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Measurement Based Quantum Computation…

Gu#et#al.,#PRA#(2009)

Cluster States are a class of highly  

entangled states

Form a resource for computing

Computation proceeds via local  

measurement on cluster nodes

Single mode unitary gates U
are implemented via measuring
U†pU

Ref: Rev. Mod. Phys. 84 621 (2012)



…with Continuous Variables

Introduce CV operators

x =
a+ a

†
p
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p =
i(a+ a†)p
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[x, p] = i

[a, a†] = 1

Cluster State Vertices

|0ip =

Z
dx|xi

Cluster State Edges

CZ
jk

= eixjxk

Physical cluster states are Gaussian approximations to this ideal

|0i
p

' S(s)|0i = e�
ilns
2 (xp+px)|0i



Universal Quantum Computation

Lloyd-Braunstein  
criteria:

Multimode Gaussian operations  
Single Non-Linear operation  

Ref: D. W. Moore, O. Houhou, A. Ferraro PRA (2017) 

Cubic Phase Gate

) Computation becomes adaptive

Motivates the introduction of a non-Gaussian resource state

Requires a non-linear measurement i.e.  

NOT homodyne detection (quadrature measurements)V = ei�x
3



Universal Quantum Computation

Cubic Phase State

|�i = V |0ip ' |�, si = V S(s)|0i

• Provides the non-linear operation 
• Measurements are still Gaussian (quadrature measurements) 
• Byproducts are always Gaussian operations

|�i

|�i

p̂ m

|�0i = V X(m)F |�i

CPS is consumed by using it as  

the ancilla in a teleportation scheme



Optomechanics Setting



�

�x

Exploit intrinsic non-linearity in optomechanics

Cavity Decay rate 

Mechanical Damping rate �mSome standard assumptions:

Resolved Sideband regime  ⌧ ⌦

H = !(x)a†a+ ⌦b†b
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Optomechanics Setting

Set
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as the linear and quadratic coupling coefficients

Then, in the rotating frame and  

linearising with multiple tones  

the Hamiltonian is represented as

Hdrive =
X

k

✏ke
�i!kt



Optomechanics Setting

Taking the rotating wave approximation and choosing appropriate detunings we have

H = a†
⇣
g1b+ g2b

† + g3b
2 + g4b

†2 + g5{b, b†}
⌘
+H.C.

Detunings:

�1 = �⌦ �2 = ⌦ �3 = �2⌦ �4 = 2⌦ �5 = 0

g1 = ↵1GL g2 = ↵2GL g3 = ↵3GQ g4 = ↵4GQ g5 = ↵5GQ

Weak Coupling:

|↵1,2GL| ⌧ ⌦ |↵3,4,5GQ| ⌧ ⌦



Generating the Resource State

Master Equation dynamics 

⇢̇(t) = �i[H, ⇢(t)] + D[a]⇢(t)

(�m = 0)

Define a new field operator f

H = a†f + f†a

Steady State (pure product state) |0i ⌦ |0if



Generating the Resource State

|0if = V S(s)|0i

Coefficients of f chosen carefully

g2 = �rg1 s(r) =

r
1 + r

1� r
g3 = g4 = g5 = � 3i

2
p
2
�(1 + r)g1

Restriction: |Rg1| ⌧ ⌦ |R�1g1| ⌧ ⌦|g1| ⌧ ⌦

R =
GL

GQ



Generating the Resource State (noisy)

⇢̇(t) = �i[H, ⇢(t)] + D[a]⇢(t) + �m(n̄+ 1)D[b]⇢(t) + �mn̄D[b†]⇢(t)

Under mechanical dissipation, the fidelity of the output state is compromised



Incorporating the Resource in a Cluster State

S1(s1)

S2(s2)

...

SN (sN )

�1(�1)
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...
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e
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2 q
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...
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...
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Each node is prepared in a squeezed state with a given non-linearity.

is the adjacency matrix for the cluster stateA

One can diminish the effect of noise 

 by pre cooling the oscillator

Ref: O. Houhou, A. Aissaoui, A Ferraro PRA (2015)



Conclusions

• Prepare a non-linear resource for quantum computation 

• Analysed the effect of noise 

• Attached the resource to a cluster state

Future

• More general dissipative generation of states
{g1, g2, g3, g4, g5}Freedom in


