperScientific Acton

#### Spectral analysers utilized in UV Raman spectroscopy



## Spectral analysers utilized in UV Raman spectroscopy



Limiting factors:

low numerical aperture (f/# ~ 4)
coma & astigmatism (correction optics needed)



| A Princeton<br>Instruments | Astigmatism<br>IsoPlane  |
|----------------------------|--------------------------|
|                            |                          |
|                            |                          |
|                            | Corry-Tonar spectrograph |

#### Lens based spectrograph (UV ROA spectroscopy) Glasgow 2006



Hecht L et. al..: J. Raman Spectrosc. 2006, 37, 562 Kapitan J. et al.: J. Raman Spectrosc. 2015 46 392

#### State-of-the-art of spectrographs for the deep UV Raman spectroscopy



Bykov, Appl. Spectrosc. 2013, 67, 873

### **Development of new spectrograph for UV Raman spectroscopy**

Spectrograph design requirements

| Requirement                                                | Value                            |
|------------------------------------------------------------|----------------------------------|
| Spectral resolution                                        | $7-15 \text{ cm}^{-1}$           |
| Spectral region                                            | 205-272  nm – see table below    |
| Point spread function (PSF) for 1/e <sup>2</sup> criterion | <27 µm (pixel size 13.5 µm)      |
| F-number of focusing objective                             | 2                                |
| Focal length of focusing objective                         | 100 mm                           |
| Detector size                                              | $7 \times 26 \text{ mm}$         |
| Diffraction grating                                        | 3600 gr/mm, 1. diffraction order |

|                                  |                              | 1                       | 2                       | 3              | 4                       | 5              | 6              |
|----------------------------------|------------------------------|-------------------------|-------------------------|----------------|-------------------------|----------------|----------------|
| Weight                           |                              | 0.5                     | 1                       | 1              | 1                       | 0.5            | 0.25           |
| Wavenumbe<br>(cm <sup>-1</sup> ) | enumber shift <sup>1</sup> ) |                         | 500                     | 1150           | 1800                    | 2400           | 3200           |
| Wavelength $\lambda$ (nm)        | Conf. 1                      | 250.0                   | 253.2                   | 257.4          | 261.8                   | 266.0          | 271.7          |
|                                  | Conf. 2                      | 240.0                   | 242.9                   | 246.8          | 250.8                   | 254.7          | 260.0          |
|                                  | Conf. 3                      | 230.0                   | 232.7                   | 236.2          | 239.9                   | 243.4          | 248.3          |
|                                  | Conf. 4                      | 218.0                   | 220.4                   | 223.6          | 226.9                   | 230.0          | 234.3          |
|                                  | Conf. 5                      | 205.0                   | 207.1                   | 209.9          | 212.9                   | 215.6          | 219.4          |
|                                  | Conf. 4<br>Conf. 5           | 230.0<br>218.0<br>205.0 | 232.7<br>220.4<br>207.1 | 223.6<br>209.9 | 239.9<br>226.9<br>212.9 | 230.0<br>215.6 | 234.3<br>219.4 |

Excitation wavelengths

## Development of spectrograph for UV Raman/ROA spectroscopy



## Imaging spectrograph



## Development of spectrograph for UV Raman/ROA spectroscopy



Spectral resolution: according to geometrical parameters (2× 13.5 µm pixels)

| Configuration | Exc.<br>wavelength<br>(nm) | Incident<br>angle on         | Spectral resolution (cm <sup>-1</sup> ) |                       |                       |
|---------------|----------------------------|------------------------------|-----------------------------------------|-----------------------|-----------------------|
|               |                            | diffraction<br>grating (deg) | 500 cm <sup>-1</sup>                    | 1800 cm <sup>-1</sup> | 3200 cm <sup>-1</sup> |
| 1             | 250                        | -1.12                        | 4.4                                     | 3.4                   | 3.8                   |
| 2             | 240                        | 1.0                          | 4.9                                     | 3.9                   | 2.6                   |
| 3             | 230                        | 2.9                          | 5.4                                     | 4.5                   | 3.3                   |
| 4             | 218                        | 5.2                          | 6.2                                     | 5.3                   | 4.2                   |
| 5             | 205                        | 7.75                         | 7.0                                     | 6.2                   | 5.2                   |

## Development of spectrograph for UV Raman/ROA spectroscopy



Collimating objective

## Comparison of "throughput" of the state-of-the-art spectrographs

$$\Phi = \frac{\pi}{4} B_{\lambda} d\lambda \tau \frac{S_{\text{det}}}{(f/\#)^2}$$

$$P = \tau \frac{S_{\text{det}}}{(f/\#)^2}$$

|                             | Transmittance | Effective detektor                | F-number | Total                 |
|-----------------------------|---------------|-----------------------------------|----------|-----------------------|
|                             | τ             | area $S_{det}$ (mm <sup>2</sup> ) |          | (sr.mm <sup>2</sup> ) |
| Meopta UV spectrograph      | 0.15          | $6 \times 20$                     | 2        | 4.5                   |
| triple grating spectrograph | 0.05          | 1 × 26                            | 6.5      | 0.03                  |
| Echelle spectrograph        | 0.2           | 6 × 26                            | 6.5      | 0.73                  |
| Corrected Czerny-Turner     | 0.3           | 6 × 26                            | 3.8      | 3.2                   |



## Acknowledgement

# Laurence D. Barron, Lutz Hecht

Christian Johannessen

Petr Bouř Jaroslav Šebestík, Ondřej Pačes, Jakub Jungwirth, Jiří Kessler

Vladimír Baumruk

Timothy A. Keiderling

Rina Dukor Larry Nafie

Werner Hug

Radek Čelechovský Michal Dudka Milan Vůjtek

Meopta and Zebr company collaboration