

Max-Planck Institute for the Science of Light

PHASE SUPERSENSITIVITY IN AN UNBALANCED SU(1,1) INTERFEROMETER

Maria Chekhova

Max-Planck Institute for the Science of Light, Erlangen, Germany

QUANTUM RADIATION GROUP

A POSTDOC POSITION AVAILABLE

Farid Khalili, Moscow State University

Forschungsgemeinschaft

OUTLINE

- **1. Nonlinear SU(1,1) interferometer**
- 2. Phase sensitivity
- 3. Gain unbalancing and loss tolerance
- 4. Experiment
- **5.** Conclusions

NONLINEAR INTERFEROMETER

Linear Mach-Zehnder interferometer

Nonlinear Mach-Zehnder interferometer

SU(1,1) INTERFEROMETER

Parametric down-conversion or four-wave mixing

B. Yurke, S.L. McCall, and J.R. Klauder, PRA 33, 4033 (1986)

SU(2) AND SU(1,1) INTERFEROMETERS

SU(1,1) interferometer

B. Yurke, S.L. McCall, and J.R. Klauder, PRA 33, 4033 (1986) 6/20

SU(1,1) INTERFEROMETER: BIPHOTON PHASE CHARACTERIZATION

Amplification or deamplification in the second crystal, depending on the phase: enables the phase retrieval

Y. Shaked, R. Pomerantz, R. Z. Vered, and A. Pe'er, NJP 16, 053012 (2014) 7/20

HIGH-GAIN SU(1,1) INTERFEROMETER: SPECTRUM SHAPING

S. Lemieux, M. Manceau, P. R. Sharapova, O. V. Tikhonova, R. W. Boyd, G. Leuchs, and M. V. Chekhova, Phys. Rev. Lett. 117, 183601 (2016). 8/20

PHASE SENSITIVITY

Heisenberg limit (exotic states like NOON):

$$\Delta \phi_{\!_H} \sim \frac{1}{\left< N \right>}$$

HIGH-GAIN SU(1,1) INTERFEROMETER: PHASE SUPERSENSITIVITY

OUR SCHEME: NO SEEDING, DIRECT DETECTION

F. Hudelist et al., Nature Comm. 5:3049 (2014).

M. Manceau, F. Khalili, and M. V. Chekhova, NJP 19, 013014 (2017). 11/20

MAIN IDEA: GAIN UNBALANCING

M. Manceau, F. Khalili, and M. V. Chekhova, NJP 19, 013014 (2017). 12/20

HOW IT WORKS

HOW IT WORKS

EXPERIMENTAL SETUP

INTERFERENCE FRINGES

SUPER-SENSITIVE PHASE MEASUREMENTS

M. Manceau, F. Khalili, G.Leuchs, and M. V. Chekhova, arXiv:1705.02662

THE EFFECT OF LOSS

M. Manceau, F. Khalili, G.Leuchs, and M. V. Chekhova, arXiv:1705.02662 18/20

A MORE PRACTICAL SETUP

SU(2) interferometer preceded by a squeezer and followed by an anti-squeezer: unbalanced configuration leads to the same advantages

M. Manceau, F. Khalili, and M. V. Chekhova, NJP 19, 013014 (2017). 19/20

CONCLUSIONS

SU(1,1) interferometer with no seeding and direct detection; the effect of gain unbalancing.

Phase sensitivity 2.3 dB below SNL

- Phase supersensitivity for up to 11 photons, tolerant to losses (QE as low as 17%)
- The same "unbalancing" strategy for SU(2) with OPAs placed before and after it

THANK YOU FOR YOUR ATTENTION!

BRIGHT SQUEEZED VACUUM

Up to
$$G \sim 20, \langle \hat{N} \rangle \sim 10^{18}$$

Nonclassicality: 7.8 dB photon-number squeezing (observed in the non-degenerate regime)

T. Sh. Iskhakov et al., OL 41, 2149 (2016).