Quantum enhanced classical imaging and metrology

Bohumil Stoklasa¹, Jaroslav Rehacek¹, Zdenek Hradil¹, Martin Paur¹, Libor Motka¹, L. L. Sanchez-Soto²

Department of Optics, Palacky University, Czech Republic ¹ Departamento de Optica, Universidad Complutense, Madrid, Spain ²

14.9.2017

Motivation

- Quantum tomography
- Quantum and beam optics correspondence

2 Results

- Wavefront detector tomography
- Two incoherent points resolution

3 Conclusion

 Benefits from quantum reformulation of classical problems

Quantum tomography Quantum and beam optics correspondence

イロト イポト イヨト イヨ

Outline

Motivation

- Quantum tomography
- Quantum and beam optics correspondence

2 Results

- Wavefront detector tomography
- Two incoherent points resolution

3 Conclusion

 Benefits from quantum reformulation of classical problems

Quantum tomography Quantum and beam optics correspondence

イロト イポト イヨト イヨト

Quantum state tomography formalism

- The goal is to estimate the quantum state from the measurement data obtained from the ensemble of *N* identical copies the quantum system
- Measurements are described by a set of positive operators
 Π_i (POVM operators)
- Due to finite resources, quantum state can be only statistically estimated from probabilities p_j = Tr ρΠ_j
- The probabilities are measured by the outcome frequencies f_i of the particular measurements $f_i = \frac{n_i}{N}$

Quantum tomography Quantum and beam optics correspondence

イロト イポト イヨト イヨト

Problems of quantum tomography

$$p_j = \operatorname{Tr} \rho \Pi_j$$

- Estimation algorithm (ML algorithm)
- Problem of tomography measurement completeness (MEML algorithm)
- Problem of measurement device calibration (data pattern tomography)

Quantum tomography Quantum and beam optics correspondence

イロト イポト イヨト イヨト 三日

Fisher information and estimation

How good is my estimator of \mathfrak{s} in the case of $\varrho(\mathfrak{s})$? Any ubiased estimator must follow Cramer-Rao bound:

$$(\Delta \hat{\mathfrak{s}})^2 \geq rac{1}{\mathcal{F}}$$

Classical Fisher information: $\mathcal{F} = \int_{-\infty}^{\infty} \varrho_{\mathfrak{s}}(x) \left(\frac{\partial log_{\varrho_{\mathfrak{s}}}(x)}{\partial \mathfrak{s}}\right)^2 dx$. Quantum Fisher information: $\mathcal{F}_{\mathcal{Q}} = \text{Tr}[\varrho_{\mathfrak{s}} L_{\mathfrak{s}}^2]$ symmetric logarithmic derivative $\mathcal{L}_{\mathfrak{s}}$ is the selfadjoint operator satisfying $\frac{1}{2}(\mathcal{L}_{\mathfrak{s}}\varrho_{\mathfrak{s}} + \varrho_{\mathfrak{s}}\mathcal{L}_{\mathfrak{s}}) = \partial \varrho_{\mathfrak{s}}/\partial \mathfrak{s}$

Quantum tomography Quantum and beam optics correspondence

イロト イポト イヨト イヨト 三日

Fisher information notes

Quantum Fisher information is an upper bound for a classical Fisher information,

 $\mathcal{F} >= \mathcal{F}_{\mathcal{Q}}.$

Quantum fisher information is independent of a measurement process. To test optimality of particular measurement, Fisher information for the measurement has to be computed:

 $\mathcal{F}_{\mathcal{M}} >= \mathcal{F}_{\mathcal{Q}}.$

Quantum tomography Quantum and beam optics correspondence

イロト イ理ト イヨト イヨト

Outline

Motivation

- Quantum tomography
- Quantum and beam optics correspondence

2 Results

- Wavefront detector tomography
- Two incoherent points resolution
- 3 Conclusion
 - Benefits from quantum reformulation of classical problems

Quantum tomography Quantum and beam optics correspondence

ヘロト 人間 ト ヘヨト ヘヨト

Correspondence classical and quantum description

There is a tight correspondence between beam optics and quantum mechanics.

