DIRECT OBSERVATION OF PHASE SENSITIVE HONG-OU-MANDEL INTERFERENCE

Petr Marek

Radim Filip Petr Zapletal Yosuke Hashimoto Takeshi Toyama Jun-ichi Yoshikawa Kenzo Makino Akira Furusawa

Palacký University Olomouc

HONG -OU-MANDEL INTERFERENCE WITH HOMODYNE DETECTION

Petr Marek

Radim Filip Petr Zapletal Yosuke Hashimoto Takeshi Toyama Jun-ichi Yoshikawa Kenzo Makino Akira Furusawa

Palacký University Olomouc

Hong-Ou-Mandel interference

Two photons meet on a balanced beam splitter:

If distinguishable, they ignore each other:

$$(|1,0
angle_a+|0,1
angle_a)\otimes(|1,0
angle_b-|0,1
angle_b)$$

If indistinguishable, they bunch

$$|2,0\rangle - |0,2\rangle$$

Image: Quantum Optics Lab Olomouc

Visibility of the HOM dip quantifies the ability to interfere

$$= \frac{\max C - \min C}{\max C + \min C}$$

Can we do it with homodyne detection?

 $X(\theta) = X\cos\theta + P\sin\theta$

- Why do we care?
 - It is omnipresent in hybrid and CV optics
 - It can be available where PNRs or APDs aren't
 - It is a `wave-like' rather than 'particle-like' measurement

25.5.2018

Complete tomography with homodyne detection

- Good
 - Gives full information
- Bad
 - Many measurements
 - Many measurement bases
 - Requires reconstruction

25.5

Different approach?

• We need to single out :

 Consider homodyne detection of quadrature X₂

 $|\psi\rangle \propto \langle x_2|2\rangle |0\rangle - \langle x_2|0\rangle |2\rangle$ $|\psi\rangle \propto c_0|0\rangle + c_2|2\rangle$

Conditional squeezing

- Quadratures X₁ and X₂ are measured
- Indistinguishable single photons show central squeezing

$$E[X_1^2|X_2=x_2] < \frac{1}{2}$$

 Other states do not, at least for the selected range of X₂ values

The witness:

- Interfere two fields at the balanced beam splitter
- Measure values of quadratures X₁ and X₂
- Evaluate conditional moments
- The "right" squeezing indicates:
 - There were two single photons
 - They were indistinguishable
 - They had good mode match with the LO
 - The phase after the beam splitter was locked

Experimental test:

Sci. Adv. 2, e1501772 (2016) PRA 96, 033830 (2017)

25.5.2018

Experimental test:

• Consistent with: $0.33|0\rangle\langle 0| + 0.65|1\rangle\langle 1| + 0.02|2\rangle\langle 2|$

Sci. Adv. 2, e1501772 (2016) PRA 96, 033830 (2017)

25.5.2018

In summary:

- Homodyne detection can be used for HOM-like measurement
- Requires only a single set of measurements
- It can confirm
 - indistinguishability
 - single photon nature
 - phase stability of the interference

• More details in PRA 96, 033830 (2017)

Thank you for the attention!

