Boolean Matrix Decomposition by Formal Concept Sampling

Petr Osicka, Martin Trnecka

Department of Computer Science, Palacky University Olomouc, Czech Republic

Boolean Matrix Decomposition

- :: method for analysis of Boolean data
- :: general aim: for a given matrix $I \in \{0,1\}^{n \times m}$ find matrices $A \in \{0,1\}^{n \times k}$ and $B \in \{0,1\}^{k \times m}$ for which I (approximately) equals $A \circ B$
- :: \circ is the Boolean matrix product

$$(A \circ B)_{ij} = \max_{l=1}^{k} \min(A_{il}, B_{lj}).$$
$$\begin{pmatrix} 10111\\01101\\01001\\10110 \end{pmatrix} = \begin{pmatrix} 110\\011\\001\\100 \end{pmatrix} \circ \begin{pmatrix} 10110\\0101\\01001\\01001 \end{pmatrix}$$

- :: discovery of k factors that exactly or approximately explain the data
- :: factors = interesting patterns (rectangles) in data

Formal Concept Analysis

:: $n \times m$ matrix $I \to$ formal context $(\{1, \ldots, n\}, \{1, \ldots, m\}, J)$ with $(x, y) \in J$ iff $I_{xy} = 1$

Formal Concept Sampling

- :: Metropolis-Hastings algorithm
- **::** Boley, M., Gartner, T., Grosskreutz, H.: Formal Concept Sampling for Counting and Threshold-Free Local Pattern Mining. In Proceedings of the SIAM International Conference on Data Mining, SDM 2010, 1770–188, 2010.
- :: algorithm moves from one formal concept to another formal concept in $\mathcal{B}(I)$
- :: f assigning to a formal concept a nonzero value
- :: formal concept $\langle D, E \rangle$ is drawn with probability $\frac{f(\langle D, E \rangle)}{\sum f(\langle D', E' \rangle)}$
- :: the logarithmic number iterations is sufficient

New Algorithm

- :: modification of GRECON
- :: f takes into account the number covered 1s

Experimental evaluation

:: $n \times m$ matrix $T \to \text{formal context}(\{1, \dots, n\}, \{1, \dots, m\}, J)$ with $(x, y) \in J$ in $T_{xy} = 1$:: formal context induces a pair of operators $\uparrow : 2^X \to 2^Y$ and $\downarrow : 2^Y \to 2^X$ defined by

> $D^{\uparrow} = \{ y \in \{1, \dots, m\} \mid \text{for all } x \in D : (x, y) \in J \},\$ $E^{\downarrow} = \{ x \in \{1, \dots, n\} \mid \text{for all } y \in E : (x, y) \in J \}$

:: formal concept $\langle D, E \rangle$, where $D \subseteq \{1, \ldots, n\}$, $E \subseteq \{1, \ldots, m\}$, $D^{\uparrow} = E$, $E^{\downarrow} = D$

:: set of all formal concepts $\mathcal{B}(I)$ can be ordered by \leq defined by $\langle D, E \rangle \leq \langle D', E' \rangle$ iff $D \subseteq D'$ (or equivalently $E' \subseteq E$), moreover forms complete lattice

Formal Concepts as Factors

GRECON Algorithm

- :: the simplest algorithm for BMD
- :: Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. *J. Comput. Syst. Sci.* 76, 1 (2010), 3–20.

- :: sets of 1000×500 matrices with various properties
- :: real-world data
- :: GRECON is outperformed by the probabilistic algorithm
- :: increase in the number trials increases the coverage quality
- :: sparser data usually require less trials

Synthetic Data (Selected Results)

	5	10	15	20	25	30	35				
GreCon	0.299	0.511	0.686	0.822	0.923	1.000	1.000				
25 trials	0.283	0.499	0.675	0.813	0.921	0.990	1.000				
50 trials	0.293	0.510	0.685	0.824	0.932	0.999	1.000				
75 trials	0.296	0.510	0.686	0.825	0.932	0.999	1.000				
100 trials	0.299	0.511	0.687	0.826	0.933	1.000	1.000				
Table 1: Coverage quality of the first l rectangles on Set A											
	5	10	15	20	25	30	35				
CRECON	0 262	0 / 62	0 620	በ 755	0 877	1 000	1 000				

	5	10	15	20	25	50	55
GreCon	0.262	0.462	0.620	0.755	0.877	1.000	1.000
25 trials	0.198	0.363	0.509	0.646	0.751	0.827	0.896
50 trials	0.240	0.434	0.598	0.729	0.837	0.921	0.980
75 trials	0.253	0.449	0.614	0.753	0.872	0.954	0.996
100 trials	0.254	0.460	0.630	0.771	0.889	0.977	1.000
Table 3. Co	overage	, duality	y of the	first 1	rectan	ales on	Set C

Table 3: Coverage quality of the first l rectangles on Set C

Real Data (Selected Results)

:: reduction BMD to Set-Cover problem.

- 1: procedure GRECON(I)
- $_{2:}$ $U \leftarrow I$
- $_{3:}$ $\mathcal{F} \leftarrow \emptyset$
- 4: Compute the set $\mathcal{B}(I)$ of all formal concepts of I
- s: while there is a 1 in U do
- $_{\mbox{\tiny 6:}} \qquad \qquad \mbox{find } \langle D, E \rangle \in \mathcal{B}(I) \mbox{ that covers the most 1s in } U$
- $_{^{_{7:}}}$ add $\langle D,E
 angle$ to ${\cal F}$
- $U_{ij} \leftarrow 0$
- 10: $t \leftarrow 1$
- for $\langle D, E \rangle \in F$ do
- set A_{t} to the characteristic vector of D
- 13: set $B_{t_{-}}$ to the characteristic vector of E
- 14: $t \leftarrow t+1$
- 15: return A, B

Figure 1: Coverage quality of the first l factors on DNA dataset

Conclusion

- :: new (probabilistic) BMD algorithm
- :: new directions in BMD algorithm design

Supported by grant No. GA15-17899S of the Czech Science Foundation and by ECOP project no. CZ.1.07/2.3.00/20.0059.