Quantum enhanced classical imaging and metrology

Bohumil Stoklasa^{1,3}, Jaroslav Rehacek¹, Zdenek Hradil¹, Martin Paur¹, Libor Motka^{1,3}, L. L. Sanchez-Soto²

Department of Optics, Palacky University, Czech Republic ¹ Departamento de Optica, Universidad Complutense, Madrid, Spain ² Meopta-optika, Czech Republic ³

15.11.2017

Bohumil Stoklasa^{1,3}, Jaroslav Rehacek¹, Zdenek Hradil¹, Martin Quantum enhanced classical imaging and metrology

University-company collaboration Quantum tomography Quantum and beam optics correspondence

University-company collaboration

Palacky University- Optics department

Meopta-Optika, 2500 employees 150 people R&D

University-company collaboration Quantum tomography Quantum and beam optics correspondence

イロト イポト イヨト イヨト

Quantum state tomography formalism

- The goal is to estimate the quantum state from the measurement data obtained from the ensemble of *N* identical copies the quantum system
- Measurements are described by a set of positive operators
 Π_i (POVM operators)
- Due to finite resources, quantum state can be only statistically estimated from probabilities p_j = Tr ρΠ_j
- The probabilities are measured by the outcome frequencies f_j of the particular measurements $f_j = \frac{n_j}{N}$

ヘロン 人間 とくほ とくほ とう

Fisher information and estimation

How good is my estimator of \mathfrak{s} in the case of $\varrho(\mathfrak{s})$? Any ubiased estimator must follow Cramer-Rao bound:

$$(\Delta \hat{\mathfrak{s}})^2 \geq rac{1}{\mathcal{F}}$$

Classical Fisher information: $\mathcal{F} = \int_{-\infty}^{\infty} \varrho_{\mathfrak{s}}(x) \left(\frac{\partial \log \varrho_{\mathfrak{s}}(x)}{\partial \mathfrak{s}}\right)^2 dx$. Quantum Fisher information: $\mathcal{F}_{\mathcal{Q}} = \operatorname{Tr}[\varrho_{\mathfrak{s}} \mathcal{L}_{\mathfrak{s}}^2]$ symmetric logarithmic derivative $\mathcal{L}_{\mathfrak{s}}$ is the selfadjoint operator satisfying $\frac{1}{2}(\mathcal{L}_{\mathfrak{s}}\varrho_{\mathfrak{s}} + \varrho_{\mathfrak{s}}\mathcal{L}_{\mathfrak{s}}) = \partial \varrho_{\mathfrak{s}}/\partial \mathfrak{s}$

University-company collaboration Quantum tomography Quantum and beam optics correspondence

イロト イポト イヨト イヨト

Fisher information notes

Quantum Fisher information is an upper bound for a classical Fisher information,

 $\mathcal{F} >= \mathcal{F}_{\mathcal{Q}}.$

Quantum fisher information is independent of a measurement process. To test optimality of particular measurement, Fisher information for the measurement has to be computed: $\mathcal{F}_{\mathcal{M}} >= \mathcal{F}_{\mathcal{Q}}.$

ヘロト 人間 ト ヘヨト ヘヨト

Correspondence classical and quantum description

There is a tight correspondence between beam optics and quantum mechanics.

- coherent waves (beam modes) ightarrow pure states $U(x) = \langle x | \psi
 angle$
- partially coherent fields \rightarrow mixed states $G(x, x') = \langle x | \rho | x' \rangle$

Wavefront detector tomography Two incoherent points resolution

Wavefront detector tomography

Measurement of optical beams spatial coherence parametrized by a coherence matrix ρ

$$I(\Delta x_i, \Delta p_j) = \operatorname{Tr}(\varrho |\Pi_{ij}\rangle \langle \Pi_{ij}|)$$

$$(\Pi_{ij})_{mn} = \psi_{n,i}(\Delta \rho_j) \psi_{m,i}^*(\Delta \rho_j)$$

Wavefront detector tomography Two incoherent points resolution

Vortex beam reconstruction

Bohumil Stoklasa^{1,3}, Jaroslav Rehacek¹, Zdenek Hradil¹, Martin Quantum enhanced classical imaging and metrology

Wavefront detector tomography Two incoherent points resolution

Partially coherent light intensity propagation

The propagation of transverse intensity distribution requires the explicit form of mutual coherence function at the input plane

Wavefront detector tomography Two incoherent points resolution

Incoherent image of two-points

PSF:
$$I(x) = |\langle x | \psi \rangle|^2 = |\psi(x)|^2$$

 $|\psi_{\pm}
angle = \exp(\pm i P_{\mathfrak{F}}/2) |\psi
angle, \ \varrho_{\mathfrak{s}} = \frac{1}{2} (|\psi_{\pm}
angle \langle \psi_{\pm}| + |\psi_{\pm}
angle \langle \psi_{\pm}|)$

Wavefront detector tomography Two incoherent points resolution

Recent experimental work

Taking resolution to the limit: dispelling Rayleigh curse

Martin Paúr¹, Bohumil Stoklasa¹, Zdenek Hradil¹, Luis L. Sánchez-Soto^{2,3,*}, and Jaroslav Rehacek¹

¹Department of Optics, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic

² Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain

³ Max-Planck-Institut für die Physik des Lichts, Günther-Scharowsky-Straße 1, Bau 24, 91058 Erlangen, Germany

*Corresponding author: Isanchez@fis.ucm.es

< ロ > < 同 > < 三 >

Wavefront detector tomography Two incoherent points resolution

★ E → ★ E →

< 🗇 🕨

Optimal measurement

$$|\psi_{\pm}
angle = \exp(\pm i P \mathfrak{s}/2) |\psi
angle, \langle \psi_{-}|\psi_{+}
angle
eq 0$$

$$egin{array}{rcl} |\psi_{sm}
angle &=& \mathcal{C}_{sm}(|\psi_{+}
angle + |\psi_{-}
angle) \simeq |\psi
angle, \ |\psi_{a}
angle &=& \mathcal{C}_{a}(|\psi_{+}
angle - |\psi_{-}
angle) \simeq rac{\mathcal{P}|\psi
angle}{\sqrt{\langle\psi|\mathcal{P}^{2}|\psi
angle}}, \end{array}$$

Once PSF is inversion symmetric, those modes are orthogonal and Quantum Fisher information is:

$$\mathcal{F}_{\mathcal{Q}} = 2\left[\frac{1}{p_{a}}\langle\psi_{a}|\frac{\partial\varrho_{\mathfrak{s}}}{\partial\mathfrak{s}}|\psi_{a}\rangle + \frac{1}{p_{sm}}\langle\psi_{sm}|\frac{\partial\varrho_{\mathfrak{s}}}{\partial\mathfrak{s}}|\psi_{sm}\rangle\right] \simeq \langle\psi|\boldsymbol{P}^{2}|\psi\rangle\,,$$

Wavefront detector tomography Two incoherent points resolution

Experimental realization of mode projection

In the direction of the hologram reference wave, observed intensity is:

$$(|\int_{-\infty}^{\infty} dx \phi_q^* \phi_0(x+\frac{\theta_2}{2})|^2 + |\int_{-\infty}^{\infty} dx \phi_q^* \phi_0(x-\frac{\theta_2}{2})|^2)$$

→ E → < E →</p>

Benefits of quantum description of measurement and imaging

- Recasting classical measurement scenario should provide a new point of view about a problem (Shack-Hartmann example).
- Proper treatment of Quantum Fisher Information provides real boundaries to measurement process and should lead to improvement in a measurement scheme (the image of two incoherent sources example).