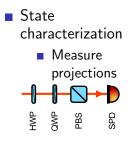
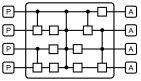
The optimal strategy for photonic quantum tomography


Radim Hošák, Robert Stárek, Miroslav Ježek



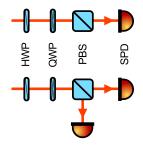
DV quantum characterization

- Device characterization
 - Probe inputs
 - Analyze outputs

n-qubit devices equivalent to 2n-qubit states

Partial or complete information desired

- Witnesses
- Reduced tomography (matrix-product states etc.)
- Full tomography


Photonic quantum platforms

Wave-plate realizations

- Polarization DOF
- Projections tied to wave plate angles

On-chip devices

- Phase in interferometric schemes
- Projections tied to voltage

イロト 不得 トイヨト イヨト

Full characterization scales non-polynomially with the size of the system:

 $N_n = N_1^n$, $N \dots$ no. of measurements, $n \dots$ system size

Number of measurements directly affects duration. \Rightarrow Great incentive to reduce

Ordering-dependent tomography duration

The six polarimetric projections, using wave plates:

HWP angle (deg)	QWP angle (deg)
0	0
45	0
22.5	0
-22.5	0
0	45
0	-45
	0 45 22.5

Transition time between two projections depends on the projections in question.

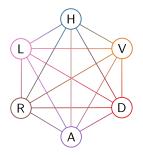
 \Rightarrow Total duration is ordering-dependent.

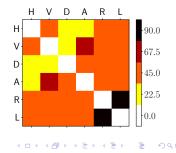
Conventional sequence: $\tau_{\rm conv} = 292.5^{\circ}$ 45 22.5 45 45 90 45 R А Н Н Optimized sequence: $\tau_{\rm optim} = 225$ ° 45 45 45 45 22.5 22.5 R А Н Н

Speedup factor

$$s = \frac{\tau_{\rm conv}}{\tau_{\rm optim}} = 1.3$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

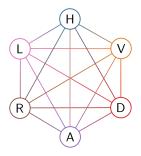

TSP in tomography optimization

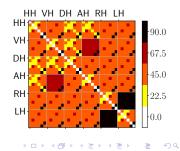

Traveling salesman problem (TSP)

- Graph-theoretical interpretation
 - Graph nodes: tomographic projections
 - Graph edges: duration of transition between projections
 - \Rightarrow adjacency matrix

The workflow

- Compute the adjacency matrix of *n*-qubit tomography
- 2 Use a TSP solver
- Compare TSP-optimized duration to conventional

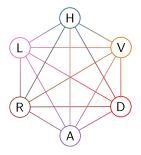

TSP in tomography optimization

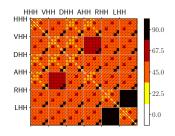

Traveling salesman problem (TSP)

- Graph-theoretical interpretation
 - Graph nodes: tomographic projections
 - Graph edges: duration of transition between projections
 - \Rightarrow adjacency matrix

The workflow

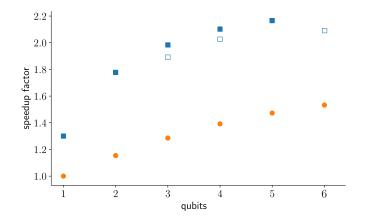
- Compute the adjacency matrix of *n*-qubit tomography
- 2 Use a TSP solver
- 3 Compare TSP-optimized duration to conventional


TSP in tomography optimization


Traveling salesman problem (TSP)

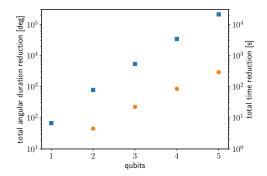
- Graph-theoretical interpretation
 - Graph nodes: tomographic projections
 - Graph edges: duration of transition between projections
 - \Rightarrow adjacency matrix

The workflow


- Compute the adjacency matrix of *n*-qubit tomography
- 2 Use a TSP solver
- 3 Compare TSP-optimized duration to conventional

Optimization results: speedup factor

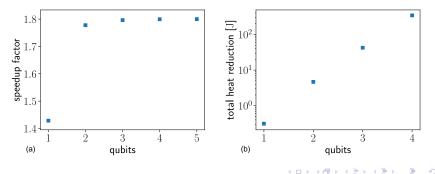
Speedup reaches 2 for four qubits already.



R. Hošák, R. Stárek, and M. Ježek, "Optimal reordering of measurements for photonic quantum tomography," Opt. Express 26, 32878-32887 (2018).

э

Optimization results: temporal reduction


3-qubit device characterization duration reduced from 23 hours to 11 hours.

R. Stárek et al. "Experimental implementation of three- and four-qubit photonic quantum logic circuits," presented at IQIS conference in Catania, Sep 17.-20. (2018).
R. Stárek et al. "Nondestructive detector for exchange symmetry of photonic qubits," npj Quantum Inf. 4:35 (2018).

On-chip polarization-encoded qubits

- Voltage-controlled phase in interferometric scheme
- Difference-dependent voltage level transition time
 - Temporal TSP optimization possible (a)
- Another optimization target: heat dissipation (b)

- Duration of tomography practically halved
- Zero-cost application (no hardware changes needed)
- Versatile approach, custom scenarios possible
- Applicable to full or partial tomography
- Code available: github.com/rhosak/tomo-tsp

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you for your attention!