- coherent waves (beam modes) ightarrow pure states $U(x) = \langle x | \psi
 angle$
- partially coherent fields \rightarrow mixed states $G(x, x') = \langle x | \rho | x' \rangle$

Wavefront detector tomography Two incoherent points resolution

イロト イポト イヨト イヨ

Outline

Motivation

- Quantum tomography
- Quantum and beam optics correspondence

2 Results

Wavefront detector tomography

Two incoherent points resolution

Conclusion

 Benefits from quantum reformulation of classical problems

Wavefront detector tomography Two incoherent points resolution

Wavefront detector tomography

Measurement of optical beams spatial coherence parametrized by a coherence matrix ρ

$$I(\Delta x_i, \Delta p_j) = \operatorname{Tr}(\varrho | \Pi_{ij} \rangle \langle \Pi_{ij} |)$$

$$(\Pi_{ij})_{mn} = \psi_{n,i}(\Delta p_j) \psi^*_{m,i}(\Delta p_j)$$

Wavefront detector tomography Two incoherent points resolution

Problems of wavefront detection quantum description

- Suitable representation of *ρ* has to be found (character of modes describing all relevant features of signal)
- Subspace establishing information complete measurement has to be formed (number of modes)
- If N is number of pixels of position detector (CCD), maximum reconstructed space dimension is \sqrt{N}

Outline Motivation Results

Wavefront detector tomography Two incoherent points resolution

Experimental setup of wavefront tomography

Wavefront detector tomography Two incoherent points resolution

Vortex beam reconstruction

Wavefront detector tomography Two incoherent points resolution

Partially coherent light intensity propagation

The propagation of transverse intensity distribution requires the explicit form of mutual coherence function at the input plane

Wavefront detector tomography Two incoherent points resolution

イロト イポト イヨト イヨ

Outline

- Quantum tomography
- Quantum and beam optics correspondence

2 Results

- Wavefront detector tomography
- Two incoherent points resolution

Conclusion

 Benefits from quantum reformulation of classical problems

Wavefront detector tomography Two incoherent points resolution

Hot topic

Viewpoint: Unlocking the Hidden Information in Starlight

Gabriel Durkin, Berkeley Quantum Information and Computation Center, University of California, Berkeley, CA 94720, USA August 29, 2016 • *Physics* 9, 100

Quantum metrology shows that it is always possible to estimate the separation of two stars, no matter how close together they are.

∃ → < ∃ →</p>

Wavefront detector tomography Two incoherent points resolution

Tsangs theoretical work

Quantum theory of superresolution for two incoherent optical point sources

Mankei Tsang,^{1, 2, *} Ranjith Nair,¹ and Xiaoming Lu¹

¹Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583 ²Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Dated: November 3, 2015)

Wavefront detector tomography Two incoherent points resolution

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Recent experimental work

Taking resolution to the limit: dispelling Rayleigh curse

Martin Paúr¹, Bohumil Stoklasa¹, Zdenek Hradil¹, Luis L. Sánchez-Soto^{2,3,*}, and Jaroslav Rehacek¹

¹Department of Optics, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic

² Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain

³ Max-Planck-Institut für die Physik des Lichts, Günther-Scharowsky-Straße 1, Bau 24, 91058 Erlangen, Germany

*Corresponding author: Isanchez@fis.ucm.es

Outline Motivation Results

Wavefront detector tomography Two incoherent points resolution

3

< ∃ > <

< < >> < </>

Incoherent image of two-points

PSF: $I(x) = |\langle x | \psi \rangle|^2 = |\psi(x)|^2$

$$|\psi_{\pm}\rangle = \exp(\pm i P_{\mathfrak{s}}/2) |\psi\rangle, \ \varrho_{\mathfrak{s}} = \frac{1}{2} (|\psi_{\pm}\rangle\langle\psi_{\pm}| + |\psi_{\pm}\rangle\langle\psi_{\pm}|)$$

Two incoherent points resolution

★ E → < E →</p>

Classical Fisher information for position intensity measurement

Standard image plane intensity detection

.,

$$\varrho_{\mathfrak{s}}(x) = \frac{1}{2}(|\psi(x-\mathfrak{s}/2)|^2 + |\psi(x+\mathfrak{s}/2)|^2)$$

$$\mathcal{F}_{\mathrm{std}} = \int_{-\infty}^{\infty} \frac{1}{arrho_{\mathfrak{s}}(x)} \left(\frac{\partial arrho_{\mathfrak{s}}(x)}{\partial \mathfrak{s}}
ight)^2 \mathrm{d}x \, .$$
 $\mathcal{F}_{\mathrm{std}} \simeq \mathfrak{s}^2 \int_{-\infty}^{\infty} \frac{[I''(x)]^2}{I(x)} \mathrm{d}x \, .$

