

Generator of arbitrary classical photon statistics

Ivo Straka, Jaromír Mika, Miroslav Ježek Palacký University, Olomouc, Czech Republic

Quantum Symposium, Berlin, 30th May 2018

Outline

- Photon statistics
- Obtaining intensity distribution from statistics
- Experimental generation and detection
- Results

Motivation

- Detector metrology
- Improving efficiency of nonlinear phenomena
- Simulating fading channels and noise
- Generating asymmetric and heavy-tailed statistics

Semi-classical view on photon statistics

Constant integrated intensity W: $p_n = \frac{W^n}{n!} e^{-W}$

Semi-classical view on photon statistics

Constant integrated intensity W: $p_n = \frac{W^n}{n!} e^{-W}$

intensity

time

Mandel's formula: $p_n = \left\langle \frac{W^n}{n!} e^{-W} \right\rangle_W = \int_0^\infty \frac{W^n}{n!} e^{-W} P(W) dW$

Inversion is hard: $P(W) = f(p_n)$

Bédard, J. Opt. Soc. Am. 57, 1201 (1967) Byrne, Haughton, Jiang, Inverse Probl. 9, 39 (1993) Earnshaw, Haughey, Rev. Sci. Instruments 67, 4387 (1996)

Detection and timing

Detector recovery time \ll detection window \ll modulation period \ll measurement time

23 ns 10 µs 1 ms 100 s

Detection model: recovery time + afterpulses (with twilight pulses) with a fixed temporal distribution

 \rightarrow parameters measured separately and used for all data accuracy $\delta p \sim 10^{\text{-4}}$

Verify accurate generation for cw using SPAD \Rightarrow works just as well for pulsed

Specify $p_n \longrightarrow Get P(W) \checkmark Get P(W)$ Measure data Model detector response

Scope and extensions

Dynamic range: chained modulators

Same setup works for pulsed regime, but different PNRD needed (already works for 20-nm spectrum)

Pulsed: possible repetition rate of 2 MHz

Speed: electro-optical or electro-absorption modulation (40 GHz) EOM downside: lower range (20 dB) and bad stability

Conclusion

We demonstrated highly accurate generation of photon statistics We proposed an efficient inversion method to obtain intensity distribution The concept can be easily extended to any form of modulation

Thank you for your attention

I. Straka, J. Mika, M. Ježek, Opt. Express 26, 8998 (2018).

17-26143S