Nonlinear squeezing for quantum information processing

Petr Marek

with many thanks to

R. Filip, A. Furusawa, and others

CV Quantum information processing

- Preparation of arbitrary quantum states of harmonic oscillators
- Manipulating them in arbitrary fashion
- Measuring them in arbitrary basis

CV Quantum information processing

- Preparation of arbitrary quantum states of harmonic oscillators
- Manipulating them in arbitrary fashion
- Measuring them in arbitrary basis

3

Manipulation: probabilistic VS deterministic

- Probabilistic
 - experimentally feasible
 - allows nonphysical operations
 - not scalable

- Deterministic
 - scalable
 - only allows unitary
 operation or forming
 mixtures

 photon subtraction or photon addition – Gaussian operations

Arbitrary unitary transformation of quantum states

$$\hat{U} = e^{-i\hat{H}t}$$
 $\hat{H} = \sum_{m,n} c_{m,n} (\hat{x}^m \hat{p}^n + \hat{p}^n \hat{x}^m)$

- Needs a wide range of nonlinear unitaries
- Alterntively, operations of higher order can be approximated by sequences of lower orders

$$e^{-i\hat{A}}e^{-i\hat{B}}e^{i\hat{A}}e^{i\hat{B}} \approx e^{[\hat{A},\hat{B}]}$$

• At least cubic nonlinearity ($\hat{H} = \hat{x}^3$) is required for the synthesis

Seth Lloyd and Samuel L. Braunstein, PRL 82, 1784 (1999).

How to realize the cubic nonlinearity

$$\hat{x} \rightarrow \hat{x}, \quad \hat{p} \rightarrow \hat{p} - \chi \hat{x}^{2}$$

cubic ancilla
signal
 QND
 (x)
 (x)

- Apart from the ancilla, everything is Gaussian
- The required ancilla:

$$|\mathcal{A}_{x^3}\rangle = \int_{-\infty}^{\infty} e^{-i\chi x^3} |x\rangle dx$$

D. Gottesman, A. Kitaev, and J. Preskill, PRA **64**, 012310 (2001); P. Marek, R. Filip, and A. Furusawa, PRA **84**, 053802 (2011)

Advanced approach: non-Gaussian measurement

- Measurement projecting on a displaced NG state
- Displacement only feed-forward
- Squeezing compensated in the measurement

K. Miyata, H. Ogawa, P. Marek, R. Filip, H. Yonezawa, J. Yoshikawa, and A. Furusawa, PRA **93**, 022301 (2016); K. Miyata, H. Ogawa, P. Marek, R. Filip, H. Yonezawa, J. Yoshikawa, and A. Furusawa, Phys. Rev. A **90**, 060302 (2014)

The presentation so far...

- CV quantum information processing

 realization of the cubic gate
- Nonlinear squeezing

What is squeezing

- An elementary technique in quantum optics
- Also known as degenerate SPDC

$$\hat{H} = i\hat{a}^2 - i\hat{a}^{\dagger 2}$$

• Able to generate squeezed states of light

$$e^{-i\hat{H}t}|0\rangle = \sum_{n=0}^{\infty} c_n|2n\rangle$$

Squeezing in phase space and as active operation

- Linear transformation of quadratures
- Can be implemented in existing materials
- Unfortunately only for preparation of the squeezed vacuum state due to:
 - low strength
 - incoupling/outcoupling losses

Measurement induced squeezing

- Squeezing is realized up to a noise term depending on the ancilla
- Ideal ancilla causes no noise
- Combination of measure-and-adjust and quantum erasing

R Filip, P Marek, UL Andersen, Physical Review A 71 (4), 042308 (2005).

Back to the cubic nonlinearity

$$\hat{x} \to \hat{x}, \quad \hat{p} \to \hat{p} - \chi \hat{x}^2 - (\hat{p}_A - \chi \hat{x}_A^2)$$

- Nonlinearity can be realized by the feed-forward
- The ancilla serves to reduce the quantum noise
- Ideal ancilla has reduced fluctuations in a nonlinear quadrature

Linearly and nonlinearly squeezed states

$$\langle [\Delta(\hat{p} - \hat{x})]^2 \rangle \to 0$$

- $\langle [\Delta(\hat{p} x^2)]^2 \rangle \to 0$
- $\langle [\Delta(\hat{p} \hat{x^3})]^2 \rangle \rightarrow 0$ Quadric squeezing
- Linear squeezing
- Cubic squeezing
- $\langle [\Delta(\hat{p} \hat{x^N})]^2 \rangle \rightarrow 0$ Nth order squeezing

Note: parameter χ can be adjusted by linear squeezing

$$\hat{p} - \chi \hat{x}^2 \to \frac{1}{g}\hat{p} - g^2\chi \hat{x}^2 = \frac{1}{g}(\hat{p} - \chi'\hat{x}^2)$$

High order nonlinear operations

$$\hat{H} = \hat{x}^N$$

- High order operation can be applied in a single step
- It requires sequence of different nonlinearly squeezed resources, but only single feedforward operation

P. Marek, R. Filip, H. Ogawa, A. Sakaguchi, S. Takeda, J. Yoshikawa, and A. Furusawa, Phys. Rev. A 97, 022329 (2018)

Approximate ancilla in a limited HS

K. Miyata, H. Ogawa, P. Marek, R. Filip, H. Yonezawa, J. Yoshikawa, and A. Furusawa, PRA 93, 022301 (2016)

Preparation of the probabilistic ancilla

19.7.2018

M. Yukawa, K. Miyata, H. Yonezawa, P. Marek, R. Filip, and A. Furusawa, PRA 88, 053816 (2013);

16

Quick comparison with probabilistic method

$$\begin{array}{c} \text{cubic ancilla} \\ \text{signal} \\ \hline \end{pmatrix} \text{Post-selection} \\ |\mathcal{A}_{x^3}\rangle = \int_{-\infty}^{\infty} e^{-i\chi x^3} |x\rangle dx \\ |\mathcal{A}_{x^3,\approx}\rangle = \hat{S} \sum_{k=0}^{N_{\text{max}}} c_k |k\rangle \\ \int \psi(x)\mathcal{A}(y)|x,y\rangle dxdy \rightarrow \int \psi(x)\mathcal{A}(x)|x\rangle dx \qquad \hat{p} \rightarrow \hat{p} + \chi \hat{x}^2 \end{array}$$

- In the ideal case, the ancillas are identical
- In the approximate case they differ

 different figures of merit:
 shape of wave function instead of operator moments

$$\langle [\Delta(\hat{p} - \hat{x^2})]^2 \rangle \to 0$$

1502028

- Two ways to view quantum operations:
 - manipulation of states VS manipulation of operators
 - Schröedinger VS Heisenberg
 - probabilistic VS deterministic
 - ancilla/measurement-driven VS feed-forward driven
- Deterministic operations are feed-forward driven
 they add noise
 - nonlinear operations add nonlinear noise
- Nonlinear squeezing can be used to reduce this

Two ways to view quantum operation

- manipulation of states
- Schröedinger
- probabilistic
- ancilla/measurementdriven
- only for some states

- manipulation of operators
- Heisenberg
- deterministic
- feed-forward driven
- add noise

• Nonlinear squeezing can be used to reduce the noise of nonlinear deterministic operations

Thank you for the attention!

Different angle: nonlinear squeezing

- The role of the ancilla is to reduce the noise $\langle [\Delta(\hat{p}-\chi \hat{x}^2)]^2 \rangle \to 0$
- For any given dimension of the Hilbert space we can look for states that minimize this variance