Wavefront detector tomography Two incoherent points resolution

ヘロト 人間 ト ヘヨト ヘヨト

э

Optimal measurement

$$|\psi_{\pm}\rangle = \exp(\pm i P \mathfrak{s}/2) |\psi\rangle, \, \langle \psi_{-} |\psi_{+}\rangle \neq 0$$

$$egin{array}{rcl} |\psi_{sm}
angle &=& \mathcal{C}_{sm}(|\psi_{+}
angle + |\psi_{-}
angle) \simeq |\psi
angle \,, \ |\psi_{a}
angle &=& \mathcal{C}_{a}(|\psi_{+}
angle - |\psi_{-}
angle) \simeq rac{\mathcal{P}|\psi
angle}{\sqrt{\langle\psi|\mathcal{P}^{2}|\psi
angle}} \,, \end{array}$$

Once PSF is inversion symmetric, those modes are orthogonal and Quantum Fisher information is:

$$\mathcal{F}_{\mathcal{Q}} = 2\left[\frac{1}{\rho_{a}}\langle\psi_{a}|\frac{\partial\varrho_{\mathfrak{s}}}{\partial\mathfrak{s}}|\psi_{a}\rangle + \frac{1}{\rho_{sm}}\langle\psi_{sm}|\frac{\partial\varrho_{\mathfrak{s}}}{\partial\mathfrak{s}}|\psi_{sm}\rangle\right] \simeq \langle\psi|\boldsymbol{P}^{2}|\psi\rangle\,,$$

Wavefront detector tomography Two incoherent points resolution

ヘロン 人間 とくほ とくほ とう

ъ

Optimal measurement II

 $\varrho_{\mathfrak{s}}$ is diagonal $\varrho_{\mathfrak{s}}|\psi_{j}\rangle = p_{j}|\psi_{j}\rangle$, with eigenvalues $p_{a} = \langle \psi | P^{2} | \psi \rangle \mathfrak{s}^{2}/4$ and $p_{sm} = 1 - p_{a}$.

$$\Pi_j = \psi_{\text{opt}}(\mathbf{x}) = \langle \mathbf{x} | \psi_{\mathbf{a}} \rangle = \frac{\psi'(\mathbf{x})}{\sqrt{\mathcal{F}}}$$

$$\mathcal{F} = \langle \psi | \mathcal{P}^2 | \psi \rangle = \int_{-\infty}^{\infty} [\psi'(x)]^2 \,\mathrm{d}x \,.$$

Wavefront detector tomography Two incoherent points resolution

٠

э

ヘロト ヘワト ヘビト ヘビト

Specific PSF

$$\psi^{G}(x) = \frac{1}{(2\pi\sigma^{2})^{\frac{1}{4}}} \exp\left(-\frac{x^{2}}{4\sigma^{2}}\right), \quad \psi^{S}(x) = \frac{1}{\sqrt{w}} \frac{\sin(\pi x/w)}{\pi x/w},$$

The optimal measurements are then

$$\psi_{\text{opt}}^{G}(x) = \frac{-1}{(2\pi)^{\frac{1}{4}}\sigma^{\frac{3}{2}}}x \exp\left(-\frac{x^{2}}{4\sigma^{2}}\right),$$

$$\psi_{\text{opt}}^{S}(x) = \sqrt{3}\left[\frac{w^{\frac{1}{2}}}{\pi x}\cos\left(\frac{\pi x}{w}\right) - \frac{w^{\frac{3}{2}}}{\pi^{2}x^{2}}\sin\left(\frac{\pi x}{w}\right)\right]$$

Outline Motivation Results

Wavefront detector tomography Two incoherent points resolution

Conclusion

Experimental realization of mode projection

In the direction of the hologram reference wave, observed intensity is:

$$(|\int_{-\infty}^{\infty} dx \phi_q^* \phi_0(x + \frac{\theta_2}{2})|^2 + |\int_{-\infty}^{\infty} dx \phi_q^* \phi_0(x - \frac{\theta_2}{2})|^2)$$

Outline Motivation Results

Wavefront detector tomography Two incoherent points resolution

Results

Benefits from quantum reformulation of classical problems

→ E > < E</p>

< 🗇 🕨

Outline

Motivation

- Quantum tomography
- Quantum and beam optics correspondence

2 Results

- Wavefront detector tomography
- Two incoherent points resolution

3 Conclusion

 Benefits from quantum reformulation of classical problems

Benefits from quantum reformulation of classical problems

Benefits of quantum description of measurement and imaging

- Recasting classical measurement scenario should provide a new point of view about a problem (Shack-Hartmann example).
- Proper treatment of Quantum Fisher Information provides real boundaries to measurement process and should lead to improvement in a measurement scheme (the image of two incoherent sources example).